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Abstract

Purpose—Fast MRI acquisitions often rely on efficient traversal of k-space and hardware 

limitations or other physical effects can cause the k-space trajectory to deviate from a theoretical 

path in a manner dependent on the image prescription and readout parameters. Additional 

measurements or generalized calibrations are typically needed to characterize the discrepancies. 

We propose an auto-calibrated technique to determine these discrepancies.

Methods—A joint optimization is used to estimate the trajectory simultaneously with the parallel 

imaging reconstruction, without the need for additional measurements. Model reduction is 

introduced to make this optimization computationally efficient and ensure final image quality.

Results—We demonstrate our approach for the Wave-CAIPI fast acquisition method that utilizes 

a cork screw k-space path to efficiently encode k-space and spread the voxel aliasing. Model 

reduction allows for the 3D trajectory to be automatically calculated in fewer than 30s on standard 

vendor hardware. The method achieves equivalent accuracy to full gradient calibration scans.

Conclusions—The proposed method allows for high quality Wave-CAIPI reconstruction across 

wide ranges of protocol parameters, such as FOV location/orientation, bandwidth, TE, resolution, 

and sinusoidal amplitude/frequency. Our framework should allow for the auto-calibration of 

gradient trajectories from many other fast MRI techniques in clinically relevant time.
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Introduction

Fast MRI techniques play a central role in both clinical and research settings due to the 

potential benefits in shortened scan time, increased temporal sampling/resolution, and 

reduced distortion. Many of these acquisitions rely on efficient encoding of k-space through 

the use of continuously slewed gradient fields. Limitations in gradient hardware and other 

physical effects, such as eddy currents, can cause the trajectory to deviate from the 

theoretical path. Detailed calibration of the applied trajectory is critical for the accurate 

reconstruction of images from the accelerated data. In addition, these calibrations can 

change over time and are dependent on the imaging parameters. For example, EPI(1) is the 

widely adopted fast Cartesian acquisition scheme that changes phase encoding directionality 

during the continuous acquisition of multiple readout lines. In most situations, there will be 

a misalignment between even-odd phase encoding lines that will result in significant 

ghosting within the reconstructed image. This has necessitated the acquisition of additional 

navigators to correct for the imperfections in gradient performance.

For more sophisticated trajectories, e.g. Spiral(2), Bunched Phase Encode(3), Wave-

CAIPI(4), entire calibration scans(5) can be required to properly characterize and correct for 

gradient errors. This is critical as even small errors in the trajectory can cause substantial 

blurring or ghosting artifacts(6). Although these calibration scans are not specific to a 

patient, they are dependent on the protocol parameters and patient orientation prescription. 

This severely limits the practical utility of such methods as these acquisition settings change 

regularly (especially FOV orientation), and the calibration scan would need to be re-acquired 

per patient. There has also been work examining the use of probes to calculate the MR field 

and dynamics(7). Limitations in existing methods has led to several attempts to fully model 

the gradient behavior using system theory(8–10). However, these methods require extensive 

setup to build a transfer function based upon the system theory approximation and the n will 

need to be re-tuned after regular scanner maintenance. There has also been recent work 

toward estimating the image along with non-Cartesian gradient trajectory errors(6) or coil 

sensitivity maps(11) self-consistently, i.e. iterating between updating either the image or 

trajectory/parallel imaging parameters. However, the self-consistent optimization strategy 

utilized in these works deviates from more established optimization approaches for solving 

non-linear least squares problems. This can limit the applicability/performance of such 

methods to specific acquisition scenarios. Finally, there has been recent work on self-

calibrating radial acquisitions based upon GRAPPA operator gridding (12).

In this work, we introduce a joint optimization approach to find the best gradient model 

parameters that describe the corrupted trajectory along with the corresponding image to be 

reconstructed from the under-sampled k-space data acquired through parallel imaging. The 

optimization considers the quality of both the trajectory parameter estimates and the image 

simultaneously to ensure robust reconstruction for either Cartesian or non-Cartesian fast 

MRI acquisitions. Model reduction on both types of variables facilitates the direct 

application of joint optimization to this large non-convex estimation problem. We illustrate 

our approach for the Wave-CAIPI acquisition strategy where sinusoidal gradients are 

superimposed on conventional Cartesian readouts to create a cork-screw trajectory. This 

widely spreads the voxel aliasing and improves the parallel imaging performance(4,13). For 
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clinically relevant susceptibility weighted imaging (SWI), the joint optimization allows for 

the accurate estimation of gradient trajectory errors without additional calibration data and 

requires less than 30s of additional computation time on standard vendor's hardware. The 

accuracy of our auto-calibrated technique outperforms lengthy calibration scans and enables 

protocol parameters to be flexibly changed as part of routine use in clinical settings.

Theory

There is a rich history of algorithms for solving non-linear least squares problems in applied 

mathematics, statistics, and economics. There are many well established techniques such as 

trust-region, Levenberg-Marquardt, and Nelder-Mead Simplex(14–16) which are formulated 

in an attempt to robustly arrive at local minimum. These methods jointly (simultaneously) 

consider all optimization variables and employ different schemes to progress the variables 

toward a better solution. However, the methods can be computationally prohibitive and may 

have convergence issues when the number of variables grows large. We will illustrate how 

model reduction facilitates the joint optimization of the gradient trajectory and imaging 

parameters. We will then introduce a simplified fast greedy search method that enables the 

accurate estimation of the parameters.

Joint Optimization

SENSE(17) parallel imaging minimizes , where F is a Fourier operator 

that describes the trajectory, Ci is a parallel receive sensitivity, and ki is the observed k-space 

data, and x is the image. In the case of trajectory errors F can be replaced with F(g), where 

the mapping to k-space is now a function of gradient parameters g. In our joint estimation 

framework, the objective is to minimize  across both x and g 
(18,19). The parameterization of the encoding operator F(g) is dependent on the sequence of 

interest and the gradient errors, see (6) for examples related to typical non-Cartesian 

trajectories. Note that the optimization variables {x, g} can number in the millions, 

restricting direct use of established optimization techniques. In this work, we will address 

the large number of optimization variables through model reduction and demonstrate our 

joint optimization technique for Wave-CAIPI applied to the standard Cartesian 3D GRE 

acquisition(4). It is important to note that degeneracy in the solution space can occur if a 

trajectory operator can commute until it is combined with the image. However, this is not the 

case for the Wave-CAIPI model or many other standard fast MRI applications.

3D GRE Wave-CAIPI

Figure 1(A) illustrates the combination of the linear gradient along the readout Gx, and the 

sinusoidal gradients played along the phase encode Gy and 3D partition direction Gz. By 

combining these gradients with a staggered CAIPIRINHA(20) sampling scheme, we arrive 

at the k-space coverage shown in Figure 1(A). As shown in (4), the encoding created by the 

sinusoidal gradients Gy and Gz can be captured through a separable point spread function 

(PSF). Figure 1(B) shows the relationship between the image, the PSF, and the accelerated 

image space data that has been acquired. In hybrid space (Fx) each kx line of data at a given 

(y,z) position gets a unique phase modulation, linearly proportional to their spatial position, 
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which are contained in Py and Pz respectively. That is, assuming a matrix size [Nx,Ny,Nz], 

Py will be of size [Nx,Ny] and Pz is of size [Nx,Nz]. After the wave aliased data has been 

collapsed, based upon the CAIPIRINHA sampling scheme, it is then returned to image space 

 and matched against the acquired accelerated data. An example of the Wave-CAIPI 

aliasing pattern is shown in the bottom of Figure 1(B).

Model Reduction

As mentioned above, there will Nx(Ny + Nz) parameters associated with the PSF and 

NxNyNz imaging voxels that need to be jointly optimized. Based upon clinically desirable 

resolutions, slice coverage, and the larger readout oversampling factors used to effectively 

capture the Wave-CAIPI encoding(4) this can correspond to millions of unknowns. 

However, we will demonstrate that the number of variables that need to be considered for the 

estimation of gradient imperfections can be reduced by orders of magnitude while still 

matching the accuracy of a lengthy calibration scan approach.

Figure 2(A) shows a typical measured Py for an acquisition at 2mm isotropic resolution, 

assuming 7 wave cycles at a bandwidth of 100Hz/pixel. The unwrapped phase map is of size 

[Nx,Ny] = [768, 84] and was generated by acquiring two fully sampled data sets R = Ry × Rz 

= 1 × 1 = 1, one with no wave gradients and another with just the Y sinusoidal gradient 

applied. The PSF is then calculated by taking the ratio from the hybrid space (Fx) of the two 

data sets. As shown in (4) the PSF can be denoised by regressing the measured PSF against a 

variety of terms, e.g. a linear trend based upon FOV orientation. If the gradients were 

operating perfectly the phase applied to any Y location would correspond to a perfect sine 

wave with energy only at a single frequency. However, as we can see from Figure 2(A) there 

is broadening that occurs at both the fundamental frequency and DC. Using a limited 

frequency band we can capture almost all of the energy and accurately describe this 

function. This corresponds to a very small number of complex values that will need to be 

optimized. This reduces the number of PSF variables that need to be considered by two 

orders of magnitude. Alternatively, the frequency content that needs to be optimized can be 

automatically determined by computing an initial RMSE gradient vector. The RMSE 

gradient vector is calculated by examining the change in RMSE based upon a small 

perturbation for each possible variable. A reduced parameter set can be found by examining 

the relative impact of each variable toward reducing the error.

Figure 2(B) shows the substantial ghosting artifacts that can arise when reconstructing in the 

presence of trajectory errors. As can be seen these ghosting artifacts are present in nearly 

every region of the image. By limiting our joint optimization to a small representative set of 

voxels, we can ensure these artifacts have been mitigated globally while ameliorating the 

computational challenges associated with joint optimization. Similar to the original 

CAIPIRINHA method(20), Wave-CAIPI reconstruction benefits from the attribute that the 

complete reconstruction can be divided into small decoupled reconstruction problems, each 

of which can be solved rapidly. Specifically, if we assume acceleration factors Ry and Rz 

then each Wave-CAIPI sub-problem would be across NxRyRz voxels. Based upon the 

CAIPIRINHA factor this corresponds to aliased voxels from highly distributed readouts 

across the (y,z) dimensions. Figure 2(B) shows a typical arrangement of highly separated 
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test locations that sparsely cover the imaging volume. In practice, less than 10 sub-problems 

are required to successfully guide the joint optimization. This small number of sub-problems 

is sufficient to clearly differentiate the data consistency benefits of reconstruction using a 

high quality gradient trajectory estimate when compared to reconstruction in the presence of 

trajectory errors. In cases where higher frequency modeling terms are required to describe 

the trajectory, the number of sub-problems required to arrive at an accurate solution is likely 

to increase.

It is important to note that other acquisition schemes may not correspond to fully decoupled 

reconstruction problems. However, encoding matrices for many fast MRI acquisition 

techniques have locality properties, i.e. much larger interactions between neighboring 

voxels. Therefore, the reconstruction across any small region of interest (assuming all other 

voxels are fixed at the best current estimate) will only be accurate in the interior of the 

region and less accurate as you move toward the boundary (21). By reconstructing different 

overlapping regions of interest (21) as the joint optimization progresses, accurate voxel 

estimates can be propagated throughout the entire image. The algorithm will converge when 

there is no change in trajectory variables and the image (the boundary of any region of 

interest reconstruction will then be correct).

Fast Greedy Search

We introduce a fast greedy search algorithm that can be used to effectively solve the joint 

optimization across the reduced parameter set, see Figure 3(A) for a flow diagram of the 

approach. In this procedure we optimize the trajectory variables sequentially in order of 

importance, see description of RMSE gradient vector above. For each variable (real and 

imaginary parts optimized separately) a line search is performed (golden section search (22)) 

to improve the data consistency objective. That is, we identify a closed error region around 

each of the frequency components being optimized and use the quality of the objective to 

narrow in on a local minimum. The value of the objective function corresponds to 

calculating the data consistency RMSE associated with the solution of the SENSE problem, 

which is solved only across the test locations (see Figure 2(B)). For a given trajectory 

estimate, the solution of the SENSE problem corresponds to the optimal voxel values that 

can be coupled together with the trajectory variables within the joint optimization. By 

solving the SENSE problem as we update the trajectory parameters, we ensure only RMSE 

optimal voxel information is used to guide the joint optimization.

Figure 3(B) shows the smooth variation in data consistency RMSE as the frequency content 

is manipulated; both real and imaginary values are shown for the Y and Z gradients. The 

amount of change is shown relative to the peak theoretical amplitude for the trajectory, see 

Figure 2(A). This relative measure allows for simple heuristics to be used to bound the 

search space, e.g. 20% max error. This search process is then repeated for the neighboring 

frequencies included in the narrow frequency band along with the DC term. Multiple 

optimization passes through the gradient trajectory variables are performed until only small 

RMSE improvements are observed and the local minimum for PSF has been obtained. 

Finally, the optimized PSF can be used for the complete SENSE reconstruction across the 

full volume.
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Methods

In order to demonstrate both the accuracy and computational efficiency of our approach, in 
vivo data were acquired from a healthy volunteer subject to institutionally approved protocol 

consent. Data were collected from the subject at two scanners, with different gradient 

hardware, in attempt to further validate the robustness of the approach. The experiments on 

the 3T Siemens Skyra scanner were performed with the standard Siemens 32ch array coil 

and for the 3T Siemens Prisma-Fit scanner the data were acquired with the Siemens 64ch 

head-neck array coil, without the use of the 12ch neck elements.

Our method was tested for two multi-echo 3D GRE Wave-CAIPI imaging protocols, 

assuming an acceleration factor R = Ry × Rz = 3 × 3. The first was constructed to closely 

match protocols used in clinical settings (based on SWI protocols distributed by the 

manufacturer) and the other to match research literature focusing on Quantitative 

Susceptibility Mapping (QSM) (4). For both protocols, data were collected from two echoes 

where the mean echo time corresponds to the desired TE. The following sequence 

parameters were used for the 1min 18s clinical protocol: resolution 0.76×0.76×1.5mm3, 

FOV 240×210×144mm3, phase resolution=69%, TR=41ms, TE=13.7, 30.1ms, flip 

angle=15°, bandwidth=100Hz/pixel, Wave parameters: 31 cycles with max gradient 

slew=160mT/m/ms and max amplitude=24mT/m. The 1min 51s research protocol has 

imaging parameters: resolution 1.0×1.0×1.0mm3, FOV 256×192×120mm3, phase 

resolution=100%, TR=42ms, TE=15.0, 32.0ms, flip angle=15°, bandwidth=100Hz/pixel, 

Wave parameters: 27 cycles with max gradient slew=180mT/m/ms and max 

amplitude=35mT/m. In each case, a FLASH reference scan (under 2s) acquired the center 

30×30 region of k-space to be used for the estimation of ESPIRiT(23) sensitivity maps. The 

multi-echo Wave-CAIPI sequence was designed to be flow compensated, through the 

insertion of additional bipolar gradients, and the reconstructed multi-echo data were 

combined through root-sum-of-square for the magnitude and TE weighted combination of 

the unwrapped echo phases. The joint optimization and Wave-CAIPI reconstruction were 

embedded into the Siemens ICE framework, allowing for auto-calibrated online SWI 

reconstruction. The computational performance was measured using standard Siemens Skyra 

and Prisma reconstruction hardware. In order to investigate the accuracy of the joint 

optimization, we have included functionality that allows for the retrospective reconstruction 

of the data with either the theoretical PSF or measured PSF. Following the procedure 

described in (4) the measured PSF is found by acquiring 3 fully sampled calibration scans, 

i.e. no wave, wave gradient Y, wave gradient Z.

Results

Figure 4(A,B) shows a reconstruction comparison, from the Skyra scanner, when using the 

jointly optimized PSF and the measured PSF from fully sampled calibration data 

respectively. Echo combined 1mm isotropic magnitude images are shown for several 

partitions and the data consistency RMSE (of individual TE volumes) is reported below each 

set of images. Figure 4(C,D) shows reconstruction results, from the Skyra scanner, using the 

jointly optimized PSF for the 0.76×0.76×1.5mm3 and 1mm isotropic protocols respectively. 

Here, the 3D echo combined magnitude images along with an 8 partition averaged SWI 
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image are provided. The data consistency RMSE is also compared against the measured 

calibration approach. As can be seen in Figure 4 the joint optimization performed at least as 

well as the measured PSF in all cases, with a max RMSE difference within 2% and similar 

image quality.

Table 1 shows a comparison of the frequency content for the jointly optimized PSF when 

compared to the theoretical gradient waveform. Both protocols were acquired on the two 

scanners and the FOV was rotated in an attempt to maximize brain coverage. It can be 

clearly seen that the amplitude of the wave deviates several percent from the theoretical 

value, which can correspond to over a 30% increase in data consistency RMSE. In addition, 

the asymmetry between the Y and Z directional Primsa gradient coils is evident with the 4× 

larger deviations in estimated amplitudes when compared to the Skyra scanner. The per echo 

data consistency RMSE is shown below the PSF values in Table 1. Both scanners showed a 

consistent 1-2% variation in RMSE between the two protocols. This variation can be 

attributed to the differences in resolution, slice coverage, and SNR associated with the 

acquired TE for each protocol.

Finally, the joint optimization converged within 30s for all protocols and scanners/coils used. 

The total post scan reconstruction time was less than 2min for the 32ch array coil data on the 

Skyra scanner and under 4min 30s using the 64ch array coil (52 elements enabled) on the 

Prisma scanner. In all cases, the vendor's global singular value based channel compression 

was enabled.

Discussion and Conclusions

In this work we propose a joint optimization strategy that can be used to determine gradient 

trajectories for auto-calibrated image reconstruction. The technique is applicable to both 

Cartesian and non-Cartesian fast MRI acquisition techniques. The reduction of optimization 

variables is a key element that allows for a non-alternating joint reconstruction of the 

unknowns. We demonstrate a reduction, several orders of magnitude, in both the gradient 

trajectory modeling parameters as well as the parallel imaging voxels for Wave-CAIPI. This 

reduced model allows for direct application of established optimization techniques for 

solving the non-linear least squares problem. As can be seen in previous works (6), gradient 

trajectories for many commonly used fast acquisitions can be compactly represented. Thus, 

the consideration of the reduced modeling for gradient trajectories will serve as a starting 

point to develop new encoding techniques.

We have demonstrated online reconstruction with our joint optimization approach for 

clinically relevant 3D GRE Wave-CAIPI data. The joint optimization was able to be 

computed in fewer than 30s, even when utilizing the larger 64ch array coil (52 elements 

enabled). The computational cost for the optimization can be further improved with the use 

of GPU resources that are available on many scanner platforms. The computational cost can 

be further improved with the use of a priori information about the system hardware. This 

information can be incorporated into the optimization as an initial guess for the trajectory 

parameters. In addition to the computational efficiency of our approach, we have also 

demonstrated comparable accuracy to full calibration based methods. Additional qualitative 
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evaluation of the joint optimization approach has been performed through testing across 

wide ranges of protocol parameters, such as FOV location/orientation, bandwidth, TE, 

resolution, and sinusoidal amplitude/frequency. The results shown in this work are for a 

single subject across 2 different scanners (from the same manufacturer). Further 

quantification of the accuracy of the method should be performed across manufacturers and 

additional subjects.

Finally, we consider extending our joint optimization approach to estimate many other 

encoding effects that can be represented compactly. For example, B0 and B1 field 

maps(18,19) as well as parameters related to subject motion(24). When these additional 

modeling terms are included, the encoding will likely become fully coupled. However, the 

locality of interactions in typical encoding situations should allow for efficient model 

reduction through the use of sliding regions of interest (domain decomposition (21)).
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Figure 1. 
Illustration of gradients and k-space coverage for the Wave-CAIPI method are shown in (A). 

The linear readout direction gradient X is combined with sinusoidal gradients in Y and Z. 

CAIPIRINHA staggered Cartesian sampling is used for efficient encoding of k-sapce. The 

forward model used for Wave-CAIPI reconstruction is shown in (B). Both the image and the 

separable PSF terms PY and Pz are considered variables in the joint optimization approach. 

The aliasing effect based upon the Wave-CAIPI encoding scheme is shown below.
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Figure 2. 
(A) shows an example of a measured PSF calculated using fully sampled calibration scans. 

The phase is computed by taking the hybrid space ratio of an acquisition with no wave 

gradients and one with the Y wave gradient employed. The measured PSF only requires a 

sparse number of frequencies to be represented accurately. (B) shows an example of 

ghosting artifacts in the presence of trajectory errors. Here, the theoretical PSF is used to 

reconstruct the image. Distribution of SENSE test locations are shown on the right. As the 

ghosting artifacts appear globally, only a small number of parallel imaging test locations are 

required to guide the optimization.
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Figure 3. 
(A) the joint optimization can be efficiently solved through the use of a fast greedy search. A 

line search is performed for each of the variables used to describe the gradient trajectory. 

The objective function corresponds to the data consistency RMSE based upon the SENSE 

solution, across the small number of test locations. Multiple passes are performed until the 

method converges to a local minimum. (B) the sensitivity of RMSE to changes in the 

trajectory variables is illustrated. Here, the percentage change is shown relative to the 

theoretical gradient amplitude (see Figure 2). Smooth variation in the objective along with 

clear local minima can be observed.
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Figure 4. 
Reconstruction comparison of measured PSF and auto-calibrated joint optimization 

approaches for Ry × Rz = 3 × 3 Wave-CAIPI multi-echo 3D-GRE data. (A,B) shows data 

acquired at 1.0×1.0×1.0mm3 resolution with FOV 256×192×120mm3. The echo combined 

TE=23.5ms magnitude images are shown for several partitions. The data consistency RMSE 

(of individual TE volumes) is reported below the respective images. (C,D) shows auto-

calibrated joint optimization results for two protocols; echo combined TE=21.9 and 

TE=23.5ms magnitude images are shown respectively along with the SWI images averaged 

across 8 partitions. (C) contains images acquired at 0.76×0.76×1.5mm3 resolution with FOV 

240×210×144mm3 (D) contains images acquired at 1.0×1.0×1.0mm3 resolution with FOV 

256×192×120mm3.
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Table 1

Estimated PSF frequency content from the joint optimization across two scanners and two protocols. The 

estimated values are compared against the theoretical for both the Y and Z gradient waveforms. The resolution 

and per echo data consistency RMSE are reported below the PSF values.

Frequency
Theoretical PSF Skyra Scanner Prisma Scanner

Real Imag Real Imag Real Imag

Y Gradient

0 0.000 0.000 −0.038 0.000 0.000 0.000

26 0.000 0.000 0.000 −0.005 0.000 −0.003

27 0.000 0.834 0.003 0.837 0.004 0.829

28 0.000 0.000 0.000 0.003 0.000 0.002

Z Gradient

0 1.668 0.000 1.680 0.000 1.668 0.000

26 0.000 0.000 −0.007 −0.002 −0.003 0.000

27 0.000 0.834 0.051 0.832 −0.012 0.849

28 0.000 0.000 0.005 0.000 0.002 −0.002

Resolution: 1.0×1.0×1.0mm3 RMSE (%): [17, 24] RMSE (%): [13, 18]

Frequency
Theoretical PSF Skyra Scanner Prisma Scanner

Real Imag Real Imag Real Imag

Y Gradient

0 0.000 0.000 0.038 0.000 0.000 0.000

30 0.000 0.000 0.000 −0.002 0.000 0.000

31 0.000 0.567 0.003 0.546 −0.001 0.565

32 0.000 0.000 0.000 0.002 0.000 0.000

Z Gradient

0 1.130 0.000 1.170 0.000 1.170 0.000

30 0.000 0.000 −0.002 0.000 −0.002 0.000

31 0.000 0.567 0.014 0.544 −0.026 0.576

32 0.000 0.000 0.000 0.000 0.002 0.000

Resolution: 0.76×0.76×1.5mm3 RMSE (%): [16, 22] RMSE (%): [12, 16]
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