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ABSTRACT

Single nucleotide polymorphisms (SNPs) are an
increasingly important tool for genetic and biomedi-
cal research. However, the accumulated sequence
information on allelic variation is not matched by an
understanding of the effect of SNPs on the functional
attributes or ‘molecular phenotype’ of a protein.
Towards this aim we developed SNPeffect, an online
resource of human non-synonymous coding SNPs
(nsSNPs) mapping phenotypic effects of allelic vari-
ation in human genes. SNPeffect contains 31 659
nsSNPs from 12480 human proteins. The current
release of SNPeffect incorporates data on protein
stability, integrity of functional sites, protein phos-
phorylation and glycosylation, subcellular localiza-
tion, protein turnover rates, protein aggregation,
amyloidosis and chaperone interaction. The SNP
entries are accessible through both a search and
browse interface and are linked to most major
biological databases. The data can be displayed as
detailed descriptions of individual SNPs or as an
overview of all SNPs for a given protein. SNPeffect
will be regularly updated and can be accessed at
http://snpeffect.vib.be/.

INTRODUCTION

As a result of the ongoing genomic efforts worldwide an
enormous amount of sequence information on human DNA
variation is accumulating (1). Single nucleotide polymorph-
isms (SNPs) are the most common form of allelic variation
observed in human populations. NCBI’s dbSNP (1) currently
contains 4 540 241 validated human entries out of which
45 896 are non-synonymous coding SNPs (nsSNPs). Although

only 1–3% of the human genome is taken up by protein-coding
regions, this small subset of coding SNPs (together with SNPs
in gene regulatory regions) has the highest likelihood of being
functionally relevant. Most of what is known about the gen-
etics of diseases comes either from studies on rare monogen-
etic diseases or from family studies of common diseases that
have identified rare high-risk variants. However, modest-risk
variants probably have a higher impact on public health because
they have a higher frequency in human populations than much
less frequent but high-risk variants [the so-called common
disease-common variant hypothesis (2)]. For instance, only
5% of all Alzheimer’s cases can be attributed to more than
150 rare high-risk alleles (3) whereas the presence of the
Apoe allele in late-onset Alzheimer’s has been estimated to
be 20% (4). The availability of SNPs offers the possibility
to develop high-density genetic maps for whole-genome
association analyses, allowing the identification of genetic
polymorphisms contributing to susceptibility for common
polygenetic diseases. If we aim at truly linking genetic vari-
ation with phenotypic variation and natural selection a first
step will be to describe how allelic variation affects the func-
tional attributes or molecular phenotype of a protein (5). The
effect of many nsSNPs will probably be neutral as natural
selection will have removed mutations on essential positions.
However, a fraction of nsSNPs will display phenotypic varia-
tion at the molecular level that will, by interaction with other
proteins, affect intermediate phenotypes relevant from a clin-
ical viewpoint [for instance, low-density lipoprotein (LDL)
levels for risk assessment of myocardial infarction]. Assess-
ment of non-neutral SNPs is mainly based on phylogenetic
information (i.e. correlation with residue conservation)
extended to a certain degree with structural approaches [e.g.
see PolyPhen (6) and the method of Chasman and Adams (7)].

Here we present SNPeffect, a web-server describing the
effect of nsSNPs on the molecular phenotype of human pro-
teins. Our goal is to assign the effect of SNPs to specific
functional attributes. For each protein in which SNPs are
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mapped, we compare their effect on protein stability and
folding, aggregation and amyloidosis, catalytic sites and bind-
ing sites, phosphorylation and glycosylation sites, cellular
localization and protein turnover.

MOLECULAR PHENOTYPING OF ALLELIC
VARIANTS

SNPeffect uses not only in-house but also other publicly
available biocomputational tools to predict the effect of nsSNPs
on functional properties defining the molecular phenotype of
proteins. The functional properties evaluated in the current
release of SNPeffect are classified into three categories: (i) pro-
perties affecting protein folding and stability, (ii) properties
affecting functional sites and binding sites and (iii) properties
affecting cellular processing of a protein. The results belong-
ing to each of these categories can be accessed in a summar-
ized way in the protein-centred view or can be looked up in
detail for each SNP in the SNP-centred view. Easy toggling
between both views is provided.

Protein folding and stability

Whenever a high-quality structure (better than 3 s) is
available, the mutation is modelled and its energetic effect is
evaluated with the FoldX force field (8). The FoldX force field
was developed for the fast and accurate estimation of the free
change upon mutation on the stability of a protein or a protein
complex. FoldX has been validated on a test database of more
than 1000 mutants from more than 20 different proteins.
FoldX currently yields a correlation of 0.78 with a SD of
0.41 kcal/mol. Changes in protein aggregation and amyloidosis
are evaluated with the algorithms TANGO (9) and AmyScan
(10,11), respectively. TANGO is a statistical mechanics algo-
rithm that identifies the regions of a protein sequence involved
in the process of b-sheet aggregation. TANGO was validated
on a set of 250 peptides. AmyScan scans a protein sequence for
six-residue amyloidogenic stretches. Amyloid fragment identi-
fication relies on a sequence pattern extracted from a satura-
tion mutagenesis analysis on a de novo designed amyloid
peptide and has been validated experimentally. In addition,
PROF (12,13) was used to predict secondary structure, solvent
accessibility and transmembrane regions.

Functional sites

Integrity of active sites is checked for all enzymes having an
entry in the CSA database (14). The Catalytic Site Atlas (CSA)
is a database documenting enzyme active sites and catalytic
residues in enzymes for which three-dimensional structures
are available. The authors defined a classification of catalytic
residues, which includes only those residues thought to be
directly involved in some aspect of the reaction catalysed by
an enzyme. The CSA contains two types of entries: (i) original
hand-annotated entries, derived from the primary literature and
(ii) homologous entries, found by PSI-BLAST alignment (using
an E-value cut-off of 0.00005) to one of the original entries.
The equivalent residues, which align in sequence to the
catalytic residues found in the original entry are documented.
To further analyse functional sites, we are currently in the
process of mapping disruption in protein–protein interaction
sites using the FoldX force field described above.

Cellular processing

Two tools are used to predict subcellular localization: PA
Subcellular and Psort II. PA Subcellular uses established
machine learning techniques to predict the localization of
the protein, namely, mitochondrion, nucleus, endoplasmic
reticulum, extracellular, cytoplasm, plasma membrane,
Golgi, lysosome or peroxisome. Rather than using sequence
information alone, this method uses database text annota-
tions from homologues and machine learning to substan-
tially improve the prediction of subcellular location. The
authors report an accuracy of 92–94% (15). Psort II uses
a k-nearest neighbour classifier that is trained on yeast
sequences from Swiss-Prot (16). The subcellular localiza-
tions that can be predicted are cytoskeletal, cytoplasmic,
nuclear, mitochondrial, vesicles of secretory system, endo-
plasmic reticulum, Golgi, vacuolar, plasma membrane, per-
oxisomal and extracellular localizations including the cell
wall. Effects on post-translational modification sites are also
screened: phosphorylation is checked with PhosphoBase
(17) and glycosylation with O-Glycobase (18). PhosphoBase
contains information about phosphorylated residues in
proteins and data about peptide phosphorylation by a variety
of protein kinases. The data are collected from literature and
compiled into a common format. PhosphoBase covers
phosphorylatable serine, threonine and tyrosine residues.
O-GLYCBASE is a database of glycoproteins with O-linked
glycosylation sites. Entries with at least one experimentally
verified O-glycosylation site have been compiled from
protein sequence databases and literature. Finally, protein
turnover rates depend strongly on the identity of the N-
terminal residue. A highly destabilizing N-terminal residue
such as arginine can lead to a half-life as short as 2 min,
whereas other amino acids produce half-lives of around a
day. We predict protein turnover rates using the N-terminal
rules as described by Varshavsky and coworkers (19,20).

RESULTS AND DISCUSSION

The current version of SNPeffect contains 31 659 entries. As
shown in Table 1 most of these SNPs are neutral, producing
no change of molecular phenotype (e.g. only 0.01% of
nsSNPs cause a change in subcellular localization; Figure 1
and Table 1). This is to be expected since large changes in
molecular phenotype such as cellular localization, turnover-
rate or disruption of active sites are very likely to be dele-
terious and will be eliminated by natural selection. When-
ever they are present, however, they form interesting targets
of investigation since they could be associated with disease.
The only molecular phenotype that is significantly affected
in more than 50% of the cases analysed is the stability of
the protein. Even if, due to a lack of structural information,
the set of SNPs analysed for stability is very small, it is to
be expected that this trend will be maintained. Change in
stability of a protein is not necessarily deleterious for pro-
tein function and is much more likely to create a more
subtle range of functional effects by modulating protein–
protein interactions. To supplement the lack of structural
information, we are currently generating high-quality homol-
ogy models using the FoldX force field.
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Figure 1. Examples of disruptive effects caused by allelic variation. From the 31 659 SNPs analysed by PA Subcellular, 290 show a clear change in subcellular
localization. Arrows signify differences in localization between wild type (WT) and SNP. The label of each arrow shows how many times the transition from one
classification to another occurs in the SNPeffect dataset.

Table 1. Number of differences between wild type (WT) and SNP per property analysed in SNPeffect

Phenotypic property Number of SNPs analysed Number of SNPs with
significant change

Percentage of SNPs with
significant change

Aggregation—TANGO 30 738a 907 2.95
Amylogenic regions—

AmyScan
31 659 (of which 28 693

had amylogenic regions)
897 2.83

Stability—FoldX 93b 52 55.91
Subcellular localization—

PA Subcellular
31 659 290 0.92

Turnover-rate 31 659 28 0.09
Phosphorylation sites—

PhosphoBase
18 214c 2 0.01

Glycosylation sites—
O-GlycBase

18 214c 0 0

Active sites—CSA 2101d 0 0
Hsp70 binding 31 659 (of which 20 376

had Hsp70 binding regions)
399 1.3

aThe remaining 921 SNP entries caused a runtime error in the TANGO execution.
bOnly high-resolution PDB structures were used to predict stability changes for the SNPs. This number will increase in the future as we will continue by
using models for the FoldX prediction.
cQuerying the PhospoBase and O-GLYCBASE was limited by a non-complete mapping between RefSeq and Swiss-Prot identifiers.
dOnly the SNPs with PDB identifiers could be used to query the CSA.
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Figure 2. From protein centred to SNP centred view. SNPeffect can be searched for proteins or for SNPs. In the protein centred view (background) an overview is
given of all known nsSNPs for a given protein as well as of all phenotypic effects of those SNPs on the function of the wild type. By clicking on a particular SNP a
detailed description of the phenotypic effects and the general information of that variant is displayed in six tabs (foreground).
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DATABASE ACCESS

SNPeffect can be accessed at http://snpeffect.vib.be/. Both a
search and a browse interface are offered, which give the
option to look for SNPs or for proteins; this leads either to a
SNP-centred view or a protein-centred view, respectively
(Figure 2). The SNP view reports all the information of
one specific SNP in tabs according to the classification of
functional properties described earlier. These tabs include a
graphical as well as detailed numerical overview of the
different phenotypic effects, as well as a link to the proper-
ties of the wild type. The data can be displayed as detailed
descriptions of individual SNPs or as an overview of all
SNPs for a given protein. Summaries of phenotypic proper-
ties are given at the first tab of the SNP-centred view and
the ‘SNPs’ tab of the protein centred view. The meaning of
output values and scores for the various properties and how
they are translated to ‘significant change’ flags is described
in the manual section of the website and in the Supplemen-
tary Materials of this paper.

Search interface

The search interface allows searching for various
identifiers (DB cross-references), full-text search in the
protein description. Filters for proteins with structure (PDB
file) or disease-related proteins can be applied to the search
result.

Browse interface

Through this interface the possibility to browse enzyme codes,
Protein Data Bank (PDB) entries, OMIM entries and Swiss-
Prot accession codes is provided. After choosing a browse
category a specific entry can be clicked on and a list of
SNPs or proteins for that entry are shown. The same filters
as in the search interface can be applied.

DATA SOURCES AND LINKS

The raw data source for SNPeffect is NCBI’s dbSNP (1).
From dbSNP nsSNPs were extracted, whereas related pro-
tein entries where extracted from the NCBI Protein
resources. These NCBI accessions (rs for SNP entries and
RefSeq for protein entries) are the key identifiers in the
SNPeffect database. Where available protein structures
were retrieved from the PDB (21). For accurate prediction
only crystal structures with a resolution better than 3 s were
selected; NMR structures and low-resolution crystal struc-
tures were rejected. The protein entries were also checked
with two protein indexes, EBI’s International Protein Index
(22) and PDBSprotEC (23), to maximize cross-references
between the different biological databases. Proteins for
which no cross-reference was available in these indexes,
were blasted against the Swiss-Prot database (24) to obtain
the Swiss-Prot accession number where possible. SNPeffect
entries are linked to several important biological databases
including OMIM (25), Gene Ontology (26), the Brenda
Enzyme database (27), Swiss-Prot/TREMBL (24), Pfam
(28) and structural databases such as SCOP (29), CATH
(30), CSA (31) and PDBSUM (32).

DATABASE STATUS AND FUTURE WORK

Currently SNPeffect contains data on 31 659 human nsSNPs.
Future work will aim at including high-quality homology
modelsgeneratedusingFoldXtoincreasethestructural informa-
tion available in SNPeffect. The list of properties analysed is
continually being extended and will soon include protein fold-
ing and dynamics, metal ion binding, protein–protein interac-
tions and protein–DNA interactions. Subsequently, we will
also create a murine SNPeffect database. The database will
be regularly updated as new SNP data and information on
phenotypic effects become available.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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