
Defect-free zinc blende GaAs NWs on Si (111) by the MBE growth are systematic study by Au-
assisted vapor-liquid-solid (VLS) method. The morphology, density and crystal structure of 
GaAs NWs were investigated as a function of the substrate temperature, growth time, and V/III 
flux ratio during MBE growth, as well as the thickness, annealing time and annealing 
temperature of Au film. Cathodoluminescence (CL) spectrum proves the direct bandgap
(1.424eV) Au-assisted GaAs NWarray at 870nm with zinc blendestructure. The dopant effects

 of Si and Be in nanowires, which lead to GaAs NW process n-type and p-type semiconductor 
property and reduce the electrical resistivity are studied. 
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Abstract

In this study, defect-free zinc blende GaAs nanowires on Si (111) by molecular beam epitaxy (MBE) growth are
systematically studied through Au-assisted vapor-liquid-solid (VLS) method. The morphology, density, and crystal
structure of GaAs nanowires were investigated as a function of substrate temperature, growth time, and As/Ga flux
ratio during MBE growth, as well as the thickness, annealing time, and annealing temperature of Au film using scanning
electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), cathodoluminescence (CL),
and Raman spectroscopy. When the As/Ga flux ratio is fixed at 25 and the growth temperature at 540 °C, the GaAs
nanowires exhibit a defect-free zinc blende structure with uniform and straight morphology. According to the
characteristics of GaAs nanowires grown under varied conditions, a growth mechanism for defect-free zinc blende GaAs
nanowires via Au-assisted vapor-liquid-solid (VLS) method is proposed. Finally, doping by Si and Be of nanowires
is investigated. The results of doping lead to GaAs nanowires processing n-type and p-type semiconductor properties
and reduced electrical resistivity. This study of defect-free zinc blende GaAs nanowire growth should be of assistance in
further growth and applications studies of complex III-V group nanostructures.
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Background
Semiconductors are expected to shrink in scale to sub
10 nm. In this regard, the semiconductor industry is
being severely challenged to produce semiconductor
materials of suitable mobility (boosted processing speed)
and architecture (for reduced power leakage) on a nano-
metric scale [1]. There is an urgent need for the devel-
opment of semiconductor materials that can address this
problem. Since unique electrical and optical properties
are required, III-V group semiconductors have been
proposed as candidates to replace Si as a high-speed
device material [2–5]. One such material is gallium
arsenide (GaAs). It is representative of III-V group
semiconductor materials and possesses a direct bandgap
of 1.424 eV [6, 7]. III-V group semiconductor nanowire
arrays of high volume to surface ratios are potential

materials whose bandgap can be tuned for the efficient
transfer of solar energy to electric energy [8–10]. The lit-
erature presents various examples of the growth of binary
and ternary III-V group semiconductor nanowires with
controlled bandgaps on various substrates. Among these
studies, single-crystal GaAs is used as a homogeneous
substrate for growing GaAs semiconductor nanowires
[11, 12]. However, single-crystal GaAs substrate is
expensive and difficult to integrate into the present
Si-based industry. On this basis, Si substrates are more
desirable in support of III-V group semiconductor
nanowire growth via vapor-liquid-solid (VLS) mechan-
ism or deposit of a GaAs film as a buffer layer [13–15].
VLS as a growth method is popular as it facilitates re-
duced growth temperatures. Lower growth temperatures
inhibit strain and defects causing lattice mismatching. Fur-
thermore, small lattice mismatch also helps zinc blende
GaAs to overcome strain issue as grown on Si substrate.
Si is diamond structure and its lattice constant is
0.5431 nm, on the other hand, GaAs is zinc blende struc-
ture and its lattice constant is 0.5653 nm. The small lattice
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mismatch, ~4%, leads to GaAs nanowires could epitaxial
growth on Si substrate [15]. There are many studies point
that diameters, density, and quality of nanowires/nanorods
are influenced by growth parameters, such as thickness
and annealing temperature via Au-catalyzed VLS growth
mechanism [16–19]. Over the past several years, the syn-
thesis of GaAs nanowires (NWs) on Si has predominantly
been investigated using metal organic vapor phase epitaxy
via a Au-catalyzed VLS mechanism [20–24]. On the other
hand, few studies have employed molecular beam epitaxy
(MBE) technique. In this systematic study, GaAs nano-
wires are grown under an MBE system on Si (111) via
Au-catalyzed VLS mechanism. The investigation includes
thickness and annealing conditions of the Au film, Ga to
As flux ratio, growth temperature, dopant (Si and Bi)
effects on electrical properties, and optical properties.

Methods
Samples were grown on Au film-coated Si (111) sub-
strates in a Varian Modular GEN-II MBE system. Be-
fore using an e-gun to deposit thickness-varied Au film
(0.6, 1, 1.5, and 2.0 nm), the silicon native oxide on the
Si (111) substrate is removed by 1 wt% HF then rinsed
with DI water and dried with N2 gas. In this work, all
MBE system sources for growing nanowires are solid
elements (including Ga, Be, Si, and As) and their flux is
controlled using a temperature controller and shutter
under 1 × 10−10 Torr. Au film is annealed to form
nanoparticles on the Si (111) substrate then Ga and As
are provided to grow GaAs nanowires. For in situ Si- and
Be-doped GaAs nanowires, the concentrations of Si and Be
are tuned by controlling the solid elements temperature.
Doping temperatures of Si and Be are 1250~1400 °C
and 1000~1150 °C, respectively. The corresponding
concentrations and carrier species of Si- and Be-doped
GaAs samples are calibrated by Hall measurement to
confirm. To prepare samples for Hall measurement,
(111) Si substrate without Au film is used to deposit
GaAs films with different dopant source temperatures.
SEM images were obtained using a HITACHI-S4700
field-emission SEM, operated at 5–15 kV accelerating
voltage. The TEM samples were prepared by drop-
casting nanostructures from toluene dilute dispersions
onto 200-mesh carbon-coated copper grids (Electron
Microscope Sciences). Energy dispersive spectrometry
was conducted using a 200-kV accelerating voltage on
a JEOL JEM-2100F. X-ray diffraction (XRD) was per-
formed with a Rigaku Ultima IV X-ray diffractometer
using Cu Kα radiation (λ = 1.54 Å) with of 1°/min scan
rate. A cathodoluminescence (CL) detector was at-
tached to SEM, and Raman spectrum was measured
through Horiba, HR 800 by 633 nm laser and elec-
trical properties measured by Keithly-590 for I-V
curves.

Results and Discussion
The growth temperature window of Au-catalyzed GaAs
nanowires is 520–620 °C [4, 8]. In this work, the optimal
conditions for Au film thickness and annealing temperature
are 1.0 nm and 580 °C for 10 min, respectively. Figure 1a
shows a representative SEM image of Au-catalyzed GaAs
nanowires grown on Si (111) substrate at 540 °C for 15 min
with Ga/As flux ratio of 1/25. The diameter and length of
Au-catalyzed GaAs nanowires are 26.2 ± 3.4 nm and
424.4 ± 13.4 nm, respectively. The products were fur-
ther analyzed using grazing-incident X-ray diffraction
(XRD). The result shown in Fig. 1b indicates that GaAs
nanowires are crystalline and all peaks can be ascribed
to a zinc blende structure with lattice constants of a =
0.5653 nm (JCPDS No. 89-2770). A strong (111) peak
implies that the GaAs nanowires are textured on the Si
(111) substrate. Since arsenic evaporates from GaAs at
high temperatures, a high-As ambience is needed to
produce high-quality GaAs nanowires. The growth rate
of Au-catalyzed GaAs nanowires is limited by the partici-
pation of Ga from saturated AuGax alloy. Environmental
Ga atoms react with excess As to form polycrystalline
GaAs on Si (111) surface, and the taper-shaped GaAs
nanowires will be formed [14]. Raman spectroscopy is
shown in Fig. 1c. Peaks at 291 and 267 cm−1 are contrib-
uted by GaAs zinc blende structure. No wurtzite structure
peaks are found at 259 cm−1 (the peak at 520 cm−1 is con-
tributed from the Si substrate). The bandgap of the zinc
blende structure and wurtzite structure of GaAs are 1.424
and 1.46 eV at 300 K, respectively; their corresponding
illumination wavelengths are 870 and 850 nm. Figure 1d is
the CL result of Au-catalyzed growth GaAs nanowires
that measured at room temperature. The density of GaAs
NWs and thickness of lateral grown GaAs layer are differ-
ent for varied growth conditions that the CL intensity of
GaAs NWs does not be compared but their full width at
half maximum (FWHM) is similar. Furthermore, the CL
peak at 870 nm confirms the product of GaAs nanowires
is a zinc blende structure. The CL results show that the
strong emission signal at 870 nm relates to the bandgap of
the GaAs array nanowires. Because the CL peak is sharp,
the Au-catalyzed growth GaAs array nanowires must have
a good crystalline structure. No other peak was detected
by CL spectrometry meaning no other defect was intro-
duced into Au-catalyzed growth GaAs array nanowires.
Even if high-concentration dopants of Si or Be are added
into the Au-catalyzed growth GaAs array nanowires, the
spectra of Raman and CL are consistent with XRD results
in Fig. 1b.
Figure 2a gives a bright-field transmission electron

microscope (TEM) image of a representative Au-catalyzed
GaAs nanowire. An AuGax alloy nanoparticle with dark
contrast is clearly shown at the top of the straight and
smooth GaAs nanowire. A high-resolution TEM (HRTEM)
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image and selected area electron diffraction (SAED)
pattern of the corresponding GaAs nanowire are shown
in Fig. 2b, c, respectively. The HRTEM image shows
that the Au-catalyzed GaAs nanowire has a single-
crystalline structure and (111) planes are observable

along the [110] direction with a 3.26-nm spacing. The
SAED pattern result in Fig. 2c further confirms the Au-
catalyzed GaAs nanowire is a zinc blende structure
grown in the (111) direction. This result is consistent
with XRD, Raman, and CL results in Fig. 1b–d. Figure 2d, e

Fig. 1 SEM, XRD, Raman and CL. a The SEM image of GaAs nanowires grown. b The products were analyzed by grazing incident X-ray diffraction (XRD). c
Raman spectra and the peaks at 291 and 267 cm−1 contribute from GaAs zinc blende structure. The inset is as-grown GaAs NWs and zinc blende structure
of (111) GaAs wafer. d CL spectrum result that Au-catalyzed growth GaAs nanowires excited by 15 kV electron beam in SEM at room temperature

Fig. 2 TEM, HRTEM, SEAD, and EDS. a A TEM image of a representative Au-catalyzed GaAs nanowire. The corresponding high-resolution TEM
(HRTEM) image and SAED pattern are shown in (b) and (c), respectively. d, e The EDS spectra of the corresponding NW that taken from top of
AuGax and stem, respectively
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is the energy dispersive spectrometer (EDS) spectra of Au-
catalyzed GaAs nanowires taken from the top of the AuGax
nanoparticle and stem of the GaAs nanowire, respectively.
EDS spectrum of Fig. 2d shows the compositions of the
nanoparticle at the top are Au and Ga without As proving
that the GaAs nanowires are catalyzed by AuGax droplets
and As atoms react with Ga segregated at AuGax-GaAs
interface. The ratio of Ga/As of EDS spectrum in Fig. 2e
is about 1 meaning Au-catalyzed GaAs nanowires are
grown at a moderate growth rate. The signal peaks for
Cu and C come from the carbon-coated copper grid
used as the electron transmission holder to suspend
GaAs nanowires for TEM analysis.
As growth times increase (15, 30, 45, and 60 min), the

length and diameter of GaAs nanowires increases but so
too does the surface roughness. Longer GaAs nanowires
are formed when As atoms experience longer diffusion

paths to reach Au-Ga interface to form GaAs. Further,
environmental Ga reacts with As at the sidewall of GaAs
nanowires increasing nanowire diameters. SEM images
in Fig. 3a–d show the length and diameter of GaAs
nanowires with time: (a) 15, (b) 30, (c) 45, and (d)
60 min. The length of GaAs nanowires grows from
hundreds of nanometers to micrometers, and diameters
increase from 26.2 to 35.1 nm. These results indicate the
importance of controlling Ga and As flux to manage
GaAs nanowire morphology and surface roughness.
Figure 3e, f shows growth time vs nanowire diameter
and length, respectively. The results imply that the
growth rate is not limited by diffusion since the length
of GaAs nanowires is linearly proportional to the growth
time not the root mean square of time (t1/2) [25, 26]. It
is likely controlled by precipitation of Ga from the inter-
face of liquid AuGax droplets and solid GaAs nanowires

Fig. 3 SEM, diameter-time, length-time, and growth mechanism. SEM images show the length and diameter of GaAs NWs with varied growth
time, for (a) 15, (b) 30, (c) 45, and (d) 60 min. e, f Varied growth time vs the relationship of diameter and growth length, respectively. g–j The
schematics illustrating the growth of Au-catalyzed GaAs NWs : g the Au film annealed to form Au drops, h Au drops alloy with Ga to produce
the AuGax alloy catalyst, and i the segregation of Ga out of the AuGax catalyst can be achieved as the AuGax alloy catalyst reaches a supersaturation
condition. j Form the axial growth of GaAs NWs
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or the As diffusion rate. Tapered structures are observed
in Fig. 3c, d as growth time increases [14]. As mentioned
above, this is caused by As experiencing a longer diffu-
sion path before reacting with Ga at the interface
between liquid AuGax droplets and solid GaAs, as well
as As atoms reacting with precipitated ambient Ga
atoms provided by the MBE chamber to produce GaAs
at the sidewall of nanowires forming tapered structures.
Since tapering and surface roughness increase with time
and these factors may negatively affect optimal optical
and electrical properties of GaAs nanowires, we analyze
the optical and electrical properties of nanowires grown at
a fixed time of 10 min. Figure 3g–j give Au film thickness,
As flux, annealing temperature, and growth temperature
for Au-catalyzed GaAs nanowires. The figures show the
progression of a typical VLS nanowire growth mechanism.
Initially, Au film annealed to form droplets (Fig. 3g) then

an Au-Ga alloy forms to produce the AuGax alloy catalyst
(Fig. 3h). Subsequently, Ga is segregated from the AuGax
under supersaturation conditions (Fig. 3j) to form axial
growth of GaAs nanowires. From SEM images, the fast
growth rate of Au-catalyzed GaAs nanowires suppresses
lateral growth meaning overcoating on the surface of
GaAs nanowires does not occur. The exclusive supply of
Ga and As atoms from AuGax droplets results in this fast
growth rate with no lateral overgrowths. Fewer lateral
overgrowths means fewer nanowire defects. Varied Au
films, 0.6, 1.0, 1.5, and 2.0 nm, deposited by e-gun then
annealed at 580 °C for 10 min are used to study the influ-
ence of Au thickness in GaAs NW growth. SEM images
in Fig. 4 display Au film cannot form drop as its thickness
is thicker than 1.5 nm; on the other hand, thinner Au film,
0.6 nm, leads to grow lower density of GaAs NWs.
In situ Si and Be doping effects are investigated in

terms of the electrical properties of Au-catalyzed GaAs
nanowires with different dopant source temperatures to
control doping concentrations. In this work, FIB is used
for depositing Pt as contact electrodes for the electrical
characterization. Figure 5f, g is the results of electrical
measurements with different concentrations of Si and Be
dopants, respectively. The I-V curves of Fig. 5a are Si
dopant source temperatures at 1250, 1300, 1350, and
1400 °C for fabricating single Au-catalyzed GaAs nano-
wire devices for measurement. High Si source tempera-
tures mean high concentrations of Si; however, I-V
measurements show lower conductivity for Si source at
higher than 1300 °C. According to XRD, TEM, CL, and
Raman results of GaAs grown at 1350 °C, the structure
is still zinc blend. Since Si is an amphoteric dopant for
GaAs, it seems that As sites are substituted by partial Si
atoms. Be is a typical n-type dopant for a GaAs donor.
In this work, Be source temperatures are 1000, 1050,
and 1100 °C for adjusting Be concentrations in the Au-
catalyzed GaAs nanowires. Figure 5b shows the corre-
sponding I-V measurement results of varied Be source
temperatures. As temperature increases, conductivity

Fig. 4 a-d are SEM images of 0.6, 1.0, 1.5 and 2.0 nm Au film
deposited by e-gun, respectively, then annealed at 580 °C for 10 min
to study the influence of Au thickness in GaAs NWs growth. Ga flux
is 1.0×10-7 Torr and As flux is 2.5×10-6 Torr and grown at 540 °C for
15 min

Fig. 5 Current-voltage measurements of SI-doped and Be-doped nanowires. a, b Electrical measurements with different dopants concentration Si
and Be, respectively
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increases meaning donor Be atoms successfully substi-
tute As sites enhancing carrier transport. Furthermore,
the dopant concentrations affect to the electrical resistiv-
ity but do not change the structure of GaAs nanowire as
the doping levels are 1019~1018/cm3 and 1015~1018/cm3

with Si and Be as a dopant, respectively. Concentrations
of Si and Be doped GaAs samples are calibrated by Hall
measurement to confirm whether the carrier types are
electrons or holes. To prepare samples for Hall measure-
ment, (111) Si substrate without Au film is used to
deposit GaAs films with different dopant source tempera-
tures. Table 1 gives the results of Si-doped and Be-doped
Au-catalyzed GaAs nanowire electrical measurements.
Electrical resistivity is determined by single Au-catalyzed
GaAs nanowire devices, carrier concentrations, and car-
rier species are determined by Hall measurement.

Conclusions
Au-catalyzed GaAs nanowires were grown using an MBE
system. Diameter and length density were controlled for
thickness, annealing time, annealing temperature of the Au
film, Ga/As ratio, and growth temperature. A growth model
for Au-catalyzed GaAs nanowires was elucidated based on
the analysis of SEM, XRD, and TEM results. Electrical
properties of Au-catalyzed GaAs nanowires can be adjusted
by controlling concentrations of Be and Si dopants through
source temperatures. The carrier species and concen-
trations in Au-catalyzed GaAs nanowires are calibrated
through Hall measurement at room temperature. High
Si dopant source temperatures affect substitution sites;
further, different concentrations of Si-doped and Be-doped
Au-catalyzed GaAs nanowires are fabricated as single de-
vices to measure their electrical resistivity and compare
these results using Hall measurement.
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