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In contrast to conventional multipixel cameras, single-pixel cameras capture images using a single detector that
measures the correlations between the scene and a set of patterns. However, these systems typically exhibit low
frame rates, because to fully sample a scene in this way requires at least the same number of correlation mea-
surements as the number of pixels in the reconstructed image. To mitigate this, a range of compressive sensing
techniques have been developed which use a priori knowledge to reconstruct images from an undersampled
measurement set. Here, we take a different approach and adopt a strategy inspired by the foveated vision
found in the animal kingdom—a framework that exploits the spatiotemporal redundancy of many dynamic
scenes. In our system, a high-resolution foveal region tracks motion within the scene, yet unlike a simple zoom,
every frame delivers new spatial information from across the entire field of view. This strategy rapidly records
the detail of quickly changing features in the scene while simultaneously accumulating detail of more slowly
evolving regions over several consecutive frames. This architecture provides video streams in which both the
resolution and exposure time spatially vary and adapt dynamically in response to the evolution of the scene.
The degree of local frame rate enhancement is scene-dependent, but here, we demonstrate a factor of 4, there-
by helping to mitigate one of the main drawbacks of single-pixel imaging techniques. The methods described
here complement existing compressive sensing approaches and may be applied to enhance computational im-
agers that rely on sequential correlation measurements.
INTRODUCTION
Computational imaging encompasses techniques that image using
single-pixel detectors in place of conventional multipixel image sensors
(1, 2). This is achieved by encoding spatial information in the temporal
dimension (3). Using this strategy, images are reconstructed from a set
of sequential measurements, each of which probes a different subset of
the spatial information in the scene. This enables imaging in a variety of
situations that are challenging or impossible with multipixel image sen-
sors (4). Examples include imaging at wavelengths where multipixel
image sensors are unavailable, such as in the terahertz band (5–7),
three-dimensional (3D) ranging (8–11), and fluorescence imaging
throughprecharacterizedmultimode fibers and scatteringmedia (12–15).

To fully sample an unknown scene to a particular resolution, the
minimum number of measurements required is equal to the total
number of pixels in the reconstructed image. Therefore, doubling
the linear resolution increases the required number of measurements
by a factor of 4, leading to a corresponding reduction in frame rate.
This trade-off between resolution and frame rate has led to the devel-
opment of a range of compressive techniques that aim to use additional
prior knowledge or assumptions about a scene to reconstruct images
from an undersampled set of measurements (16–20).

Despite these challenges, computational imaging approaches also
potentially offer new and more flexible imaging modalities. For ex-
ample, the lack of a fixed Cartesian pixel geometrymeans that it is no
longer necessary for the resolution or exposure time (that is, the time
taken to record all the measurements used in the reconstruction of
an image) to remain uniform across the field of view or constant
from frame to frame (21–24).
A variety of animal vision systems successfully use spatially var-
iant resolution imaging (25). For example, the retina in the verte-
brate eye has a region of high visual acuity (the fovea centralis)
surrounded by an area of lower resolution (peripheral vision) (26).
The key to the widespread success of this form of foveated vision is in
its adaptive nature. Our gaze, which defines the part of the scene that
is viewed in high resolution during a period of fixation, is quickly
redirected (in a movement known as a saccade) toward objects of
interest (27, 28). Unlike a simple zoom, the entire field of view is con-
tinuously monitored, enabling saccadic movement to be triggered by
peripheral stimuli such as motion or pattern recognition (29–31).
Space-variant vision exploits the temporal redundancy present in
many dynamic scenes to reduce the amount of information that
must be recorded and processed per frame, essentially performing
intelligent lossy compression at the point of data acquisition. This,
in turn, speeds up the frame rate of such a vision system and enables
us to react to our surroundings more fluidly.

Here, we demonstrate how an adaptive foveated imaging ap-
proach can enhance the useful data gathering capacity of a single-
pixel computational imaging system. We note that there has already
been much interest in mimicking animal imaging systems for image
compression and robotic vision (32–34), and our work extends this
to the constricted bandwidth regimes of single-pixel computational
imagers. We reduce the number of pixels in each raw frame (thereby
increasing the frame rate) by radially increasing the size of pixels away
from a high-resolution foveal region (35, 36). The position of the fovea
within the field of view can then be guided by a variety of different visual
stimuli detected in previous images (37).

Furthermore, we also borrow a concept from the compound eye
architecture to increase the resolution of our images in the periphery:
the fusion of multiple low-resolution frames to synthesize a higher-
resolution image of the scene [a technique also known as supersam-
pling or digital superresolution (38–40)]. In this way, we rapidly
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record the details of fast-changing or important features in a single
frame while simultaneously building up detail of more slowly
changing regions over several consecutive frames. We show how this
tiered form of digital superresolution enables the reconstruction of
composite images that have both a spatially varying resolution and a
spatially varying effective exposure time, which can be optimized to
suit the spatiotemporal properties of the scene. We demonstrate an
implementation of our technique with a single-pixel camera; howev-
er, the method can be applied to enhance the performance of a grow-
ing range of computational imaging systems that reconstruct images
from a set of sequential correlation measurements.
RESULTS
Foveated single-pixel imaging
Single-pixel imaging is based on the measurement of the level of cor-
relation between the scene and a series of patterns. The patterns can
either be projected onto the scene [known as structured illumination
(1); closely related to the field of computational ghost imaging (41–43)]
or be used to passively mask an image of the scene, a technique known
as structured detection (2), and the method we use here.

A schematic of the single-pixel camera used in this work is
shown in Fig. 1 based on the design previously demonstrated by
Edgar et al. (44) and Sun et al. (45). A digital micromirror device
(DMD) is placed at the image plane of a camera lens, that is, at the
same plane where a multipixel camera sensor would be placed in a
conventional camera. The DMD is used to rapidly mask the image
of the scene with a set of binary patterns, and the total amount of
light transmitted by each mask is recorded by a photodiode, repre-
senting a measurement of the level of correlation of each mask with
the scene. Knowledge of the transmitted intensities and the
corresponding masks enables reconstruction of the image.

By choosing a set of linearly independent masks, the scene can
be critically sampled in an efficient manner using the same number
of masks as the number of pixels in the reconstructed image. A
mask set that is widely used for single-pixel imaging is formed from
the Hadamard basis, which is a set of orthonormal binary functions
Phillips et al., Sci. Adv. 2017;3 : e1601782 21 April 2017
with elements that take the value of +1 or −1 (46–48). This repre-
sents a convenient choice of expansion because, when represented
on a DMD, each mask transmits light from approximately half of
the image pixels, thus maximizing the signal at the photodiode.

A uniform-resolution N pixel image of the scene (represented
here by an N element column vector oun) can be expressed as a
linear sum of N Hadamard basis vectors, index n of which is de-
noted by hn

oun ¼ 1
N
∑
N

n¼1
anhn

where an is the level of correlation between the scene oun (sampled to
the same resolution as the Hadamard patterns) and mask n recorded
by the photodiode; that is, an is measured by projecting the scene
onto the nth Hadamard mask, an = hn

Toun, which follows from
the orthogonality of the Hadamard vectors (hn

Thm = Ndnm). We em-
phasize that any spatial frequency components in the scene that are
above the spatial frequency limit of the uniform pixel grid are lost in
this process. Although presented here in 1D vector notation, exper-
imentally, a 2D image is recorded, with each 1D vector hn being re-
shaped onto a uniform 2D grid that is displayed on the DMD as
shown in Fig. 2 (A and B). More detail is given in Materials and
Methods.

Figure 2C shows an example of an experimentally reconstructed
image of uniform resolution containing 32 × 32 pixels. Exploiting a
fast DMD (see caption of Fig. 1) enables the display of ~2 × 104

masks/s, resulting in a reconstructed frame rate of ~10 Hz at this
32 × 32–pixel resolution [incorporating two patterns per pixel for
differential measurement to improve signal-to-noise ratio (SNR);
see sections S1 and S3]. Evidently, it is highly desirable to try to
increase the useful resolution–frame rate product of such a
single-pixel computational imaging system.

We use amodification of the technique described above tomeasure
and reconstruct images of nonuniform resolution. In this case, the
masking patterns displayed on the DMD are created by reformatting
each row of the Hadamard matrix into a 2D grid of spatially variant
pixel size, as shown in Fig. 2 (D and E). For clarity, we henceforth refer
to these nonuniformly sized pixels as cells. Here, the 2D grid has an
underlying Cartesian resolution of M = 64 × 64 = 4096 pixels but
containsN=1024 independent cells.Mathematically, this reformatting
operationmay be expressed as a transformation of theHadamard basis
vectors to a new set of vectors s using the matrix T, which is aM × N
(rows × columns) binary matrix that stretches a vector of N elements
(representing the number of cells) to populate a (larger) vector of M
high-resolution pixels, sn = Thn. Similarly to above, we measure the
correlation bn between each pattern sn and the scene o (where, here,
o is anM element vector representing the scene at uniform resolution
equivalent to the highest resolution of patterns s). Therefore, bn = sn

To.
Because of the stretch transformation, the masks s are no longer

orthogonal. However, the spatially variant image of the scene, osv,
can still be efficiently reconstructed using

osv ¼ A�1 1
N
∑
N

n¼1
bnsn

Here, A is an M × M diagonal matrix encoding the area of each
pixel in the stretched basis: Element Amm is equal to the area of
Fig. 1. Experimental setup. The scene is flood-illuminated and imaged onto a
DMD, which operates as a dynamic mask: Light from a subset of the micromirrors
is reflected to an avalanche photodiode (APD), which records the total intensity
transmitted by each binary masking pattern. More details are given in Materials
and Methods.
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the cell to which high-resolution pixel m belongs. Section S2 gives a
detailed derivation of this result. Unlike before, in this case, the
high spatial frequency cutoff is now spatially variant across the field
of view. We also note that the SNR is now also spatially variant. See
section S3 for more detail and for the definition of SNR used here.

Figure 2F shows an experimentally reconstructed, spatially vari-
ant resolution image of the same scene as shown in Fig. 2C. Although
both of the images use the same measurement resource (that is, each
has the same total number of independent cells, and therefore, each
requires the same number of mask patterns and effective exposure
time tomeasure), the linear resolution in the central region of Fig. 2F
is twice that of Fig. 2C. The detail in the foveal region (the cat’s face)
is therefore enhanced in Fig. 2F at the expense of lower resolution in
the surroundings.

Spatially variant digital supersampling
If the positions of the pixel boundaries aremodified fromone frame to
the next, then each frame samples a different subset of the spatial
information in the scene. Consequently, successive frames are
capturing not only information about the temporal variation of the
scene but also additional complementary information about the spa-
tial structure of the scene. Therefore, if we know that a local region of
the scene has been static during the course of the measurements, we
can combine these measurements to recover an image of enhanced
resolution compared to the reconstruction of an individual frame in
isolation. This technique is known as digital superresolution or super-
Phillips et al., Sci. Adv. 2017;3 : e1601782 21 April 2017
sampling (39). Because the pixel geometry of each frame in our single-
pixel imaging system is defined by themasking patterns applied to the
DMD and used to measure the image, it is straightforward to modify
the pixel boundaries from frame to frame as required, and the images
are inherently co-registered for digital resolution enhancement. We
note that the term digital superresolution refers to increasing the res-
olution in imaging systems in which the resolution is limited by the
pixel pitch and not by the diffraction limit.

Figure 3 demonstrates how digital supersampling can be combined
with spatially variant resolution, which leads to reconstructions with
different effective exposure times across the field of view. For clarity,
we henceforth refer to the raw images (shown in Fig. 3A) as subframes
(which contain the nonuniformly sized cells) and the underlying uniform
Cartesian pixels of the high-resolution composite reconstruction as hr-
pixels. Our DMD can be preloaded with a set of masks to measure up
to ~36 different subframes, each containing 1024 cells with different foot-
prints, which, once loaded, can be played consecutively in an arbitrary
and rapidly switchable order.

Within the fovea where the cells occupy a regular square grid, the
linear resolution can be doubled by combining four subframes with
overlapping fovea positions. To achieve this, we translated the cell
footprints by half a cell’s width in the x and/or y direction with re-
spect to the other subframes [more detail of the relative cell positions
is given by Sun et al. (45)]. Movie S1 shows the recording of the sub-
frames in real time (see section S7 for full description). The variation
in detail within the fovea of each of the four subframes can be seen in
A B C

D

E

F

Fig. 2. Single-pixel imaging with spatially variant resolution. (A to C) Uniform resolution. (A) Uniform 32 × 32–pixel grid with N = 1024 pixels. (B) Examples of a
complete 1024 Hadamard pattern set (negatives not shown) reformatted onto the 2D uniform grid shown in (A). (C) Image of a cat recorded experimentally in ~0.125 s,
reconstructed from the level of correlation with each of the 1024masks shown in (B). (D to F) Spatially variant resolution. (D) Spatially variant pixel grid, also containing N =
1024 pixels of varying area. Within the fovea, the pixels follow a Cartesian grid, chosen to avoid aliasing with the underlying Cartesian grid of the DMD at high resolutions.
Surrounding the fovea is a peripheral cylindrical polar system of pixels. (E) Examples of the 1024 Hadamard patterns reformatted onto the spatially variant grid shown in (A).
(F) Image of the identical scene to that shown in (C), reconstructed here from correlations with the 1024 spatially variant masks shown in (E). In the central region of (F), the
linear resolution is twice that of the uniform image (C).
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Fig. 3A, where the red arrows highlight regions for comparison. The
boundaries of the lower-resolution peripheral cells are also reposi-
tioned in different subframes in Fig. 3A, but because the peripheral
cells form an irregular grid with variable sizes, they cannot be shifted
by a constant amount. Instead, they are randomly repositioned with
each new subframe, which is realized by randomizing their azimuth
and displacing the center of each fovea by a small amount. Therefore,
the resolution is increased nonuniformly in the periphery.

Having acquired this information, we are free to choose different
reconstruction algorithms to fuse the information from multiple sub-
frames to recover an improved estimate of the original scene o′sv.
Here, we demonstrate and compare two such fusion strategies:
weighted averaging and linear constraints. These reconstruction strat-
egies are built upon different assumptions about the level of motion
Phillips et al., Sci. Adv. 2017;3 : e1601782 21 April 2017
within the scene and trade off real-time performance against the qual-
ity of superresolution reconstruction.We note that, beyond the recon-
struction techniques described here, more sophisticated approaches
are possible, which, following compressive sensing techniques, can al-
so incorporate additional priors relating to the structure of the scene.
See section S6 for further discussion.
Weighted averaging.
In this first strategy, we perform a weighted average of multiple sub-
frames to reconstruct an image with increased resolution (45). The
subframes are upscaled by a factor of 2 and are co-registered. Within
the fovea, the four most recent subframes (Fig. 3A) are averaged with
equal weightings, yielding a higher-resolution composite image as
shown in Fig. 3B. Outside the foveal region, the sizes of the cells vary,
and we choose weighting factors for each subframe that are inversely
A

B

C

D

Fig. 3. Reconstructing images with a spatially variant effective exposure time using digital supersampling. All images are reconstructed from experimental data.
(A) Four subframes, each with the foveal cells shifted by half a cell in x and/or y with respect to one another (45). The number of cells in each subframe is N = 1024. The
purple insets show the underlying cell grid in each case. Movie S1 shows the changing footprints of the subframes in real time (see section S7 for full description of
movie S1). (B) Composite images reconstructed from increasing numbers of subframes using the weighted averaging method. (C) Composite images reconstructed
from increasing numbers of subframes using the linear constraint method. The number of hr-pixels in the high-resolution composite images is M = 128 × 128 = 16,384,
although not all of these may be independently recovered, depending on the number of sub-images combined and the configuration of each sub-image’s cells. Insets
bridging (B) and (C) color-code the local time taken to perform the measurements used to reconstruct each region within the field of view, that is, the spatially variant
effective exposure time of the images. The central region only uses data from the most recent four subframes (taking 0.5 s), whereas the reconstruction of the periphery
uses data from subframes going progressively further back in time. Movie S2 shows a movie of the progressive linear constraint reconstruction (see section S7 for full
description of movie S2). (D) Reconstructions of a uniform grid of points from 36 subframes to compare the PSF of the two reconstruction methods.
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proportional to the area of the corresponding subframe cell where the
data are taken from, promoting data from cells that have a smaller area
and thus a higher local resolution.Weighting in this way incorporates
local data fromall subframes in every composite image hr-pixel, which
has the benefit of suppressing noise. Alternate weighting factors are
also possible; see section S4 for further discussion.
Linear constraints.
Our second reconstruction strategy makes use of all available data in
the measurements. The reconstructed intensity value of a single sub-
frame cell represents an algebraic constraint on the sum of the group
of hr-pixels that are members of that cell. Successive subframes are
acquired with variations on the cell boundaries, which changes the
group of hr-pixels corresponding to each subframe cell. As long as a
local region of the image has remained static during acquisition of
multiple subframes, these constraints can then be combined together
into one self-consistent system of linear equations, which we solve
using a constrained lowest mean square error (LMSE) technique
to recover an improved estimate for the intensity value of each hr-
pixel in the composite reconstruction, o′sv. Our constrained LMSE
technique is suitable for systems that may be locally overdetermined,
critically determined, or underdetermined, depending on the num-
ber of subframes available for the reconstruction. See section S5 for
more details.

Movie S2 and Fig. 3 (B and C) compare reconstructions using
these two alternative methods, as increasing numbers of subframes
are used (see section S7 for full description of movie S2). For
weighted averaging, the foveal region reaches a maximum resolution
upon combination of the four most recent subframes with
overlapping fovea (Fig. 3B, i), and further increasing the number
of subframes averaged in the periphery smooths the reconstruction
but does little to improve its resolution (Fig. 3B, ii to iv). With the
linear constraint method, the maximum resolution in the foveal
region is also reached after only four subframes (Fig. 3C, i). However,
here, the point spread function (PSF) is sharper, and hence, high spa-
tial frequencies are reproduced more faithfully. Furthermore, in the
peripheral region, as larger numbers of subframes are fused into the
reconstruction, the resolution continues to improve (Fig. 3C, ii to iv).
Sun et al. (45) describe the reasons underpinning the lower resolu-
tion observed with the weighted mean reconstruction.

Thus, our tiered imaging system captures the detail of the central
region of the scene at a frame rate of 8 Hz, with resolution-doubled
images simultaneously delivered at a frame rate of 2 Hz. The weighted
average method offers the same frame rates in the periphery, but with
a space-variant broadening of the PSF, and hence reduced resolution
(Fig. 3D, i). For static regions of the scene, the linear constraint
method offers a means to further trade frame rate for resolution,
enabling us to obtain an almost uniform high resolution across the
scene (Fig. 3D, ii) after fusing data from36 subframes in the periphery.
For comparison, uniformly imaging the entire field of view at the high-
er resolution of the composite reconstruction (128 × 128 hr-pixels)
would lower the global frame rate to 0.5 Hz. Therefore, in analogy
to the resolution trade-off made in an individual subframe, using
composite image formation with the linear constraint method, we
can trade a higher frame rate in the center for a lower frame rate at
the periphery.
Space-variant PSF.
We note that, throughout the images presented here, the resolution
is limited everywhere by pixel/cell sampling rather than by the dif-
fraction limit of the optical system. Therefore, the space-variant PSF
Phillips et al., Sci. Adv. 2017;3 : e1601782 21 April 2017
(SVPSF) in each subframe is defined by the exact configuration of
the subframe’s cells; that is, the intensity from a single point in the
scene is spread over the entire cell in which it is located in the image.
For equivalently bright point sources, a point source found in a larger
cell will yield a dimmer and more widely spread signal.

The SVPSF of both of the composite image reconstruction tech-
niques that we demonstrate here is also inherited from the underlying
cell grids of the subframes they are formed from. In the case of the
weighted average method, the SVPSF is simply the locally weighted
sum of the SVPSFs of each underlying subframe. Hence, the increase
in resolution possible with this technique is limited (Fig. 3D, i). How-
ever, in the case of the linear constraint method, the inclusion of more
subframes adds extra constraints to the set of simultaneous equations
defining the image. This increases the number of independently reco-
verable cells in the image, thus reducing their average size and enhanc-
ing the SVPSF. This explains why the SVPSF of the linear constraint
reconstruction tends to a uniformly sharp PSF (Fig. 3D, ii) when
enough valid subframes are available.

The improvement in resolution with the linear constraint method
comes at the expense of reconstruction speed. The weighted averaging
technique is fast to compute [scaling as O(N)] and thus can easily be
performed in real time at well above video rates for the resolutions
presented here. In contrast, the linear constraint method involves
finding the least-squares solution to a set of simultaneous equations
[scaling asO(N3) in ourmethod; see section S5]. Here, this reconstruc-
tion was carried out in postprocessing; however, the use of graphics
processors and efficient matrix manipulation could potentially make
this problem tractable in real time for the resolutions demonstrated
here (49).

In the next section, we showhow the data gathering capacity of our
imaging system can be further improved by dynamically repositioning
the fovea within the field of view in response to recent measurements
and by accounting for parts of the scene that are moving in the recon-
struction algorithms.

Fovea gaze control
Aswe have described above, the position of the fovea in each subframe
is determined by displaying a particular subset of the patterns that
have been preloaded on the DMD. Therefore, mimicking the saccadic
movement of animal vision, using real-time feedback control, the fo-
vea can be rapidly repositioned in response to cues from previous
images, for example, to follow motion of objects within the field of
view or to move to areas anticipated to contain high levels of detail.
Motion tracking.
A range of image analysis techniques exist to estimate motion in dy-
namic scenes, most involving some form of comparison between two
consecutive frames (50, 51). However, image comparison becomes
more complicated if the pixel footprints change from one image to
the next. Therefore, we have two competing requirements: Changing
the locations of pixel boundaries is advantageous because it enables
digital resolution enhancement of static parts of the scene (as demon-
strated in Fig. 3C), yet determining which parts of the scene are in
motion is easier if pixel boundaries remain constant between consec-
utive frames.

To balance these requirements, we vary the cell boundaries of con-
secutive space-variant resolution subframes, as described above, but
also interlace these frames with a short-exposure frame of uniform
low resolution (for clarity, henceforth referred to as a blip-frame).
The pixel boundaries of the blip-frames never change, and we use
5 of 10
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comparison of consecutive blip-frames to detect scene motion, as
shown in Fig. 4A. We select relative resolutions for the subframes
(1024 cells) and blip-frames (16 × 16 uniform pixels) and the
interlacing frequency (2Hz) tominimize the impact of the blip-frames
on the overall frame rate. In the examples here, interlacing with a blip-
frame reduces the average frame rate by only ~7%. Alternatively, to
avoid the use of blip-frames, we could reconstruct pairs of subframes
with identical pixel footprints and look for changes between these to
track motion. However, this strategy would reduce the supersampling
rate by a factor of 2.

Movie S3 and Fig. 4B show how motion tracking is used to guide
the position of the fovea in real time (see section S7 for full descrip-
tion of movie S3). Here, the fovea follows a moving sign containing
detail in the form of the letters “UoG,” as it is manually swept in front
of the camera. The subframe frame rate is 8 Hz, and in between every
blip-frame, we incorporate a “fixation phase,” where the fovea stays
in the same area but performs four subframe digital supersampling,
Phillips et al., Sci. Adv. 2017;3 : e1601782 21 April 2017
as described above. This strategy captures enough information at
that location to double the linear resolution within the fovea should
the scene remain static. We also inject a stochastic element into the
fovea movement: For a randomly chosen fraction p of the subframes,
the fovea is positioned in a random location not recently accessed,
where, here, p ~ 20%. This ensures that all of the subframes are at
least intermittently sampled, improving the quality of the longer ex-
posure reconstruction of static parts of the scene.

In addition to guiding the location of the fovea to fast-changing
parts of the scene, the blip-frames also enable the construction of a
dynamic map, estimating how recently different regions of the scene
last changed. Composite higher-resolution frames can then be recon-
structed using stacks of difference maps to determine the local effec-
tive exposure time across the field of view (that is, how many earlier
recorded subframes can contribute data to each region of the recon-
struction). Using scene motion estimation to drive both the fovea
movement and to build composite images results in a dynamic video
A
B

C

D

Fig. 4. Fovea guidance by motion tracking. (A) Low-resolution blip-frames (i to ii), recorded after every fourth subframe. The difference between consecutive blip-
frames reveals regions that have changed (iii). A binary difference map (iv) is then constructed from (iii) (see Materials and Methods for details). This analysis is
performed in real time, enabling the fovea relocation to a region of the scene that has changed in the following subframes. (B) Frame excerpts from movie S3 showing
examples of subframes (each recorded in 0.125 s) guided using blip-frame analysis to detect motion (fovea location updated at 2 Hz). The purple insets show the space-
variant cell grid of each subframe. (C) Frame excerpts from movie S4 showing the reconstructed (using linear constraints) video stream of the scene also capture the
static parts of the scene at higher resolution. Here, difference map stacks (shown as insets) have been used to estimate how recently different regions of the scene have
changed, guiding how many subframes can contribute data to different parts of the reconstruction. This represents an effective exposure time that varies across the
field of view. Here, the maximum exposure time has been set to 4 s (that is, all data in the reconstruction are refreshed at most after 4 s), and the effective exposure
time has also been color-coded into the red plane of the reconstructed images. (D) Conventional uniform-resolution computational images of a similar scene for
comparison (also shown in movie S4). These use the same measurement resource as (B) and (C). Section S7 gives a detailed description of movies S3 and S4.
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reconstruction, which can have significantly enhanced detail in com-
parison with conventional uniform-resolution imaging. This is dem-
onstrated inmovie S4 and by comparing Fig. 4C to Fig. 4D (see section
S7 for full description of movie S4). Figure 4C shows examples of
composite frame reconstructions using foveated imaging and
difference map stacks. The local effective exposure time has been
color-coded into the red channel of the image, highlighting how it
changes as the scene evolves. Examples of the stacked difference maps
(which also represent the effective exposure time of frames in the re-
construction) are shown as insets. Figure 4D shows conventional
uniform-resolution computational images of a similar scene under
the same measurement resource. Here, all image data are refreshed at
a frame rate of 8 Hz; however, unlike Fig. 4C, the resolution is never
high enough to capture detail of the lettering or of the higher-resolution
parts of the calibration grids.
Detail estimation.
Depending on the nature of a dynamic scene, the entire field of view
may sometimes be temporarily static over the course of several sub-
frames. However, beginning to record a uniform high-resolution
image at this point is not necessarily the optimum strategy: Such a
measurement may be quickly interrupted because we have no knowl-
edge of how long the scene will remain static. Therefore, it is prudent
to attempt to measure the most detail-rich parts of the image first.

In our system, we aim to achieve this by performing a single-tier
Haar wavelet transform on the blip-frame, which yields information
about the location of edges in the image and hence regions of fine de-
tail [see Materials and Methods; Abmann and Bayer (21) and Burrus
Phillips et al., Sci. Adv. 2017;3 : e1601782 21 April 2017
et al. (52) provide a detailed description of the Haar transform]. We
use this to calculate a fovea trajectory that samples regions weighing
most heavily in the wavelet transformation first, as shown in Fig. 5.
Manual control.
Complementing the automated fovea guidance techniques described
above, we have also implemented a manual fovea control system,
where a user can click on the part of the scene they wish to view in
high resolution. Other forms of manual control could also be envi-
saged. For example, control by a single operator could be implemented
by measuring eye movements using a gaze tracker and by placing the
high-resolution fovea wherever the operator looked. In this case, by
scaling the resolution profile of the patterns to match the radial visual
acuity profile of the eye, the scene could appear to the user to be ren-
dered practically seamlessly in uniformly high resolution (35).
DISCUSSION AND CONCLUSIONS
Here, we have demonstrated that the data gathering capacity of a
single-pixel computational imaging system can be enhanced by
mimicking the adaptive foveated vision that is widespread in the
animal kingdom. Unlike a simple zoom, in our system every frame
delivers new spatial information from across the entire field of view,
and so, this framework rapidly records the detail of fast-changing
features while simultaneously accumulating enhanced detail of more
slowly changing regions over several consecutive frames. This tiered
supersampling approach enables the reconstruction of video
streams where both the resolution and the effective exposure time
C

A B

I

D E

F G

H

Fig. 5. Detail estimation and infrared dual fovea reconstruction. (A to C) Fovea guidance by wavelet transform. (A) The fovea trajectory is determined by first
measuring a blip-frame. A single-tier Haar wavelet transform is then performed on (A) to produce an edge contrast map (B) from which the fovea trajectory is then
determined (for details, see Materials and Methods). (C) Map of the fovea trajectory within the field of view. Brighter regions indicate areas that the fovea visits earlier.
Arrows show the trajectory of the fovea. (D to G) Image reconstructions after sampling the scene with various numbers of subframes and fovea positions. In this
example, the fovea trajectory determined by the wavelet transform samples most of the detail in the scene after eight subframes. This is 50% of the time required to
sample the entire field of view at the same resolution as the center has been sampled here. (H and I) Dual fovea infrared image. (H) Weighted average of four subframes
(1368 cells per subframe; frame rate, 6 Hz), each having two fovea. (I) Cell grid of one of the subframes.
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vary spatially and adapt dynamically in response to the evolution of
the scene.

Unlike many compressive sensing algorithms, our foveated im-
aging strategy does not require a priori knowledge of the basis in
which the image can be sparsely represented (16). Instead, we rely
on the assumption that only some regions within the field of view
will change from frame to frame. For many dynamic scenes, this is a
reasonable assumption and one that animal vision systems have
evolved to incorporate. Our foveated imaging system could poten-
tially be further enhanced if used in conjunction with compressive
sensing algorithms, at both the sampling stage (by concentrating
measurements in an undersampled set toward the most important
regions of the scene) and reconstruction stage [by incorporating any
additional a priori knowledge of the scene to improve accuracy and
reduce noise in the composite images (53)]. Section S6 describes this
possibility in more detail. We also note that our composite recon-
struction technique is similar in concept to the strategy used in some
forms of video compression, which also rely on estimation of how
recently local regions of the scene have changed (54, 55).

We have demonstrated our system at visible wavelengths; how-
ever, the technique is, of course, not limited to the visible. For
example, Fig. 5H (i) shows a short-wave infrared (SWIR) image
recorded in the wavelength range of 800 to 1800 nm through
a piece of Perspex that is opaque to visible light (44). This is rea-
lized by exchanging the APD with a SWIR-sensitive diode and
illuminating with a heat lamp. In addition, Fig. 5H (i) also has
two fovea, which highlights that the number of independently
operating fovea can be increased should the scene demand it (24)
and that these systems could also accommodate a range of addi-
tional visual adaptations both present in and beyond those found
in the animal kingdom (56).

In what types of imaging systems might these approaches be
most beneficial in the future? The techniques described here may
be applied to any form of computational imager performing recon-
structions from a set of sequentially made correlation measure-
ments. Despite the challenges of low frame rates (or low SNR for
equivalent frame rates) exhibited by single-pixel techniques in com-
parison with multipixel image sensors, there are a growing number
of situations where conventional cameras cannot easily be used and
single-pixel techniques prove highly desirable. For example, recently, it
has been shown that a form of single-pixel imaging provides a powerful
method to transmit image data of a fluorescent scene through precali-
brated scattering media (such as diffusers or multimode fibers) (13–15).
Single-pixel techniques also make it possible to image at wavelengths
where single-pixel detectors are available, but multipixel image sensors
are not (5–7). In all of these systems, there is a trade-off between reso-
lution and frame rate, and our work demonstrates a flexible means to
adaptively optimize this trade-off to suit the nature of the dynamic scene
under investigation.

Ultimately, beyond specific technical challenges, the performance
of an adaptive foveated computational imaging system will be
determined by the sophistication of the algorithms driving the way
the scene is sampled. Here, we have demonstrated motion tracking
using a relatively simplistic algorithm; however, the fields of machine
and computer vision offer a wealth of more advanced approaches,
such as motion flow algorithms, intelligent pattern recognition, and
machine learning (57–60). The performance of future computational
imaging systems can be enhanced by deploying the spatially variant
sampling and reconstruction strategies we have demonstrated here,
Phillips et al., Sci. Adv. 2017;3 : e1601782 21 April 2017
in partnership with sophisticated image analysis techniques designed
to accommodate a variety of real-world situations.
MATERIALS AND METHODS
Experimental setup
The scene was imaged onto a DMD (Texas Instruments Discovery
7001 with ViALUX software) using a Nikon F-mount camera lens
(AF NIKKOR 85mm 1:1:8D). The DMD operates as a dynamic mask:
Light from a subset of the micromirrors is reflected to an APD (Thor-
labs PMM02). The APD recorded the total intensity transmitted by
each binary masking pattern. The scene was flood-illuminated with
a light-emitting diode torch (Maglite).

Correlation measurements in the stretched Hadamard basis
As described in the main text, we performed our measurements in a
stretchedHadamard basis s.The elements of s took values of +1 or –1.
However, our experimental implementation used a DMD that could
represent masks that transmitted (mirrors “on”) or blocked (mirrors
“off”) intensity regions within the image. This corresponded to
masks consisting of +1 (transmitted light) and 0 (blocked light),
but not the −1 required in s. This problem was circumvented by
performing a double exposure for each measurement: first, display-
ing a “positive” pattern of +1s and 0s (in place of the −1s), yielding
signal bn

pos for pattern n, followed by the “negative” of this pattern
(that is, where the positions of 1s and 0s have been swapped),
yielding signal bn

neg. The weighting of the stretched Hadamard basis
vector bn can then be emulated by subtraction of the intensity
transmitted by the negative pattern from the positive pattern; here,
we used the normalized subtraction: bn = (bn

pos − bn
neg)/(bn

pos +
bn

neg). This double-exposure strategy also helped to cancel out any
fluctuations in the scene illumination that occurred during the
recording of a single subframe. More detail is given in sections
S1 and S3.

Real-time motion tracking
To track scene motion in real time, low-resolution blip-frames were
recorded after every fourth subframe, as shown in Fig. 4A (i and ii).
We note that the choice of blip-frame frequency will depend on the
anticipated level of motion in the scene. The difference between
consecutive blip-frames revealed regions that had changed (shown
in Fig. 4A, iii). A binary difference map (example shown in Fig. 4A,
iv) was then constructed by thresholding the modulus of Fig. 4A
(iii) and then implementing a convex hull operation on the thresh-
olded region to fill any gaps. Finally, a dilate operation expanded
the highlighted area in every direction to ensure that it was large
enough to accommodate the moving object. We then calculated the
center of mass of the highlighted area and displayed sampling
patterns that contained the fovea nearest to this coordinate. These
operations were performed in real time, enabling fovea guidance in
real time.

Haar wavelet transform for identification of detail-rich parts
of the field of view
When the scenewas deemed static,we aimed to identify parts of the image
that were likely to contain higher levels of detail. Once the uniform-
resolution blip-frame was obtained (denoted here by 2D array Oblip

of size Nblip × Nblip pixels), we first performed a single-tier Haar
wavelet transform on it, yielding the 2D array W of the same size as
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Oblip. Following Abmann and Bayer (21), this process can be described
as two consecutive operations. We first calculated the intermediate
transform W′, which is given by W′(i,j) = Oblip(2i,j) + Oblip(2i + 1,j)
andW′(i + Nblip/2,j) = Oblip(2i,j) − Oblip(2i + 1,j) for i < Nblip/2, where
i and j index pixel coordinates in W′. These operations essentially en-
coded the sumand difference between adjacent rows of pixels inOblip.We
then repeated this operation along the second dimension (that is, columns)
to findW, that is,W(i,j) =W′(i,2j) +W′(i,2j + 1) andW(i,j +Nblip/2) =
W′(i,2j) −W′(i,2j + 1) for j <Nblip/2.W consists of four quadrants: One
is a coarse representation of the original image (scaled down by a factor
of 2). The other three quadrants contained information about the con-
trast of horizontal, vertical, and diagonal edges present in Oblip on the
scale of theOblip pixels. Regions containing high contrast on the scale of
the blip-frame pixels returned high values in the wavelet transform.We
combined the edge contrast data into a single contrast map (example
shown in Fig. 5B) by calculating the quadratic sum of the three
quadrants containing edge information, which was then used to deter-
mine the fovea trajectory. This was achieved by ordering the preloaded
fovea patterns according to which fovea are nearest the regions of high
edge contrast. In particular, all fovea were ordered by iteratively finding
the nearest (thus far unused) fovea location to the region containing the
highest (thus far unsampled) contrast. An example of a fovea trajectory
map is shown in Fig. 5C.

Dual fovea infrared image
For this infrared experiment, the camera setup was slightly modi-
fied from the description above: The APD was replaced with an
InGaAs detector (Thorlabs PDA20CS InGaAs; 800 to 1800 nm),
and the scene was illuminated with a heat lamp.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/3/4/e1601782/DC1
section S1. Hadamard correlation measurements
section S2. Foveated subframe reconstruction
section S3. Signal-to-noise ratio
section S4. Weighted averaging image fusion
section S5. Linear constraint image fusion
section S6. Reconstructions with additional assumptions
section S7. Supplementary movie file descriptions
fig. S1. Reconstruction comparison.
fig. S2. Movie S1 snapshot.
fig. S3. Movie S2 snapshot.
fig. S4. Movie S3 snapshot.
fig. S5. Movie S4 snapshot.
movie S1. Real-time subframe display.
movie S2. Postprocessed linear constraint reconstruction.
movie S3. Real-time motion tracking and fovea guidance.
movie S4. Real-time weighted averaging and postprocessed linear constraint reconstruction of
a dynamic scene.
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