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Abstract

The current upper thermal limit for life as we know it is approximately 120°C. Microorganisms 

that grow optimally at temperatures of 75°C and above are usually referred to as ‘extreme 

thermophiles’ and include both bacteria and archaea. For over a century, there has been great 

scientific curiosity in the basic tenets that support life in thermal biotopes on earth and potentially 

on other solar bodies. Extreme thermophiles can be aerobes, anaerobes, autotrophs, heterotrophs, 

or chemolithotrophs, and are found in diverse environments including shallow marine fissures, 

deep sea hydrothermal vents, terrestrial hot springs – basically, anywhere there is hot water. Initial 

efforts to study extreme thermophiles faced challenges with their isolation from difficult to access 

locales, problems with their cultivation in laboratories, and lack of molecular tools. Fortunately, 

because of their relatively small genomes, many extreme thermophiles were among the first 

organisms to be sequenced, thereby opening up the application of systems biology-based methods 

to probe their unique physiological, metabolic and biotechnological features. The bacterial genera 

Caldicellulosiruptor, Thermotoga and Thermus, and the archaea belonging to the orders 

Thermococcales and Sulfolobales, are among the most studied extreme thermophiles to date. The 

recent emergence of genetic tools for many of these organisms provides the opportunity to move 
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beyond basic discovery and manipulation to biotechnologically relevant applications of metabolic 

engineering.

Graphical Abstract

Introduction

Extreme thermophiles are distinct from other organisms due to their ability to subsist 

optimally at temperatures in excess of 75°C. Their survival in these harsh environments 

piqued the interest of curious microbiologists as far back as the turn of the 20th century. In 

fact, one of the earliest reports of thermophiles occurred in 1903 describing bacterial 

samples taken from pools in Yellowstone National Park1. Although this drew interest and 

debate about the limits of life and our evolutionary history, the study of thermophiles did not 

begin in earnest until the 1960’s. Around this time, extensive sampling projects in 

Yellowstone lead to the isolation of Thermus aquaticus2 (an aerobic bacterium with optimal 

growth between 70–75°C), known for its DNA polymerase that revolutionized the field of 

molecular biology through its use in the Polymerase Chain Reaction (PCR). This enzyme in 

particular represented one of the earliest uses of thermally-stable enzymes for a 

biotechnological application. The next few decades yielded the discovery of thermophiles 

around the globe in extremely diverse environments, ranging from volcanoes and calderas to 

deep sea smoker vents to terrestrial mud pools3–7.

The apparent diversity and novelty of these microbes likely drove early research in this field 

to uncover the molecular machinery central to their survival. In fact, some of the earliest 

sequenced genomes were extremophiles8–10, furthering efforts to understand the molecular 

and genetic basis for thermophily and the evolution of life. However, a lack of genetics tools 

has impeded the extensive study of these organisms by traditional approaches (i.e., gene 

deletions to understand the consequences of loss of function). In lieu of more traditional 

methods, the availability of genomic data for many extreme thermophiles supported ‘omics’-

based approaches to ascertain the function of specific genes and their roles in the unique 

biochemistry of these organisms. As such, the merger of systems biology (e.g., 

transcriptomics and genomics), traditional microbiological studies, and newly emerging 

genetic systems11 are opening the door for metabolic engineering opportunities to bring 

extreme thermophiles into the technological limelight. This will allow for these organisms to 

be utilized as sources of uniquely functioning enzymes, optimized niche industrial strains, 

and novel metabolic engineering platforms. Such opportunities for biotechnological 

application are already being pursued for members of the bacterial genera 
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Caldicellulosiruptor and Thermotoga and for archaea belonging to the orders 

Thermococcales and Sulfolobales. Here we present a brief overview of these extremely 

thermophilic organisms, with the intention of highlighting potential biotechnological 

applications, which exploit their distinctive metabolisms.

Sulfolobales

Perhaps the most distinctive subject matter for this review focuses on the extreme 

thermoacidophiles from order Sulfolobales. The Sulfolobales comprise an order of archaea 

taxonomically defined within the class Thermoprotei, within the phylum Crenarchaeota. 

These organisms inhabit environments characterized by both extreme temperatures (65–

90 °C) and low pH (1.0–3.5), such as terrestrial solfatara or mud pools, often closely 

associated with volcanic activity and laden with inorganic materials12. In fact, the first 

species of the order to be isolated, Sulfolobus acidocaldarius (from Locomotive Spring in 

Yellowstone National Park), was reported to oxidize sulfur to fuel autotrophic growth, 

leading to the name Sulfolobales7. However, this phenotype has not been observed in the 

currently studied S. acidocaldarius type strains, although many isolates from the genera 

Sulfolobus, Metallosphaera and Acidianus utilize S0 as an electron donor5,13–21. Thus, 

reports that S. acidocaldarius strains from culture collections cannot5 oxidize S° suggests 

that repeated passages on rich media have led to the loss of this ability or that inherent 

difficulties exist in isolating pure cultures from environmental enrichments. Beyond sulfur 

oxidation, several species, especially those from the genus Acidianus, Sulfurisphaera, and 

Stygiolobus, are capable of sulfur reduction, and often utilize hydrogen to produce hydrogen 

sulfide as a metabolic end-product13,18,19,21–24.

While many members of the order grow lithotrophically, most known species exhibit modes 

of either strict heterotrophy or mixotrophy. Most members of the genera Sulfolobus and 

Metallosphaera are capable of utilizing protein-rich substrates, such as yeast extract or 

tryptone, under aerobic conditions. Furthermore, several species, such as Sulfolobus 
solfataricus, Sulfolobus shibitae25, and Sulfolobus islandicus26, use a wide variety of sugars 

in catabolic metabolism. In addition, members of the order, particularly in the genera 

Metallosphaera and Acidianus, are capable of oxidizing metal sulfides, a trait that is 

particularly useful for bioleaching of base, precious and strategic metals from mineral 

ores27–30. Finally, some members of the genus Acidianus are capable of using ferric iron as 

an electron acceptor under anaerobic conditions21,31.

Carbon Dioxide Fixation—Interestingly, the natural habitats of many Sulfolobales 

(solfatara/calderas) are limited or devoid of complex carbon sources, necessitating the 

process of autotrophy. The ability of organisms to fix carbon dioxide from the atmosphere is 

considered by many to explain the early formation of the multi-carbon molecules required to 

fuel life, explaining their retention in species across all three domains of life32,33. As it 

stands, 6 major routes exist for the fixation of carbon dioxide: the Calvin-Benson cycle 

(present in most plants), the reductive citric acid cycle (green sulfur bacteria), the reductive 

acetyl-CoA cycle (acetogens/methanogens), the hydroxypropionate bi-cycle (Chloroflexus), 

and the 3-hydroxypropionate/4-hydroxybutyrate (3-HP/4-HB) or dicarboxylate/4-

hydroxybutyrate pathways (both from the Crenarchaeota)34. The habitats from which the 
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Sulfolobales were isolated, unlike many other organisms, is characterized by copious oxygen 

and inorganic electron donors12. While the reactions driving this cycle are some of the most 

energy-demanding for autotrophic carbon assimilation, their advantage may lie in their 

relative insensitivity to oxygen, avoidance of side-reactions, direct utilization of bicarbonate, 

and thermal stability34,36.

Briefly, the 3-HP/4-HB cycle has two major products that enter into cellular metabolism. 

The first portion involves the addition of two bicarbonate molecules to acetyl-CoA to form 

succinyl-CoA, which is subsequently reduced in the second half of the cycle to 4-

hydroxybutyrate and eventually dissociated to two molecules of acetyl-CoA (Figure 1)37. 

The key enzyme in the cycle is a biotinylated acetyl-CoA/propionyl-CoA carboxylase that is 

bi-functional and efficient in substrate turnover38. Metabolic analysis of the cycle has 

revealed that the major product of the cycle is not acetyl-CoA (as originally hypothesized), 

but rather succinyl-CoA (roughly two-thirds of the carbon flux), yielding malate and 

oxaloacetate in subsequent oxidation reactions39. This requires a turn and a half of the cycle 

to maintain acetyl-CoA levels and generate succinyl-CoA.

From an application-oriented point-of-view, it may be possible to use this pathway to 

sustainably produce high-value specialty chemicals, such as 3-HP or succinate. The former 

is used industrially in polymer production and the latter is used to produce solvents and 

polymers40. For this reason, several attempts have been made to utilize these genes in 

metabolically-engineered hosts. For instance, the first three enzymes have been expressed in 

P. furiosus to introduce a temperature-shift-responsive metabolic mode for the production of 

3-HP41. Further work with this metabolically engineered strain has demonstrated that the 

addition of a biotin protein ligase can improve 3-hydroxy-propionate titers more than eight-

fold42. This dramatic improvement is likely due to the presence of a biotinylated subunit on 

the key acetyl-CoA carboxylase enzyme from the cycle37. Thus, this well-studied pathway 

has opportunities to be utilized and improved upon.

Sulfur Utilization—In contrast to carbon metabolism, sulfur metabolic pathway discovery 

is hampered by the tendency of elemental sulfur and its derivatives to react non-

enzymatically, masking the true identity of an enzyme’s substrate or products43,44. Because 

S0 is sparingly soluble in water under standard conditions, the true substrate for microbial 

growth on sulfur is likely soluble polysulfides and polythionates, introduced by non-

enzymatic reactions45–47. However, these solubilizing reactions only occur at near-neutral 

pH, since under acidic conditions the equilibrium strongly favors elemental sulfur44. In order 

to overcome these solubility issues, it has been proposed that acidophiles may physically 

associate with sulfur particles or that at elevated temperatures sulfur becomes sufficiently 

soluble to support growth47. Regardless, these organisms have a suite of proteins capable of 

manipulating the initial elemental sulfur from the environment, as well as many of its 

derivatives.

The sulfur oxygenase reductase (SOR), first identified in a member of the Sulfolobales, 

Acidianus ambivalens48, appears to be key to acidophilic sulfur oxidation. This intracellular 

enzyme is active on elemental sulfur, indicating transport of elemental sulfur or one of its 

derivatives to the cytoplasm by some still unidentified mechanism. SOR appears to be 
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limited to the Sulfolobales and a few extremophilic bacteria49; this makes sense given that 

other sulfur lithotrophs grow closer to neutral pH where more soluble sulfur species are 

abundant. SOR acts on elemental sulfur by disproportionating it equally between oxidized 

(sulfite; SO3
2−) and reduced (hydrogen sulfide; H2S) products. Further, the production of 

thiosulfate observed in early studies of the SOR48 is now believed to be the result of a non-

enzymatic reaction50. SOR requires oxygen to function but uses no additional co-factors, 

suggesting its ability to conserve cellular energy. Instead, it “activates” long, unwieldy 

hydrophobic sulfur chains into smaller intermediates that can be used by other enzymes to 

generate energy.

Acidianus ambivalens has served as the model organism for sulfur metabolism studies in the 

Sulfolobales, since measurements of sulfur-active enzymes from cell extracts were used to 

construct a conceptual model of its sulfur oxidation pathways51. While the SOR enzyme has 

been the most thoroughly characterized enzyme with respect to sulfur metabolism48,49,52, 

studies of enzymes purified or detected from A. ambivalens cell extracts provide some 

insights into the complete oxidation pathway. The A. ambivalens genome remains 

unsequenced, so many of its enzymes are identifiable only by their activity in cell-extracts. 

This presents a challenge for systems biology-based efforts to understand the details of 

sulfur oxidation in other Sulfolobales, or even how this process contributes to A. ambivalens 
energetics and metabolism. Regardless, there appears to be two parallel processes by which 

A. ambivalens (and presumably the other sulfur-oxidizing members of the Sulfolobales) gain 

energy while oxidizing elemental sulfur to sulfate (SO4
2−). One pathway uses the 

membrane-associated oxidoreductases, TQO and SAOR, to reduce an electron carrier (such 

as quinone)53, thereby generating proton motive force via the terminal oxidase54,55, while 

the other pathway produces one high-energy phosphate bond (ADP from AMP) by direct 

substrate level phosphorylation via APSR and APAT, generating sulfate in the process51 

(Figure 2). While the sulfur metabolism has been examined in bioleaching applications (see 

next section), the ability of S. metallicus to remove toxic H2S from high-temperature gas 

streams represents a potentially important technological use of sulfur oxidation56.

A. ambivalens has also served as the model system for anaerobic sulfur reduction among the 

Sulfolobales57. The enzyme pathway for sulfur reduction in A. ambivalens appears to be 

much simpler than for oxidation, possibly involving only two closely associated membrane 

complexes. A membrane hydrogenase passes electrons (via a quinone molecule) from H2 to 

a sulfur reductase, where they are used to reduce elemental sulfur to H2S57. The cycling of 

quinones between the two enzymes – forming a “redox loop” similar to the one used in 

Escherichia coli during growth on nitrate58 – is likely the way protons are transported across 

the membrane, coupling sulfur reduction to energy conservation (Figure 2).

Metal Oxidation—Along with interest in sulfur metabolism, some of the earliest work in 

determining the mechanism of metal oxidation in the Sulfolobales (and acidophiles, in 

general) involved the spectroscopic identification of unique cytochromes from iron-

oxidizing cultures59. This original research led to the intensive study and eventual 

development of a model in the mesoacidophile Acidithiobacillus ferroxidans, involving the 

shuttling of electrons from the outer membrane of the cell to the inner membrane, driving a 

terminal oxidase to maintain pH homeostasis and the production of reducing power for 
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intracellular metabolic needs60. Not surprisingly, the spectroscopic data from S. metallicus 
demonstrated early on that key differences exist between bacterial and archaeal metal 

oxidation, particularly in the presence of cytochromes and the roles of various protein 

complexes in transporting electrons59,61. However, some of the same systems-based 

approaches were utilized to detect the transcriptomic response of known iron-oxidizers, 

including S. metallicus62, M. yellowstonensis63 and M. sedula64, in the presence of iron. 

Interestingly, these experiments suggest the importance of merging several systems biology 

techniques in order to ascertain new pathways and information. While all three species 

contain the fox stimulon (an assortment of ferrous-responsive genes A–J) and key related 

genes (such as rusticyanin and the cystathionin-β-synthase subunits A and B), their 

regulation varies dramatically among the species with both constitutive and inducible 

expression observed during iron supplemented growth62–64. Yet, the merger of this 

transcriptomic data and genomics analysis yielded a hypothesized pathway for metal 

biooxidation in these organisms (Figure 2), which relies on a cytochrome b (as opposed to a 

cytochrome c), bifurcating rusticyanin(s), and two terminal complexes: an NADH 

dehydrogenase (generating reducing power) and a putative cytochrome c oxidase (driving 

pH homeostasis). Although similarities exist between the two systems in A. ferroxidans and 

Metallosphaera/Sulfolobus spp., distinctive co-factors and apparent differences in 

organization suggest that these systems are evolutionarily divergent modes of 

biooxidation65.

These differences, as well as the major phenotypical differences between these two classes 

of metal mobilizers, relates to their use in metal bioleaching applications. For example, 

many mesophilic organisms are ill-suited to bioleaching of highly gangue (i.e., high sulfur 

content) ores due to the extremely exothermic nature of sulfur oxidation chemistry. The 

build-up of heat can be problematic in large heap operations that rely on mesophiles 

alone66,67. This physiological trait cannot be undervalued given that the removal of 

elemental sulfur can improve cyanidation (a form of chemically-driven mineralization), 

which is commonly used in gold mining. Furthermore, extreme thermophiles appear to have 

some niche advantages over mesophiles for bioleaching of several specific types of copper 

ores, including the enhanced dissolution of copper from recalcitrant primary ores (such as 

chalcopyrite)68–70, selective mobilization of copper over molybdenum in copper-bearing 

molybdenite71,72, and the unassisted mineralization of arsenic in the form of arsenate from 

enargite ores73. Bioleaching operations targeting copper have increased dramatically and 

currently account for more than 15% of the global output74. Thus organisms that present an 

inherent propensity for copper solubilisation such as A. brierleyi, S. metallicus, or M. sedula 
deserve more investigation for their potential industrial application.

Pyrococcus furiosus

Pyrococcus furiosus, the type strain of the genus, was first isolated in 1986 from a 

hydrothermal vent off of the coast of Vulcano Island (Italy) and has been one of the most 

studied hyperthermophiles to date, due to its intriguing phenotypical characteristics75. 

Exhibiting optimal growth at 100°C and a pH near 7, it was the second genus, after the 

autotrophic sulfur-oxidizing Pyrodictium, capable of growth at temperatures at or above 

100°C75. As a heterotrophic organism, P. furiosus is capable of utilizing hexose 
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oligosaccharides such as cellobiose and laminarin76, chitin77,78, and peptides79. Efforts over 

the past three decades have elucidated many unique features of this organism, including 

various novelties in metabolic pathways, regulatory mechanisms and proteins and enzymes.

Central Glycolytic Metabolism—P. furiosus grows well on disaccharides (maltose and 

cellobiose) and glucans (laminarin and starch), but not on monosaccharides nor pentoses80. 

The reasons for this anomaly are unknown but monosaccharides may not be available 

externally in these high temperature environments as they are susceptible to the Maillard 

reactions, in which sugars react with available amino acids to form glycosylamines; this 

problem is especially exacerbated in peptide-rich media. Disaccharide and polysaccharide 

transport may also be more efficient energetically.

P. furiosus derives no net substrate level phosphorylation from glucose to pyruvate 

conversion, unlike the traditional Embden-Meyerhof (EM) pathway that provides two ATP 

per glucose and the Entner-Doudoroff (ED) pathway which yields one ATP per glucose (see 

Figure 3). Thus, the only net substrate level phosphorylation gains are a result of ATP-

forming hydrolysis of acetyl-CoA, produced from pyruvate via pyruvate oxidoreductase, by 

acetyl-CoA synthetase81. P. furiosus contains a non-traditional variation of Embden-

Meyerhof glycolysis, in which glucokinase and phosphofructokinase utilize ADP as the 

phosphoryl group donor, generating AMP80. In the early 1990s, these were the first reported 

ADP-dependent kinases80,82.

The absence of an energy-conserving step in the glycolytic pathway is due to the absence of 

a 1,3-biphosphoglycerate intermediate, which is found in both the EM and ED pathways. As 

shown in Figure 3, this direct conversion from glyceraldehyde-3-phosphate (GAP) to 3-

phosphoglycerate (3PG) does result in production of a reducing equivalent in the form of 

reduced ferredoxin, but does not result in substrate level phosphorylation. The phosphate 

group is released via hydrolysis without capture of this high-energy bond. The enzyme 

responsible for the conversion of GAP to 3PG, GAP ferredoxin oxidoreductase (GAPOR), is 

unusual in that it requires tungsten, an element rarely found in biology83. The absence of 

other, more traditional glycolytic enzymes makes GAPOR’s function critical to sugar 

utilization. Thus, tungsten levels have a significant impact on the growth of P. furiosus in the 

presence of maltose83.

Fermentation Pathways—P. furiosus produces reduced ferredoxin through central 

glycolysis and, as an obligate anaerobe, must have a route to dispose of any excess reducing 

power. Two primary routes exist for this purpose depending on hydrogen partial pressures, 

the availability of elemental sulfur and nitrogen, and other regulatory factors. The primary 

route of regenerating oxidized ferredoxin is through a membrane-bound hydrogenase 

(MBH) that produces a ion gradient that allows ATP production via ATP synthase84. The 

hydrogenase is thought to exchange the proton gradient generated by hydrogen production 

for a Na+ gradient and this is utilized by a Na+-dependent ATP synthase85. This energy 

conserving hydrogenase therefore constitutes a single-step electron transport chain, and has 

been proposed as an evolutionary precursor to the complicated, multi-step electron transport 

chains that are common in present day microbes81. While the exact mechanism coupling 

proton transfer and hydrogen production is unknown, it is estimated that 0.3–0.4 molecules 
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of ATP are produced per two electrons transferred81. Thus approximately 1.2 moles of ATP 

are produced for every mole of glucose converted to acetate via glycolytically produced 

reducing equivalents. Given the low energy production resulting from glycolysis, this 

fermentative process is particularly critical81.

When elemental sulfur is present, P. furiosus produces hydrogen sulfide rather than 

hydrogen gas86. As with H2 production, a proton gradient is formed by a membrane bound 

oxidoreductase (MBX)87. MBX is highly homologous to the membrane-bound hydrogenase 

and is thought to oxidize ferredoxin87. However, it is not known if MBX reduces sulfur 

directly or generates NADPH that is then used by a cytoplasmic NADPH- and CoA-

dependent enzyme87. The reason for the preference for sulfur over proton reduction is not 

clear but it is strong since the switch from H2 to H2S production begins only minutes after 

the addition of sulfur to a growing culture88. The shift is mediated by SurR, a redox-

responsive transcriptional regulator that has been well characterized89,90.

Another method for disposing of reductant during fermentation involves the transformation 

of pyruvate to alanine with the addition of available nitrogen91. This results in a major 

energetic penalty, however, as the pyruvate is not used to produce acetyl-CoA, which is 

responsible for the majority of ATP production. Thus, alanine pathway is only utilized when 

sulfur is absent and the hydrogen partial pressures are high91.

Applied Biocatalysis and Metabolic Engineering—Prior to detailed knowledge of 

the P. furiosus genome and development of genetic manipulation methodology, early work 

focused on characterizing its novel enzymes, with an eye towards industrial applications. 

While the DNA polymerase from Thermus aquaticus (Taq) is the most widely known and 

utilized thermostable polymerase in PCR reactions, the P. furiosus DNA polymerase is 

considerably more thermostable and of higher fidelity, yet two-to three-fold lower 

processivity. Due to its 3′ to 5′ exonuclease proofreading activity, the polymerase exhibits a 

ten-fold reduction in error rate compared to the Taq polymerase92. Additionally, the 

NADP(H)-dependent hydrogenase (SH1) from P. furiosus is extremely thermostable and has 

a temperature optimum of 95°C84. It has been utilized in a renewable H2 production in vitro 
system in which sugars are completely oxidized to CO2 and H2. A combination of pure 

enzymes comprising the pentose phosphate pathway (PPP) were used to convert sugars to 

CO2 and the NADPH that is then produced is oxidized and H2 is produced by SHI 84. Many 

other enzymes of interest from P. furiosus have been purified and characterized93, and 

include carbohydrate hydrolyzing enzymes, (e.g., α-amylase94, amylopullulanase94, 

endoglucanase95, and β-glucosidase96, and chitinase77) and proteases97,98.

P. furiosus now has a facile genetic system which has led to efforts directed at metabolic 

engineering99. Earlier work on a related extreme thermophile, Thermococcus kodakarensis, 

a member of the same order as P. furiosus, the Thermococcales, paved the way for the P. 
furiosus genetic tools100. For P. furiosus, its high growth temperature and tolerance to cold 

shock opens up its use for hosting metabolic pathways from much less extreme 

thermophiles101–103. In fact, a novel temperature-shift strategy has been demonstrated that 

minimizes P. furiosus metabolism at sub-optima temperatures to direct energy to 

heterologous production formation104. As mentioned above, P. furiosus produces soluble 
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hydrogenases, which can regenerate reducing equivalents from hydrogen gas41. These 

hydrogenases could allow metabolically engineered P. furiosus to use electrons from H2 to 

produce highly reduced chemical products41. The insertion of three genes from the M. 
sedula 3-HP/4-HB carbon fixation cycle into P. furiosus demonstrated production of 3-

hydroxyproprionate (3-HP) utilizing sugars and sequestering carbon dioxide for a portion of 

the molecule41. Another heterologous pathway expressed in P. furious utilized genes from 

three thermophilic organisms with optimal temperatures ranging from 65–75°C for the 

production of n-butanol105. With this alcohol pathway, significant diversion to ethanol was 

shown due to promiscuity of the aldehyde dehydrogenase enzymes105. The use of less 

thermophilic enzymes in heterologous biosynthetic pathways has provided insights into P. 
furiosus native metabolism at lower temperatures. For example, at 70–80°C, acetoin is 

produced as a major metabolic product. Along these lines, it was shown that the removal of 

acetolactate synthase in P. furiosus generates small amounts of ethanol as a metabolic end 

product, as pyruvate was directed toward acetate and eventually ethanol rather than 

acetoin103. In addition to its native abilities to utilize sugars, P. furiosus was engineered with 

a 16 gene cluster to oxidize carbon monoxide to carbon dioxide, producing H2 and energy in 

the process101. Overall, the ability to engineer utilization of unique energy sources, 

manipulate temperatures to optimize enzyme activities, and insert genes from a variety of 

organisms with different optimal growth temperature provide tools not typically available in 

model mesophilic hosts.

Caldicellulosiruptor spp

Caldicellulosiruptor is a bacterial genus containing the most thermophilic, cellulolytic 

microorganisms known to date. Isolated worldwide and having optimal growth temperatures 

between 70–78°C, these Gram-positive, asporogenic, obligate anaerobes have the ability to 

degrade unpretreated lignocellulosic biomass, a highly sought after phenotype for 

consolidated bioprocessing of fuels and chemicals. Many well-studied cellulolytic microbes 

are known to either secrete individual enzymes or large cellulolytic enzyme complexes (e.g., 

the cellulosome106) into their environment. In contrast, Caldicellulosiruptor species instead 

use an array of multi-modular enzymes to breakdown plant biomass107–112. These 

carbohydrate active enzymes (CAZymes) are composed of both catalytic (e.g., glycoside 

hydrolases [GH]) and non-catalytic (e.g., carbohydrate binding modules [CBM]) domains. 

All Caldicellulosiruptor species are able to utilize fructose, galactose, glucose, xylose, and 

pectin via a classical EMP pathway113–115. However, arabinose, rhamnose, and fucose 

utilization, is not conserved throughout all species113,115–118. Some of the sugars, such as 

xylose and arabinose, are broken down via the non-oxidative pentose phosphate pathway 

(PPP) and then piped into the EMP pathway as intermediates119. Although 

Caldicellulosiruptor species lack the oxidative PPP, which generally is responsible for 

NADPH production, they are still capable of generating NADPH; the exact enzymatic 

mechanism for this process is currently unknown120. Members of the Caldicellulosiruptor 
genus also contain an incomplete tricarboxylic acid (TCA) cycle, consisting of a reductive 

branch leading to fumarate and an oxidative branch producing succinyl-CoA.

Carbohydrate Utilization—Caldicellulosiruptor spp. produce many highly versatile and 

efficient multi-modular carbohydrate-degrading enzymes, made up of combinations of 
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glycoside-hydrolase (GH) and carbohydrate binding module (CBM) domains. For example, 

CelA, a lignocellulosic CAZyme, is composed of five carbohydrate-specific domains: GH9-

CBM3-CBM3-CBM3-GH48 connected by linker regions121–123. These different segments 

allow proteins to have multiple functions: simultaneously binding to its substrate (via the 

CBM3s), as well as cleavage of specific bonds (via the GH9 and GH48 domains); these 

GH9 and GH48 domains are capable of endo- and exoglucanase activity. CelA is present in 

only the most cellulolytic species of the genus and its two GH domains provide these species 

with a unique ‘drilling’ mode of action during biomass deconstruction121. While CBMs 

allow the CAZyme complex to adhere to the biomass, surface layer homology (SLH) 

domains are also found in the Caldicellulosiruptor multi-modular scheme124,125. Instead of 

being freely transported out of the cell, CAZymes with SLH domains are tethered the cell’s 

S-layer. As such, the enzymes can breakdown and bind, if they contain CBMs, substrates in 

close proximity to the microbe, providing better access to available sugar moieties. It also 

has been recently found that Caldicellulosiruptor species have a novel method of attaching 

themselves to crystalline cellulose. Structurally unique proteins, called tāpirins, are 

expressed on the cell surface, and contain a binding domain specific to insoluble 

cellulose126. Present in every member of the genus and highly expressed, tāpirins are 

thought to play an important role in how plant matter is deconstructed by microbes this 

genus.

Both methods of attachment, along with the large inventory of glycolytic enzymes, give this 

genus its impressive ability to degrade a wide variety of lignocellulosic substrates106. 

Caldicellulosiruptor species are capable of breaking down cellulose and hemicellulose 

(hexoses and pentoses), both as simple monosaccharides and complex 

biomasses108–110,116,127–131. Unlike many cellulolytic organisms, they do not exhibit carbon 

catabolite repression, a process by which certain sugars are preferentially metabolized, while 

excluding the usage of others106,111,114. This is especially advantageous in an industrial 

process involving lignocellulose conversion to fuels and chemicals, as these microbes can 

utilize multiple sugars simultaneously, with numerous points of entry to central carbon 

metabolism (see figure 4). Although Caldicellulosiruptor saccharolyticus was shown to grow 

well on a variety of sugars (arabinose, fructose, galactose, glucose, mannose, and xylose) 

simultaneously, the extent of which each monosaccharide was digested varied, with fructose 

being the most utilized111. In the absence of an apparent carbon utilization regulatory 

system, variation in sugar utilization among Caldicellulosiruptor species is likely due to 

presence or absence of certain metabolic pathways, e.g. the oxidative PPP, and/or essential 

transporters; the latter has only recently been better understood for a few 

Caldicellulosiruptor species with transcriptomics analysis of growth on substrates, such as 

simple sugars, crystalline cellulose (Avicel), and complex biomasses like 

switchgrass107,108,111,120,132.

One option to improve degradation of lignocellulose is to increase the CAZyme inventory of 

a microbe. While generally highly conserved in the Caldicellulosiruptor genus, the SLH 

domain xylanase from Caldicellulosiruptor kronotskyensis, Calkro_0402, is not present in C. 
bescii and, thus, was inserted into the genome to improve its ability to utilize xylan125. The 

manipulated strain successfully expressed the protein on the S-layer of the cell and improved 

xylan utilization significantly by doubling xylose release into the supernatant from oat spelt 
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xylan. Growth on washed and unwashed birch xylan was improved, while dilute acid-

pretreated switchgrass solubilization remained unaffected; this indicated that there are still 

other hurdles to lignocellulosic degradation that must be overcome. However, on substrates 

with high xylan content, the engineered strain showed improved solubilisation, possibly due 

to increased substrate attachment.

Fermentation—The major fermentation products of the Caldicellulosiruptor genus are 

hydrogen, carbon dioxide, and acetate116,133,134. Lactate production has also been measured, 

but only a trace amount of ethanol has been detected in wild-type cultures113,117,118,135. By 

far, the most studied product of all of these is molecular hydrogen, especially with C. 
saccharolyticus114,120,136–149. H2 generation is completed via hydrogenases utilizing 

reducing equivalents (Fdred and NADH) from central carbon metabolism (see figure 4). C. 
saccharolyticus, along with several other extreme thermophiles, is considered to be an ideal 

‘biohydrogen factory’, as reported yields are close to the so-called ‘Thauer limit’ of 4 moles 

H2 per mol glucose114,116,150. Decreased H2 production results in the accumulation of 

NADH and Fdred, while increased H2 can instead push metabolic flux toward lactate 

production. At high levels of molecular hydrogen, product inhibition occurs via increased 

dissolved H2 levels151. NADH and Fdred are simultaneously oxidized by a bifurcating 

[FeFe]-hydrogenase, which uses both electron donors at the same time152, while Fdred is 

also oxidized by a membrane-bound [NiFe]-hydrogenase that is related to that found in P. 
furiosus85.

With the recent development of a genetic engineering system in Caldicellulosiruptor bescii, 
based on auxotrophic selection, targeted manipulations of the Caldicellulosiruptor genome 

and consequently metabolism are now possible153–156. The first directed demonstration of 

these methods actually involved the deletion of the single lactase dehydrogenase (ldh - 

Athe_1918) present in C. bescii to halt lactate production157. While the wild type and parent 

strains produced less hydrogen than the well-studied C. saccharolyticus (1.8 and 1.7 vs 2.5 

mol H2/mol of glucose, respectively), the ldh knockout produced significantly more H2 on 

switchgrass, closer to the theoretical goal (3.4 mol H2/mol of glucose). As lactate formation 

ceased, acetate production increased by 38–40% over the wild type and parent strains.

More recently, ethanol production was demonstrated in C. bescii through the addition of an 

NADH-dependent alcohol dehydrogenase gene from Clostridium thermocellum (adhE – 

Cthe_0423) into the strain lacking lactate formation158; C. bescii does not possess a native 

alcohol or acetaldehyde dehydrogenase, and thus a representative gene was recruited from 

another thermophilic Firmicute. Due to the lower thermostability of the C. thermocellum 
protein, growth of the engineered strain was done at a maximum of 65°C. Strain growth on 

cellobiose, Avicel and switchgrass, and resulted in 14.8 mM, 14 mM, and 12.8 mM ethanol, 

respectively. Acetate production was also lowered, ranging from ~4–5 mM compared to the 

wild type (~6 mM) and parent (~8–9 mM) on all tested substrates. Another attempt at 

ethanol production was completed by individually inserting two bi-functional alcohol 

dehydrogenase genes from Thermoanaerobacter pseudethanolicus 39E, adhB (Teth39_0218) 

and adhE (Teth39_0206), into the C. bescii lactase dehydrogenase knockout159. Growing the 

modified strain at 75°C with cellobiose, ethanol was produced at reported levels of 1.4 mM 

and 2.9 mM, acetate at 15.5 mM and 14.1 mM, and H2 at 23.2 mM and 22.5 mM for the 
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AdhB and AdhE knock-in strains, respectively; similar ethanol levels were also measured on 

Avicel and switchgrass.

With a genetic system now in place, gene ‘knockouts’ in C. bescii can be strategies to 

understand Caldicellulosiruptor metabolism and physiology. For instance, an 

uncharacterized [Ni-Fe] hydrogenase maturation gene cluster (hypABFCDE – Athe_1088–

Athe_1093) was deleted from the aforementioned, modified ethanol-producing C. bescii 
strain containing adhE from C. thermocellum160. The resulting strain produced 20% less H2 

than its parent, yet its H2 yield per mol of cellobiose increased 63% (3.58 vs 2.19 mol 

H2/mol cellobiose). Fermentation patterns on Avicel, cellobiose, and switchgrass showed 

that the engineered strain also produced acetate (1.6–5.7 mM – 34% less than parent) and 

ethanol (1.9–2.7 mM – 73% less than parent). Additionally, the knockout had reduced 

growth and a longer lag phase, which could result from the deleted gene acting as an ATP-

generating protein pump. Other genetic manipulations with C. bescii include the deletion of 

CelA (Athe_1867)123, a predicted pectin lysase, and a putative AraC family transcriptional 

regulator genes (pecABCR – Athe_1853–1856)161. Continued efforts with the newly 

established genetics tools in C. bescii, and eventually other Caldicellulosiruptor species, will 

help reveal the basis for its ability to grow on lignocellulosic substrates.

Thermotoga spp

The bacterial genus Thermotoga contains nine named species that are obligate anaerobes 

capable of growth at optimal temperatures between 65–80°C, mostly isolated from 

submarine geothermal features162–164. These rod-shaped, Gram-negative, eubacteria were 

originally identifiable by their distinctive ‘toga’-like outer sheath and absence of an outer 

membrane. Beyond their unique appearance, the species in the genus Thermotoga share a 

remarkably large number of homologs (roughly 24% of the genome) with sequenced 

archaea165. This curious result has led some research into the evolutionary divergence/

convergence of this bacterial lineage, suggesting the genomic features that may be critical in 

defining thermophily, such as the discovery of genes associated with biosynthesis of di-myo-

inositol-phosphate, which may serve as a critical thermoprotectant compatible solute166. 

Further phylogenetic analysis has even suggested that mesophily may have developed from 

thermophily (within the order Thermotogales), given the ancestral sequence reconstruction 

of more thermally stable myo-inositol-phosphate synthase (MIPS)167 and emergence of 

‘mesotoga’ species168. Also of interest is the presence of a system for catabolizing myo-
inositol that provides utilization of compatible solutes but cannot provide a complete source 

for carbon utilization169. Within the genus, Thermotoga maritima has served as a model 

species for studying evolution, biomass deconstruction, and biohydrogen production170.

Carbohydrate Utilization—All Thermotoga species are chemoheterotrophs, although the 

range of substrate usage varies and includes numerous pentoses, hexoses, disaccharides, and 

polysaccharides, as well as yeast extract, acetate, methanol, and pectin163,164,171–175. This 

ability to utilize a broad array of carbohydrates appears to be supported by bioinformatics 

and transcriptomics suggesting a substrate-specific regulation and function of large numbers 

of ABC-transporters176, as well as many α- and β-glycoside hydrolases (GH)112. 

Intriguingly, T. maritima grows faster on complex carbohydrates than on monosaccharides, 
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suggesting an adaptation to the breakdown of biomass in their natural environments177. The 

metabolism of carbohydrates by these organisms results in the formation of some typical 

fermentation products, such as acetate, carbon dioxide, and lactate, but also the generation of 

molecular hydrogen, and small amounts of ethanol, butanol, and butyrate178. It is worth 

noting that Thermotoga species utilize the traditional EMP and ED pathways179,180 for 

carbon utilization. However, they also contain, in some cases, unique enzymes that are 

adapted to optimizing the use of reducing power and energy generated from biomass 

deconstruction for the synthesis of fermentation products.

The initial genome annotation of T. maritima suggested a prevalence of mono- and 

polysaccharide utilization proteins (as much as 7% of identified genes)165. In contrast to 

organisms that produce large complexes for carbohydrate degradation (i.e., cellulosomes), T. 
maritima utilizes a broad array of both extra- and intra-cellular glycoside hydrolases, which 

have been detailed in previous reviews112. More recent examination of the pan genome, as 

well as transcriptomic data, suggests that Thermotoga species vary with respect to specific 

ABC sugar transporters and glycoside hydrolases181. Overall, the preponderance of 

thermally-stable, polysaccharide-degrading enzymes makes members of the genus and their 

enzymes intriguing candidates for the deconstruction of complex carbohydrates in industrial 

applications182. However, one of the limiting factors is the absence of any apparent capacity 

for growth on crystalline cellulose, suggesting a lack of cellulolytic enzymes in Thermotoga 
species183. In fact, to address this issue, efforts were directed at the ectopic expression of 

cellulases from C. saccharolyticus fused with T. maritima signal peptides. The resulting 

plasmids were used for Thermotoga sp. strain RQ2 transformations, where enhanced 

exoglucanase activity was observed, but eventually was lost due to poor plasmid 

maintenance184. However, a stable genetic system for T. maritima and T. sp. RQ7 was 

recently reported, based around a cryptic plasmid isolated from the latter185.

Fermentation—Of the major fermentation products from Thermotoga spp., H2 production 

is particularly interesting from a biotechnological perspective. High yields (3.8 mol H2/mol 

glucose) reported by Thermotoga neapolitana under anaerobic and microaerobic growth 

conditions186–188 approach the Thauer limit150. The production of H2 is most efficient when 

the balance of fermentation products is skewed toward acetate production as compared to 

lactate production, given that the enzymes identified in acetate production, phosphate acetyl-

transferase and acetate kinase, avoid the re-oxidation of NADH and instead produce Fdred 

and ATP, respectively. In contrast, the production of lactate is driven by a lactate 

dehydrogenase that uses reducing equivalents (NADH) generated in the glycolytic process. 

Another possible key to efficient hydrogen production in these organisms, as in the 

Caldicellulosiruptor, is the coupling of Fdred and NADH oxidation by a bifurcating, [FeFe] 

hydrogenase189, in which Fdred likely drives the less favorable oxidation of NADH and 

improves the overall thermodynamics for producing hydrogen. This enzyme complex, first 

identified in T. maritima, appears to have a homolog in T. neapolitana, which has the highest 

reported H2 yields within the genus. There is also evidence that the build-up of molecular 

hydrogen and a possible inhibition mechanism can be alleviated through the co-culturing of 

T. maritima with Methanococcus jannaschii; the latter oxidizes H2 and generates 
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methane190. This results in significant up-regulation of carbohydrate-active enzymes and 

growth-phase enzymes, as well as denser cultures191 (see Figure 5).

Besides molecular hydrogen, several species have been reported to produce ethanol as a 

fermentation product172,192. This result was not expected given the lack of detectable 

pyruvate decarboxylase activity. However, more recent work has identified the presence of 

both an alcohol dehydrogenase (from Thermotoga hypogea)193 and a bi-functional pyruvate 

ferredoxin oxidoreductase-pyruvate decarboxylase enzyme194. Additionally, butyrate (an 

odiferous organic used primarily as a perfume or food additive) production has been linked 

with hydrogen biosynthesis in studies involving T. neapolitana195; however, the mechanism 

of butyrate synthesis is still unknown in these organisms.

Thermus spp

The genus Thermus was among the first bacteria to be studied with respect to thermophily 

(Oshima and Imahori 1974), and the DNA polymerase from Thermus aquaticus2 was used in 

early efforts with the polymerase chain reaction (PCR) (ref). While not all Thermus species 

(at least 11 have been named and characterized) grow optimally at 70°C and above 

(extremely thermophilic), there are some that meet this thermal threshold. Thermus species 

are typically non-motile, non-sporulating, and are not naturally capable of fermentation. 

Efforts directed at understanding T. thermophilus metabolism revealed that this bacterium 

uses glycolysis and the TCA cycle to drive carbon flux and bioenergetics (Lee et al., Microb 

Cell fact 2014; Swarup et al. Metab Eng 2014). Molecular genetics tools were developed for 

Thermus thermophilus (Koyama Hoshino 1986 J Bact), based on its natural competence, 

which opened up opportunities for it to be examined as a model thermophile. In fact, the 

relative stability of thermophilic enzymes and early interest in the genus sparked the 

undertaking of crystallization projects aimed at characterizing recombinant versions of all 

the identified coding ORFs from Thermus thermophilus (Yokoyama et al. 2000; Sazanov 

and Hinchliffe 2006; Selmer et al. 2006; Severinov 2000; Yusupov et al. 2001). The overall 

goal of such projects was to provide a comprehensive database of structural characteristics 

that aid in the determination of protein function and domain architecture representing all of 

the major classes of proteins identified to date.

Enzyme and metabolic engineering efforts with Thermus—Although more 

thermophilic microorganisms have become available, Thermus species can be sources of 

thermostable enzymes for biotechnological applications. For example, enzymes from 

Thermus were included in an in vitro pathway that converted glucose into n-butanol 

(Krutsakorn Metab Engr 2013) and a xylose isomerse from this species was used to enable a 

recombinant Saccharomyces cerevisiae strain to grow on xylose (Karhumaa et al. Yeast 

2005). Although genetics are relatively facile for these organisms, metabolic engineering 

pursuits have been limited. One of the earliest examples of metabolic engineering of the 

organism involved the transfer of nitrification genes among two members of the genus, 

allowing an aerobic Thermus species to grow anaerobically (Ramirez-Arcos, 1998). 

Additionally, a few attempts have been made at overexpression of native genes for the 

purpose of biotechnological applications involving specific enzymes such as DNA 

polymerase and Mn-dependent catalases (Hidalgo 2004; Moreno 2005). More recently, a 

Counts et al. Page 14

Wiley Interdiscip Rev Syst Biol Med. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



strain of T. thermophilus HB8 was generated that could co-utilize xylose and glucose at 

temperatures up to 81°C, with a view towards processing lignocellulose, although this strain 

could not deconstruct biomass nor ferment the C5/C6 sugars (Cordova et al., 2016).

Conclusion

Although the study of extreme thermophiles has only gained traction in the past few 

decades, there are numerous metabolic and physiological features that distinguish these 

organisms from the other major groups of life and justify continued research endeavours. 

Much of this information has been ascertained via the use of genomics, transcriptomics, and 

proteomics in conjunction with traditional microbiological/biochemical techniques. 

Furthermore, this synthesis has led to the development of metabolic and physiological 

models in extreme thermophiles that are beginning to rival better characterized mesophilic 

systems. With the advent of next-generation sequencing technologies, it seems likely that 

previous work will be furthered by large-scale comparative genomics and metagenomics 

projects; this should further the discovery of novel metabolic features (i.e. enzymes and 

native biological pathways) with vital importance to our fundamental understanding of 

biology.

Beyond the scientific merit of studying extreme thermophiles, numerous opportunities exist 

to utilize these organisms for biotechnological advancement. As previously emphasized, the 

extreme conditions under which these organisms subsist has led to evolutionarily distinct 

metabolic and physiological features. In general, thermally stable proteins and heat-tolerant 

metabolic hosts could provide a major economic benefit to industrial processes. In the case 

of upstream processes, it may be possible to eliminate or minimize the energy costs 

associated with cooling or sterilizing bioreactors; while downstream processes may benefit 

from simple techniques -- such as heat pre-treatment -- to select for thermophilic enzymes 

produced recombinantly in mesophilic hosts, eliminating costly purification steps. 

Additionally, the increase in available genetic systems in these organisms will open many 

avenues for metabolic engineering. In fact, these organisms could have vital roles in the 

future of bioprocessing ranging from sustainable biochemical engineering to specialty 

chemical production to the deconstruction of inorganic and organic raw materials and even 

the recovery of base, precious and strategic metals.
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Figure 1. 3-hydroxypropionate/4-hydroxybutyrate (3-HP/4-HB) cycle from Metallosphaera 
sedula
The cycle consists of two major portions: carbon incorporation (via bicarbonate) occurs in 

the first half (blue) of the cycle and is followed by subsequent reduction and reformation of 

two acetyl-CoA molecules in the second half (red).. Enzymes listed and their references: 

acetyl-coA carboxylase38,196 (ACC), acetoacetyl-CoA β-ketothiolase37 (ACCT), acryloyl-

CoA reductase197 (ACR), crotonyl-CoA hydratase198 (CCH), 4-hydroxybutyrate-CoA 

dehydratase37 (HBCD), 4-hydroxybutyrate-CoA synthase199 (HBCS), 3-hydroxypropionate-

CoA dehydratase197 (HPCD), 3-hydroxypropionate-CoA synthase200 (HPCS), 

methylmalonyl-CoA epimerase201 (MCE), methylmalonyl-CoA mutase201 (MCM), 
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malonyl-CoA/succinyl-CoA reductase202 (MCR), malonate semialdehyde reductase202 

(MSR), succinate semialdehyde reductase202 (SSR).
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Figure 2. Chemolithotrophic pathways in the Sulfolobales
The first half of the figure (blue) shows the hypothetical pathways for sulfur utilization in 

the Sulfolobales, including both oxidizing and reducing pathways, beginning with elemental 

sulfur. Sulfur reducing complexes: hydrogenase (Hyd), sulfur reductase (SR)57. Sulfur 

oxidizing enzymes: sulfur oxygenase reductase (SOR)48, thiosulfate:quinone oxidoreductase 

(TQO)53, Sulfite:acceptor oxidoreductase (SAOR), adenylylsulfate reductase (APSR), 

adenylylsulfate:phosphate adenyltransferase (APAT)51. The second panel shows a 

hypothetical pathway for the oxidation of ferrous iron using several fox stimulon proteins as 

well as some iron-responsive respiratory proteins. Ferrous-Oxidation (Fox), rusticyanin 

(Rus), cystathionine-β-synthase containing protein subunits A and B (CbsAB), sulfur 

oxidation (Sox), NADH dehydrogenase (NAD)62,64.
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Figure 3. 
Comparison of traditional Embden-Meyerhof-Parnas pathway with the modified pathway in 

the archaeon P. furiosus. Included are three fermentative pathways which utilize the 
reduced ferredoxin produced via glycolysis. Enzyme abbreviations: hydrogenase (hyd), 
ferredoxin:NADP oxidoreductase (FNOR), glutamate deaminase (GD), alanine 
aminotransferase (AT), and NADP:sulfur oxidoreductase (NSOR).
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Figure 4. Conserved metabolic pathways in all Caldicellulosiruptor species
This includes sugar uptake, glycolytic, and fermentative pathways. The figure includes 

only the major steps, or start & end products. P is the abbreviation for phosphate, NADH for 

reduced nicotinamide adenine dinucleotide, ATP for adenosine triphosphate, Fdred for 

reduced ferrodoxin, and GDP for guanosine diphosphate.
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Figure 5. 
Co-culture of Thermotoga maritima yellow/green rods) and Methanocaldococcus jannaschii 
(red cocci)191 – permission pending.
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