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We present a pulsed dynamic nuclear polarization (DNP) study using a ramped-amplitude nuclear
orientation via electron spin locking (RA-NOVEL) sequence that utilizes a fast arbitrary waveform
generator (AWG) to modulate the microwave pulses together with samples doped with narrow-line
radicals such as 1,3-bisdiphenylene-2-phenylallyl (BDPA), sulfonated-BDPA (SA-BDPA), and trityl-
OX063. Similar to ramped-amplitude cross polarization in solid-state nuclear magnetic resonance,
RA-NOVEL improves the DNP efficiency by a factor of up to 1.6 compared to constant-amplitude
NOVEL (CA-NOVEL) but requires a longer mixing time. For example, at τmix = 8 µs, the DNP
efficiency reaches a plateau at a ramp amplitude of ∼20 MHz for both SA-BDPA and trityl-OX063,
regardless of the ramp profile (linear vs. tangent). At shorter mixing times (τmix = 0.8 µs), we found
that the tangent ramp is superior to its linear counterpart and in both cases there exists an optimum
ramp size and therefore ramp rate. Our results suggest that RA-NOVEL should be used instead of
CA-NOVEL as long as the electronic spin lattice relaxation T1e is sufficiently long and/or the duty
cycle of the microwave amplifier is not exceeded. To the best of our knowledge, this is the first
example of a time domain DNP experiment that utilizes modulated microwave pulses. Our results
also suggest that a precise modulation of the microwave pulses can play an important role in optimizing
the efficiency of pulsed DNP experiments and an AWG is an elegant instrumental solution for this
purpose. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4980155]

INTRODUCTION

Dynamic nuclear polarization (DNP) is widely accepted
as a powerful technique for improving the sensitivity of nuclear
magnetic resonance (NMR) signals,1 but instrumental con-
siderations to date have dictated that only continuous wave
(CW) microwave irradiation can be utilized in the experi-
ments.2–8 These CW experiments, namely, the cross effect and
solid effect, enhance signal intensities by one to two orders of
magnitude and enable otherwise impossible experiments,9–16

but they nevertheless exhibit an inverse dependence on the
B0 field.3,8,17–21 Furthermore, to adjust the relaxation times
so that the experiments function with optimal efficiency, it is
often necessary to perform them at cryogenic temperatures
and/or high microwave power.22–29 As a consequence, these
requirements limit the applicability of DNP in NMR. There
are ongoing efforts that address these limitations, for exam-
ple, by utilizing the Overhauser effect in insulating solids
that scales linearly with the Zeeman field, B0, and requires
much less microwave power.30,31 However, a more general
approach to address the inverse field dependence is pulsed or
time domain DNP. Specifically, what is needed is a repertoire
of pulse sequences that allow an efficient transfer of polariza-
tion from electrons to nuclei regardless of B0. Although pulsed
DNP often requires intense peak microwave power, the average
power is low due to the low duty cycle. Thus, in combination
with rapid polarization transfers, pulsed DNP is potentially the
method of choice for experiments at ambient temperature.

The development of time domain DNP dates from the
late 1980s and was stimulated by the need for methods
to prepare polarized targets for neutron diffraction experi-
ments using short lifetime photo-excited triplet states.32,33

Pulse sequences including nuclear orientation via electron spin
locking (NOVEL) and the integrated solid effect (ISE)
were introduced and employed for these applications.34–37

In contrast, contemporary applications in magic angle spin-
ning (MAS) NMR rely heavily on CW DNP, in particular
the cross effect using biradical polarizing agents.38–41 It is
worth noting that attempts to apply pulsed DNP were initi-
ated about the same time as the first gyrotron based MAS
DNP/NMR experiments, a technique that has been widely
used over the last decade.42 The slow progress of pulsed
DNP is the result of a paucity of pulse microwave ampli-
fiers operating at high output powers (kW) and high fre-
quencies (above 100 GHz). Nevertheless, the potential of
time domain experiments has stimulated the development of
new DNP sequences such as DNP in the nuclear rotating
frame (NRF), the dressed state solid effect (DSSE), polar-
ization of nuclear spin enhanced by ENDOR (PONSEE),
and a sequence based on optimum control theory.43–46 Fur-
thermore, recent advances in microwave amplifier technol-
ogy establish pulsed DNP as a promising technique on the
horizon.47,48

Among these sequences listed above, NOVEL, a rotating
frame-lab frame analogue of Hartmann-Hahn cross polariza-
tion (CP), can potentially play the same role for DNP as
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does CP in solid state NMR.49,50 CP belongs to a family
of “sudden” experiments in which the density operator nutates
around the Hamiltonian, giving rise to the transfer of polar-
ization. In powder samples, the interference of different
dipolar coupling strengths leads to 50% polarization trans-
fer efficiency at quasi-equilibrium (long contact time). Even
though ramped amplitude (RA)-CP appears to be very simi-
lar to CP, it differs fundamentally in that it is an “adiabatic”
process whereby the Hamiltonian changes slowly allowing
the density operator to follow, and the polarization trans-
fer occurs virtually at the center of the ramp. This happens
approximately simultaneously for all orientations and dis-
tances, thereby suppressing transient oscillations and gener-
ating 100% polarization transfer efficiency that is a factor
of ∼2 larger than that obtained with constant amplitude
(CA)-CP.51–53

Recently, we demonstrated high DNP efficiency using
the NOVEL pulse sequence under the sample conditions used
in DNP/NMR experiments.54,55 Inspired by the advantage of
RA-CP (vide supra), we report herein the performance of
the ramped amplitude (RA)-NOVEL sequence utilizing the
newly available arbitrary waveform generator (AWG) func-
tion on an X-band EPR spectrometer. The AWG allows precise
and convenient manipulations of microwave pulses and was
used to ramp the amplitude of the spin locking pulse. With
this innovation we obtained a factor of up to 1.6 larger DNP
enhancement. The improvement appears to be versatile with
respect to the polarizing agent as well as the shape of the
ramp (linear vs. tangent) as long as the ramp is sufficiently
long.

BACKGROUND

In this section, we provide a brief theoretical descrip-
tion relevant to the experiments that follow. The descrip-
tion is in part similar to that presented previously,54 the
extension being the discussion of linear RA-NOVEL. With
the microwave applied on resonant with the EPR transition,
the Hamiltonian in the microwave rotating frame can be
written as

H = ω1SSx − ω0I Iz + (AIz + BIx) Sz,

where the first term originates from the microwave spinlock
field, the second term corresponds to the Zeeman interac-
tion of proton, and A and B are the isotropic and anisotropic
hyperfine coupling, respectively. In the tilted frame defined
such that

Sx → Sz, Sy → Sy, Sz → −Sx,

the Hamiltonian is transformed to

H = ω1SSz − ω0I Iz − (AIz + BIx) Sx.

Using perturbation theory, we separate the Hamiltonian into
the unperturbed H0 and the perturbation H1 which are given
as follows:

H0 = ω1SSz − ω0I Iz,

H1 = −AIzSx − BIxSx.

At the NOVEL condition (ω1S = ω0I ), the contribution from
the A term of H1 is proportional to A

2ω0I
. Even in the case

of 1,3-bisdiphenylene-2-phenylallyl (BDPA) or sulfonated-
BDPA (SA-BDPA) radicals (A ∼ 5 MHz), and at low field
(ω0I ≈ 15 MHz), the ratio is small (1/6). Moreover, our RA-
NOVEL experimental data (vide infra) for SA-BDPA and
trityl-OX063, which have negligible isotropic coupling, reveal
a strong similarity. Thus, to simplify the subsequent treatment
of the Hamiltonian, we assume that the isotropic hyperfine
coupling term can be neglected, an assumption that will be
more relevant at higher B0 fields. Under these circumstances,
H1 is truncated to

H1 ≈ −BIxSx.

The Hamiltonian becomes block diagonal

H = H0 + H1 ≈ ω1SSz − ω0I Iz − BIxSx = HZQ ⊕ HDQ,

where ZQ and DQ correspond to zero quantum and double
quantum, respectively. At the NOVEL condition (ω1S = ω0I ),
the matrix form of the Hamiltonian in each subspace is given
as
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While the perturbation effect in the ZQ subspace can be
ignored (B

/
2ω0I is small), its contribution in the DQ sub-

space drives the polarization transfer at a rate that depends
on the strength of the anisotropic interaction. In a powder
sample, interference of different distances and orientations
leads to 50% efficiency at quasi-equilibrium (long mixing
time).

In the case of a linear ramp centered at ω1S = ω0I , we
assume that the mixing time τmix is long compared to the period
of the microwave frequency, in which case the matrix form of
HDQ is

HDQ(t) =
*...
,

−
1
2
ω̇1St

B
4

B
4

1
2
ω̇1St

+///
-

,

where ω̇1s is the ramp rate and −τmix
2 ≤ t ≤ τmix

2 . Thus we
arrive at the situation discussed with Landau-Zener theory.56

If the ramp in the microwave amplitude is adiabatic satisfying
the condition

B2

16ω̇1S
� 1

for all possible values of B, then the polarization transfer
occurs at the center of the ramp for all orientations and dis-
tances. This leads to 100% efficiency which is a factor of 2
improvement compared to CA-NOVEL. The adiabatic con-
dition also suggests that a stronger coupling enables a faster
ramp rate.
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FIG. 1. Ramped-amplitude NOVEL pulsed DNP sequence. The pulse
sequence is identical to the constant-amplitude NOVEL sequence except for
the amplitude modulation of the microwave locking pulse (Y pulse). The
amplitude is ramped fromω1S − (∆ω1S/2) toω1S + (∆ω1S/2), corresponding
to the ramp size of ∆ω1S , with linear or tangent shape profiles.

EXPERIMENTAL

EPR and pulsed DNP/NMR experiments were performed
on a Bruker ElexSys E580 X-band EPR spectrometer using
an EN 4118X-MD4 ENDOR probe. The probe consists of a
dielectric resonator wrapped with a saddle coil for RF excita-
tion. In normal operation, the coil is untuned to permit ENDOR
experiments spanning a broad range of RF frequencies. How-
ever, for our DNP/NMR experiments, the RF coil was locally
tuned to the desired 1H frequency (∼15 MHz) by a module of
tuning and matching capacitors to improve the RF excitation
efficiency and detection sensitivity. An iSpin-NMR spectrom-
eter purchased from Spincore Technologies, Inc. (Gainesville,
FL, US) was used for the RF excitation and detection of the
NMR signals. The 1H NMR signals were acquired via a solid
echo sequence with 8-step phase cycling. The signals were
processed using a home-written MATLAB program.57

The microwave bridge of the EPR spectrometer is
equipped with a SpinJet AWG commercially available from
Bruker BioSpin. The desired waveform is achieved by side-
band suppression mixing of the main carrier frequency with the
waveform generated by the SpinJet. The AWG has 8 output
channels each of which has 192 kSa of memory, 14 bits of
amplitude resolution, and 0.625 ns time resolution correspond-
ing to a bandwidth of ±400 MHz about the carrier. The Spin-
Jet AWG allows the amplitude modulation (amplitude ramp)
during the locking pulse (microwave pulse Y in Fig. 1). In
this paper, the locking pulse is used interchangeably with the
mixing time or contact time.

Samples for the experimental data shown in Figures 2
and 3 consisted of 40 mM SA-BDPA dissolved in
glycerol-d8/D2O/H2O (60/30/10 volume ratio) at 80 K. The
data in Figure 4 were obtained from polystyrene doped with
2% BDPA at 300 K.

RESULTS

We implemented the pulse sequence shown in Figure 1,
which is identical to the NOVEL sequence except for the
amplitude modulation of the microwave locking pulse (the
Y pulse). The optimization of all the experimental parameters
was accomplished using the procedure described in our pre-
vious study.54 For the pre-saturation on 1H, we used a chain
of 16 pulses (m = 8) with the inter-pulse delay of τ2 = 5 ms.
For NMR signal detection, the solid echo sequence was used

FIG. 2. Performance of the RA-NOVEL sequence on a sample containing
40 mM SA-BDPA in glycerol-d8/D2O/H2O (60/30/10 volume ratio) at 80 K.
(a) Optimization of the ramp size. The length of the locking pulse was fixed at
8µs, whereas the ramp size was varied from 0 to∼30 MHz. The resulting DNP-
enhanced NMR signals were normalized to that obtained with the CA-NOVEL
sequence (a ramp size of 0 MHz). The intensity reaches a plateau at ∼18 MHz
of ramp size (ramp from 6 MHz to 24 MHz). (b) Contact time dependent
curves for CA-NOVEL (no ramp) and RA- NOVEL with 18 MHz ramp size.
In comparison, RA-NOVEL builds up more slowly (3 µs compared to 150 ns)
and reaches higher efficiency in a quasi-equilibrium state (long mixing time).
The DNP efficiency is improved by a factor of 1.6 using RA-NOVEL.

with τ3 = 20 µs. The recovery delay for the electron (τ1) was
typically 10 ms and 1.5 ms for SA-BDPA and trityl-OX063,
respectively, at 80 K. The microwave pulses were repeated n
times for the 1H polarization to buildup. For a full buildup,
we used n = 3Tb/τ1 in which Tb is the buildup time constant
of 1H. Typically, n can be as large as ∼10,000. Additionally,
the size, rate, and shape of the ramp required optimization.
Figure 2(a) illustrates the effect of the ramp size on the DNP
efficiency while the mixing time was fixed at 8 µs on a sample
containing 40 mM SA-BDPA. The DNP-enhanced NMR sig-
nals were normalized to those obtained with the CA-NOVEL
sequence (ramp size = 0 MHz). The intensity increases with
the ramp size and plateaus at ∼18 MHz, which corresponds
to a ramp from 6 MHz to 24 MHz. We obtained an enhance-
ment of ∼85 with CA-NOVEL, consistent with our previous
study, and∼135 with RA-NOVEL which corresponds to a fac-
tor of up to 1.6 improvement. The improvement in the DNP
enhancement is further confirmed in Figure 2(b) wherein we
incremented the mixing time up to 8 µs with and without
the amplitude ramp. In comparison to CA-NOVEL, the polar-
ization in the RA-NOVEL builds more slowly but results in
higher efficiency.



154204-4 Can et al. J. Chem. Phys. 146, 154204 (2017)

FIG. 3. Comparison between different ramp profiles at 8 µs contact time and 30 MHz ramp size. (a) Negligible difference between linear and tangent ramps at
8 µs contact time. (b) Performance of difference tangent ramp schemes characterized by a single shape parameter A. The corresponding amplitude profiles are
given in (c). The data were taken on the same samples and temperatures described in Fig. 2.

We investigated the performance of a tangential ramp at
τmix = 8 µs (Figure 3). As revealed in Figure 3(a), we found
negligible differences between linear and tangent ramps, with
both saturating at a∼20 MHz ramp size with 1.6 improvement.
In Figures 3(b) and 3(c), we varied the ramp shape, character-
ized by a single shape parameter A, with the following ramp
profile:

ω1S(t) = ω0I − A · tan

{
arctan

[
ω0I

A

(
1 − 2

t
τmix

)]}
.

A = 0 corresponds to the constant-NOVEL sequence (no
ramp). For A > 0 we obtain different tangent profiles having
an initial slope decreasing with increasing A (Figure 3(c)), but
the ramp size is fixed to 2ω0I (∼30 MHz).

In Figure 4, we compare the performance of linear and
tangent ramps at a short mixing time of 0.8 µs as opposed
to 8 µs on a sample of polystyrene doped with 2% BDPA.
These data were acquired at room temperature (300 K).
We found that there exists an optimum ramp size and thus
ramp rate, which is indicative of the adiabaticity of the pulse
sequence.

FIG. 4. Linear vs. tangent ramps at short contact time (0.8 µs). The difference
becomes apparent at a large ramp size. In this case, tangent ramp appears to
be more efficient. In both cases, the optimum ramp rate is indicative of the
adiabaticity of the ramped-NOVEL sequence. Experiments were performed
at room temperature on a sample of polystyrene doped with 2% BDPA.

DISCUSSION

The improvement (ramped-amplitude vs. constant-
amplitude) obtained with RA-NOVEL is similar to that
achieved experimentally with RA-CP. A detailed study by
Metz et al. in CP MAS NMR experiments showed an improve-
ment factor of up to 1.6 and the possibility of extending this
effect to a 1.8 enhancement with a sufficiently long mixing
time.51 In our experiments, the longest mixing times allowed
by the traveling-wave tube (TWT) were ∼10 µs, and larger
improvements might be possible with extended microwave
pulses. The theoretical limit (a factor of 2 improvement) was
only observed with RA-CP in a model system of diluted spin
pairs such as 1H–13C in a sample of 2–13C–2H3-alanine diluted
in perdeuterated alanine.58 Our results approach the theoreti-
cal value, and optimization of the sample conditions may lead
to further improvement.

In practice, when applied on multi-spin systems, the
improved performance of RA-CP is often attributed to the
compensation for the chemical shift anisotropy (CSA) by
a broader excitation bandwidth and for the Hartmann-Hahn
mismatch due to the inhomogeneity of radio frequency irradi-
ations. Our experiments were performed at low field at which
the g-anisotropy, the electronic analog of the CSA, is negli-
gible. If the broader bandwidth were responsible, one would
expect the efficiency to monotonically increase with the size
of the ramp. However, as seen in Figure 4, this was not the
case. At short mixing time (τmix = 0.8 µs), we observed an
optimum ramp size above which the efficiency decreases.
Furthermore, the inhomogeneity of the Larmor frequency is
negligible and the microwave field strength ω1S measured by
nutation experiments (data not shown) shows ∼10% inhomo-
geneity (∼1.5 MHz at the NOVEL condition) which is one
order of magnitude smaller than the optimum ramp size, thus
the mismatch is less of an issue in NOVEL than it is in
CP. Therefore, it is likely that the improvement in the DNP
enhancement of RA-NOVEL is due to the adiabatic proper-
ties of the pulse sequence. This also explains the difference
between linear and tangent ramps. At long mixing times, the
difference is negligible because the sweep rate is slow regard-
less of the modulation scheme. At short mixing times, the dif-
ference is apparent and the superior performance of a tangent
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ramp compared to its linear counterpart is also well-known for
RA-CP.52

It is worth noting that RA-NOVEL requires a longer
mixing time. In particular, the mixing time employed in a
CA-NOVEL is ∼102 ns as compared to the µs (∼103 ns) time
for RA-NOVEL. This has a practical implication on the design
of pulsed DNP experiments. Given the same experimental
conditions, a ramped-amplitude experiment would impose a
higher duty cycle on the microwave amplifier. Furthermore,
the repetition time is on the order of the electronic relaxation
time, and when T1e is short, RA-NOVEL might exceed the
duty cycle limit of the microwave amplifier. For example,
in our previous study we obtained a high enhancement at
room temperature on a BDPA/PS sample when running the
microwave amplifier near its designed 1% duty cycle.54 Mak-
ing the contact time ∼10 times longer is not possible in
such cases. However, as long as the duty cycle permits, RA-
NOVEL always provided larger enhancements compared to
CA-NOVEL.

Furthermore, the long mixing time in RA-NOVEL makes
it more suitable for radicals with long electronic relaxation
T1e’s such as BDPA or SA-BDPA, the latter being a water-
soluble derivative of BDPA. SA-BDPA has a long T1e ∼ 50 ms
at 1 mM concentration in a frozen solution at 80 K and 5 T.59

Our experiment utilized a concentrated sample of 40 mM,
with T1e of ∼10 ms. At the longest contact time (∼10 µs)
allowed by the TWT, the duty cycle is 0.1%, which is still
significantly below the 1% limit for the TWT. We note that
RA-NOVEL might not be the method of choice for DNP
using photo-excited triplet states wherein the short lifetime
(µs or less) of the triplet states is not compatible with long
mixing times.

Another prominent feature of BDPA-type radicals is
the strong hyperfine coupling, which can be as large as
5.3 MHz.54,60,61 The trityl-OX063 radical, on the other hand,
was designed to remove all the 1H’s that couple to the unpaired
electron to facilitate solution Overhauser effect DNP mediated
by electron-nuclear dipolar coupling.62–64 Our experimental
data on both SA-BDPA and trityl-OX063 radicals show consis-
tent results. Specifically, both require a ramp size of ∼20 MHz
and contact time of ∼3 µs. Furthermore, the improvement
factors are also similar: 1.6 for SA-BDPA and 1.45 for trityl-
OX063 (enhancement of 175 for CA-NOVEL and 250 for
RA-NOVEL on sample containing 40 mM radical, data not
shown). This suggests that the improvement of RA-NOVEL
is generic, regardless of the radicals used. At higher fields
where the difference in g anisotropy becomes significant, the
difference between the two types of radicals might be more
pronounced.

Finally, we emphasize the benefit of modulating the
microwave amplitude to improve the DNP enhancement. Var-
ious groups have demonstrated this in the context of CW
DNP.65–70 Our results show that it is also important to mod-
ulate the microwave power in pulsed DNP experiments. To
this end, an AWG is an elegant solution to conveniently
manipulate the properties of the microwave pulses in a pre-
cise manner. In particular, using an AWG allows control
of the amplitude, frequency, and phase of the microwave
pulses. In a forthcoming paper, we will discuss another

pulsed DNP sequence based on the modulation of the fre-
quency rather than the amplitude of the microwave pulses.
Our study parallels the trend in recent years of integrating
an AWG into EPR spectrometers.71 The implementation of
this approach has been performed at both low and high fre-
quencies.69,71 With the availability of fast (a few GSa/s) and
cost-effective AWG, we anticipate that AWG will evolve into
a standard component for the next generation of DNP/NMR
instrumentation.

CONCLUSIONS

In summary, by modulating the amplitude of the
microwave pulses using an arbitrary waveform generator
(AWG), we have demonstrated that ramped-amplitude
NOVEL gives rise to a significant improvement in the DNP
enhancement when compared to constant amplitude-NOVEL.
In particular, RA-NOVEL lengthens the contact time by about
an order of magnitude and improves the DNP efficiency by
a factor of up to 1.6 which is 80% of the theoretical value.
The fact that it requires longer mixing times suggests that RA-
NOVEL should be used instead of constant-NOVEL as long
as T1e is long and/or the duty cycle of the microwave amplifier
is not exceeded. Thus, at the moment RA-NOVEL is suitable
for narrow-line radicals with long T1e’s such as BDPA and its
derivative SA-BDPA. Our study emphasizes the importance
of the ability to modulate the microwave pulses in order to
optimize the DNP efficiency.
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