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Abstract. In computerized detection of clustered microcalcifications (MCs) from mammograms, the traditional
approach is to apply a pattern detector to locate the presence of individual MCs, which are subsequently
grouped into clusters. Such an approach is often susceptible to the occurrence of false positives (FPs) caused
by local image patterns that resemble MCs. We investigate the feasibility of a direct detection approach to
determining whether an image region contains clustered MCs or not. Toward this goal, we develop a deep
convolutional neural network (CNN) as the classifier model to which the input consists of a large image window
(1 cm? in size). The multiple layers in the CNN classifier are trained to automatically extract image features
relevant to MCs at different spatial scales. In the experiments, we demonstrated this approach on a dataset
consisting of both screen-film mammograms and full-field digital mammograms. We evaluated the detection
performance both on classifying image regions of clustered MCs using a receiver operating characteristic
(ROC) analysis and on detecting clustered MCs from full mammograms by a free-response receiver operating
characteristic analysis. For comparison, we also considered a recently developed MC detector with FP sup-
pression. In classifying image regions of clustered MCs, the CNN classifier achieved 0.971 in the area under
the ROC curve, compared to 0.944 for the MC detector. In detecting clustered MCs from full mammograms, at
90% sensitivity, the CNN classifier obtained an FP rate of 0.69 clusters/image, compared to 1.17 clusters/
image by the MC detector. These results indicate that using global image features can be more effective
in discriminating clustered MCs from FPs caused by various sources, such as linear structures, thereby pro-
viding a more accurate detection of clustered MCs on mammograms. © 2017 Society of Photo-Optical Instrumentation

Engineers (SPIE) [DOI: 10.1117/1.JMI.4.2.024501]
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1 Introduction

Breast cancer is currently the most frequently diagnosed non-
skin cancer in women. It is estimated that about 252,710 new
breast cancer cases will occur among women in the United
States in 2017.! Mammography is currently an effective screen-
ing tool for diagnosis of breast cancer, which can detect
about 80% to 90% of breast cancer cases in women without
symptoms.' One important early sign of breast cancer in mam-
mograms is the appearance of clustered microcalcifications
(MCs), which are found in 30% to 50% of mammographically
diagnosed cancer cases.”> MCs are tiny calcium deposits that
appear as bright spots in mammograms [Fig. 1(a)]. Clustered
MCs can be found in both benign and malignant cases.
Compared to benign MCs, malignant MCs tend to be more
irregular in shape and exhibit a wider range of variability within
a cluster.?

Despite their frequent appearance, accurate detection of clus-
tered MCs can be a challenging task due to the subtlety of MCs.?
As shown in Fig. 1, the MCs in a cluster may vary greatly in
terms of their shape, size, and image contrast. In the literature,
there have been great efforts in development of computerized
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methods for the automatic detection of clustered MCs in mam-
mograms (e.g., Refs. 4-10). While such methods are successful
in achieving high sensitivity, an often-cited problem is the fre-
quent occurrence of false positives (FPs). There are many factors
that can contribute to the occurrence of FPs, including MC-like
noise patterns, linear structures, inhomogeneity in tissue back-
ground, imaging artifacts, etc.'® In screening mammography,
the purpose of a computerized system is to identify suspicious
regions in a mammogram for further consideration. Thus, it is
critical to keep the FPs low while maintaining a high true-pos-
itive (TP) rate.

Traditionally, detection of clustered MCs is performed in two
typical steps. In the first step, an MC detector (i.e., pattern clas-
sifier) is applied to locate the candidates of individual MCs in a
mammogram image; in the second step, the detected MCs are
grouped into clusters according to a set of clustering criteria.
Based on the fact that MCs are limited in extent (typically
0.1 to 1 mm in diameter), almost all the existing MC detectors
are designed to exploit the local image characteristics at a detec-
tion location. For example, Oliver et al.® extracted features by
using a filter bank to obtain a description of the local morphol-
ogy of an MC; Salfity et al.’ used a difference-of-Gaussians
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Fig. 1 (a) An example ROI with clustered MCs (140 x 140 pixels and
0.1 mm/pixel) and (b) locations of individual MCs marked by red
circles.

(DoG) filter wherein the filter consisted of two kernels of limited
width parameters. El-Naga et al.” adopted a local image window
centered at a location under consideration.

While it is natural and computationally efficient for an MC
detector to utilize local image features, it also makes the detector
susceptible to FPs associated with local image patterns that
resemble MCs. For example, when examined locally, a segment
of a linear structure can resemble an MC due to its high image
contrast and shape.10 Because of this, in the literature there exist
many studies on how to suppress FPs in detecting MCs by also
utilizing global image features in the context of a detection loca-
tion. For example, noise equalization techniques were devel-
oped for reducing the noise variability in a mammogram;'!+!?
background removal methods were used to suppress the inho-
mogeneity in tissue background;'® there were also detection
algorithms studied for linear and curve-like structures (attributed
to vessels, ducts, fibrous tissue, skinfolds, edges, and other ana-
tomical features);g’m’l“’15 and features derived from linear struc-
tures were used to reduce FPs in MC detection.”!>1° Recently,
we developed a context-sensitive MC detector for FP reduction
in which the detection classification function was adapted
according to the presence or absence of linear structures.'’

In this study, we investigate the feasibility of applying a
direct detection approach for clustered MCs in a mammogram.
Instead of first detecting the presence of individual MCs, we aim
to employ a pattern classifier to determine in one step whether a
given mammogram region contains clustered MCs or not. With
this approach, the input to the classifier is no longer limited to
the local image features at a detection location; instead, it con-
sists of a more global image pattern that includes not only the
potential individual MCs when they are present but also their
surrounding context. This can avoid some of the pitfalls asso-
ciated with a localized MC detector. For example, while a seg-
ment of a linear structure may resemble an MC, when examined
on a larger scale, the image pattern of a linear structure can be
easily differentiated from that of clustered MCs (as to be seen
later in the results).

Specifically, we formulate the detection of clustered MC in a
mammogram as a two-class classification problem as follows:
for a mammogram region under consideration, we apply a pat-
tern classifier to determine whether the image region contains
clustered MCs (“cluster” class) or not (“noncluster” class). By
definition, a cluster of MCs has at least three individual MCs
contained within a 1 cm? area in a mammogram.'” However,
without knowing either the number or the locations of individual
MCs in a mammogram region, it is difficult to design and extract
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a set of features to directly characterize their presence within the
region. Note that the individual MCs are far smaller in size than
a 1 cm? area (a typical MC is only about 0.3 mm in diameter).
To deal with this issue, we consider a deep convolutional neural
network (CNN) as the classifier model. By exploiting the learn-
ing capabilities of a deep CNN architecture in multiscale spatial
processing and feature extraction, we aim to investigate whether
it can effectively detect the presence of clustered MCs in a large
input image region.

In recent years, deep CNN has increasingly been applied in
many pattern classification applications, ranging from digit rec-
ognition,'® object detection,'” to image classification.?%* It was
demonstrated that the features automatically extracted by CNN
could outperform manually designed features in image classifi-
cation problems.”*** Deep CNN has been also applied in many
medical imaging applications. For example, in Ref. 25, a max-
pooling CNN was studied for mitosis detection in breast cancer
histology images; in Ref. 26, a CNN was used to refine candi-
date lesions in sclerotic spine metastases detection in CT
images; in Ref. 27, a multiscale CNN was developed for lung
nodule detection in CT images; and, in Ref. 28, a 12-layer CNN
was applied for cardiovascular disease detection from mammo-
grams. Most recently, Mordang et al.?? applied two CNNs for
MC detection in multivendor mammography, in which a shal-
lower CNN was trained to remove easy samples and a deeper
CNN was used for the survived samples; Samala et al.** used a
deep CNN to reduce FPs in MC detection in digital breast tomo-
synthesis. Both of these detectors were focused on the detection
of individual MCs. To the best of our knowledge, no work has
been reported on direct detection of clustered MCs from a mam-
mogram region.

The rest of the article is organized as follows. The formu-
lation of a CNN classifier for clustered MC detection is
described in Sec. 2. The experiments for evaluating the perfor-
mance of the proposed CNN detector are described in Sec. 3,
and the evaluation results are presented in Sec. 4. Finally, con-
clusions are given in Sec. 5.

2 CNN Formulation for Microcalcification
Cluster Detection

2.1 Overview

In this study, we formulate the detection of clustered MCs as a
two-class classification problem, wherein a CNN classifier is
applied to determine whether a given mammogram region con-
tains clustered MCs (“cluster” class) or not (“noncluster” class).
For this purpose, the input image region to the classifier is
chosen to be sufficiently large (e.g., 1 cm? in area) in order
for it to cover the presence of multiple MCs. Instead of deriving
descriptive image features, we directly input the image region
under consideration to the classifier and exploit the feature
learning capabilities of the CNN through supervised learning.
One major advantage of deep CNN is that it can automatically
learn lower-level to higher-level features in the input data
through its multiple convolutional layers.*' The specific CNN
structure used in this study is given in detail below.

2.2 Deep CNN Architecture

By design, a deep CNN is typically comprised of a cascade of
multiple convolutional layers, followed by one or more fully
connected layers (FC) as in a standard feedforward neural
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network. In this study, we consider a network architecture based gl
on the popular AlexNet* and VGG network.*> We illustrate this °
architecture in Fig. 2 with a seven-layer network that consists of
five convolutional layers (Conv) and two FC layers. These seven
layers are known as learning layers, of which the associated
parameters are determined from training. In addition, each of
the first three convolutional layers is followed by a max-pooling
(pooling) layer and a local response normalization layer (LRN),
and the last convolutional layer is followed by a max-pooling
layer. These different types of layers are briefly described below.

As shown in Fig. 2, the convolutional layers are used to
extract the features in the input image at varying spatial scales.
Within each convolutional layer, a set of convolutional filters is
used to operate on the input, from which the output is fed into
the subsequent layer. The output of each filter is called a feature
map. For example, the first layer has 32 filters, yielding 32 fea-
ture maps. More specifically, for a given layer, let x; denote the
k’th input feature map, and hj? denote its corresponding convolu-
tional filter for output feature map j. Then, the output can be
represented as

K
y,:f<2xk*h§+b>, 1)
k=1

where * denotes the convolution operation, K is the number of
input maps, b is a bias constant, and f(-) is an activation func-
tion, which is a nonlinear transformation from the input to the
output.

In this study, we use the standard rectifier function, called
rectified linear unit (ReLU), for the activation function f(-).
Such a function is known to achieve faster training in deep
CNN than the traditional sigmoid-type activation functions.*
For each convolutional layer, the filters hf» are 3 X 3 in size and
are determined during the training phase. The rationale is that
these filters are trained to automatically capture the spatial
features in the input image relevant to the classification task
at hand. Indeed, as to be demonstrated later in the results
(Sec. 4.4), the response at the different layers reflects the
image features of clustered MCs at scale levels in the input
image.

Since it is impossible to determine beforehand the adequate
network structure to use for our MC cluster detection problem,
in this study we apply a validation procedure by varying the
number of convolutional layers (as described below in Sec. 2.5).

In the network, the max-pooling layers are used to subsample
the feature map by a factor of two at given layers. The rationale
is to enable these Conv layers to extract image features at
increasingly higher levels (i.e., scales). For each max-pooling
layer, the maximal value of a 3 X 3 window centered at every
other location (i.e., with stride 2) of the feature map is obtained.
This is indicated by 3 X 3s2 in Fig. 2.

As shown in Fig. 2, the output at each max-pooling layer
is further normalized by a so-called LRN. This is to achieve
the effect of lateral inhibition where the activation of an excited
neuron suppresses its neighbors. It is also used to suppress
the potentially unbound activation output by an ReLU.%
Specifically, let x;(m, n) be the value of feature map i at location
(m, n). Then, the LRN output is given by

softmax
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Fig. 2 Architecture of deep CNN considered in this study. It includes five convolutional (Conv) layers and two fully connected layers.
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where ¢ is the number of adjacent feature maps at the same spatial
location, and K is the number of input feature maps. In this study,
the parameters are set to be ¢ =5, a = 1074, and f =0.75
according to the optimal parameters obtained in Ref. 20.

Finally, the two fully FCs in Fig. 2 play the same role as in a
standard feedforward neural network.”” Note that these two
layers have 128 and 2 neurons, respectively. In the final output
layer, a softmax activation function is used,?! of which the out-
put can be interpreted as the probability of an input belonging to
a particular class. As with the rest of the network, the parameters
of the softmax function are also determined from training.

2.3 Classifier Input Image Pattern

As input to the CNN classifier, we choose a square image win-
dow of M x M pixels from a mammogram. Conceptually, this
image window should be sufficiently large in extent so that it can
effectively enclose the multiple MCs that may exist within a
cluster. However, too large an input window can unduly increase
both the computational complexity and the number of parame-
ters to be determined in the CNN classifier. Considering that
clustered MCs are typically distributed locally in a mammogram
and that they are well within an 1 cm? area in extent, we choose
the image window to be 95x95 (for spatial resolution
0.1 mm/pixel), as shown in Fig. 2.

In Fig. 3, we show examples of several extracted image win-
dows containing clustered MCs. These examples show different

(@)

(b)

Fig. 3 Examples of input image windows for both (a) “cluster” and
(b) “noncluster” classes.
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numbers of MCs and different spatial extent patterns of MCs.
For comparison, several examples of image windows without
any MCs are also shown. For better visualization of the MCs,
the tissue background is suppressed in these images.

2.4 Generation of Training Samples

The effective training of the CNN classifier requires a large
number of training samples. For this purpose, we make use
of a large set of mammogram images of which all contain clus-
tered MCs (Sec. 3.1). To maximize the yield of training samples,
we extract multiple image windows for the “cluster” class from
each mammogram image as follows: (1) select randomly P loca-
tions from the region of clustered MCs within the mammogram;
(2) at each of these P locations, extract a 95 X 95 window cen-
tered at the location such that it contains at least three MCs. This
is based on the fact that by definition, an MC cluster in a mam-
mogram has at least three MCs. Similarly, we extract a number
of 2P image windows (without any MCs) for the “noncluster”
class from the rest of the mammogram region.

Since the MC clusters can vary greatly both in area and in the
number of MCs among different mammograms, we adjust the
number of extracted samples accordingly in proportion to the
area of an MC cluster. Specifically, let A denote the area (mea-
sured by the number of pixels) of an MC cluster. Then, we set P
for each cluster as follows:

15 A < 150
P= 150 A > 1500, 3
[0.1 xA] otherwise

where [-] is the nearest integer function. That is, the number of
training samples from each MC cluster varies from 15 to 150
depending on the size of the cluster. With this strategy, there
were P = 49.6 samples on average extracted for the “cluster”
class from each mammogram image.

To further enlarge the training set, we apply a data augmen-
tation procedure in order to improve the CNN training. 2"
Specifically, we apply the following operations to augment
the extracted image samples in the training set: (1) flipping
the image from left to right, (2) flipping the image up-down,
and (3) rotating the image by 90 deg, 180 deg, and 270 deg,
respectively. Note that these operations do not alter the spatial
resolution of the samples, which is important in detection of
MCs in a mammogram. In the end, the number of training sam-
ples is increased by five times after data augmentation. In the
experiments, we found that such data augmentation could fur-
ther improve the classification accuracy.

2.5 Model Training and Selection

To optimize the classifier model for our MC cluster detection
problem, we vary the number of convolutional layers in the
architecture shown in Fig. 2. For this purpose, we employ a val-
idation set of “cluster” and “noncluster” samples (Sec. 3.1),
which is independent of the training set. In our experiments,
we started with a five-layer CNN (three Conv layers) and gradu-
ally increased the number of Conv layers until the best valida-
tion error was found. This was based on the observation that the
number of layers tends to have a larger impact on performance
than other parameters (such as the number of filters and filter
size) in the design of deep architectures.** The different network
structures considered in the experiments are summarized in
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Table 1 CNN structures used in classifier model optimization. For
each structure, the presence of a layer is marked by v.

# filters  Five-layer Six-layer Seven-layer Eight-layer

Conv 32 v v v v
Pooling — v v v v
LRN — v v v v
Conv 64 v v v v
Pooling —_ v v v v
LRN — v v v v
Conv 128 v 4 v v
Conv 128 v
Pooling —_ v v v
LRN — v v v
Conv 256 v v v
Conv 128 v v
Pooling — v v v v

Table 1; for brevity, the input layer and two FC layers shared by
all the structures are omitted. As explained in Sec. 2.2, the con-
volutional layers in a network structure are trained to extract
features from the input while the pooling layers are used to en-
able feature extraction at increasingly higher levels. For optimi-
zation, we varied the combinations of Conv and pooling layers
in the four networks (as specified in Table 1). Specifically, in the
five-layer, the spatial size of the feature maps was reduced suc-
cessively from 95 x 95 to 11 x 11 with the use of three pooling
layers (as shown in Fig. 2). For the other three architectures, the
size of the feature maps was further reduced to 5 X 5 with one
additional pooling layer. Furthermore, as the number of layers
increased in these three architectures, additional convolutional
layers were introduced to further refine the feature maps. For
each classifier structure model, the validation error, which is
the fraction of samples in the validation set that are misclassified
by the classifier, was computed at every 1000 iterations until the
maximum number of iterations (20,000) was reached. In the
end, the model with the smallest validation error was selected
as the classifier model.

For a given network structure, the associated various param-
eters are determined during the training phase. This is accom-
plished by minimizing the binomial logistic loss on the set of
training samples, or equivalently, the cross-entropy between
the model output and the actual labels of training samples.®
In this study, we implemented our classifier models using the
Caffe package developed by the Berkeley vision and learning
center.®® For model training, the stochastic gradient descent
method was used® with a batch size of 256, a learning rate
of 0.01, momentum of 0.9, and weight decay of 0.0005 20
Moreover, to overcome the potential overfitting by the CNN
model, a stochastic dropout technique®® was applied to the
first fully FC during training. This dropout procedure is a regu-
larization technique in which the different neural units and their
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connections are randomly dropped from the network with a cer-
tain probability (0.5 was used in our experiments).

3 Experiments

3.1 Mammogram Dataset

In this study, we demonstrate the proposed approach using both
screen-film mammogram (SFM) images and full-field digital
mammogram (FFDM) images. We make use of 521 SFM
images from 297 cases (151 benign/146 cancer) and 188 FFDM
images (in for-processing format) from 95 cases (52 benign/
43 cancer). All of the mammogram images were collected by
the Department of Radiology at the University of Chicago.
They were consecutive cases collected over different time peri-
ods and were all sent for biopsy due to the subtlety of their MC
lesions. Each mammogram image has at least one cluster of
MCs that was histologically proven. The SFM images were
acquired using a Lumiscan film digitizer (Lumisys; Sunnyvale,
California). The FFDM images were acquired using a Senographe
2000D FFDM system (General Electric Medical Systems;
Milwaukee, Wisconsin). The FFDM images were preprocessed
with logarithmic transformation® in this study. All the images
were of 0.1 mm/pixel in spatial resolution. The MCs in each
mammogram were manually identified by a group of experi-
enced radiologists.

In the experiments, the mammogram images were randomly
partitioned into three subsets, one with 167 cases (300 images:
91 FFDM and 209 SFM) for training, one with 67 cases (117
images: 43 FFDM and 74 SFM) for validation, and one with 158
cases (292 images: 54 FFDM and 238 SFM) for testing. It is
noted that most of the cases have multiple views (mediolateral
oblique view, cranio-caudal view, or views from both breasts).
To avoid any potential bias, the different views from one case
were assigned together to either the training, validation, or test-
ing subset exclusively. For each mammogram image, the region
of clustered MCs was formed by a morphological dilation
from the locations of marked individual MCs. The structuring
element used was a circular disk with a radius of 25 pixels. This
region was used as ground truth for training sample extraction
and detection performance evaluation.

Prior to MC detection, a background subtraction step was
first applied to the mammogram image under consideration
in order to suppress the inhomogeneity in the tissue background.
For each location, the background was estimated as the average
intensity of a circular region with a diameter of 7 pixels centered
at the location.!! Afterward, the resulting image was normalized
to have zero mean and unit standard deviation.

In the experiments, we conducted two separate studies to
evaluate the performance of the proposed CNN classifier. In
the first study, we evaluated the accuracy of the classifier in dif-
ferentiating MC “cluster” regions from “noncluster” regions
using a portion of the test subset. In the second study, we evalu-
ated the accuracy of the classifier in detection of MC clusters
regions from mammograms. The details of these studies are
described below.

3.2 Study 1: Classification Accuracy on MC Cluster
Samples

In this study, we evaluated the accuracy of the trained CNN clas-
sifier on a set of “cluster” regions extracted from test mammo-
gram images. For this purpose, we allocated 125 images from
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the test set of mammograms and applied the sample extraction
procedure as in Sec. 2.4. This resulted in a total of 5134 “clus-
ter” samples and 10,268 “noncluster” samples. No data augmen-
tation was applied to these samples during testing.

To assess the classification accuracy on the test samples, we
conducted a receiver operating characteristic (ROC) analysis.
An ROC curve is a plot of the true-positive (TP) rate versus
the false-positive (FP) rate as the decision threshold is varied
in continuum over its operating range. To summarize the clas-
sification performance, the area under the ROC curve (AUC)
was used. A larger AUC corresponds to better performance
by the classifier.

For comparison, we also demonstrated the classification per-
formance on the same set of test samples by an MC detector
(unified SVM classifier) reported recently in Ref. 10. This detec-
tor was developed to suppress FPs caused by linear structures
and MC-like noise patterns, and was demonstrated to yield
improved performance over several detectors.'” In our experi-
ments, this detector was first applied to detect the presence
of individual MCs in each test sample region. The region
was treated as “cluster” if there were three or more detections;
otherwise, it was treated as “noncluster.” This was to be consis-
tent with the clustering criterion. Afterward, the classification
result was compared against of the truth of each image sample.

For statistical comparison of the two methods in ROC, a
bootstrapping procedure® was applied on the set of test
image samples. A total of 20,000 bootstrap samples were used.

3.3 Study 2: Detection of MC Clusters on
Mammograms

We also demonstrated the performance of the CNN classifier in
detection of MC clusters from mammograms. For this purpose,
we used 167 images (113 SFM and 54 FFDM) from the remain-
ing 84 cases in the test set. For a mammogram image, the CNN
classifier was applied to each pixel location to detect the pres-
ence of an MC cluster or not. Symmetric padding was used near
tissue boundaries where the input image windows enclosed pix-
els outside the breast tissue.

To evaluate the MC cluster detection performance, we con-
ducted a free-response receiver operating characteristic (FROC)
analysis. An FROC curve is a plot of the TP rate of detected MC
clusters versus the average number FPs per image with the deci-
sion threshold varied continuously over its operating range.

In the FROC analysis, a detected region was considered as a
TP cluster according to the following criterion:'” (1) it includes
at least two true MCs and (2) its center of gravity is within 1 cm
of that of a known true MC cluster region. Likewise, a detected
region is considered as an FP cluster provided that (1) it contains
no true MCs or (2) the distance between its center of gravity and
that of any known cluster region is larger than 1 cm.

For comparison, we also tested the detection performance on
the same set of test mammograms by the unified SVM classifier
in Ref. 10. For the FROC analysis, the detected MCs in a mam-
mogram were first grouped into cluster regions by dilation with
a circular element of 25 pixels in radius. Those regions with
fewer than three detections were discarded. Afterward, each
detected region was determined to be TP or FP with the
same criteria as above.

To reduce the effect of case variation, we applied a bootstrap-
ping procedure on the set of test mammograms for obtaining the
FROC.*! A total of 20,000 bootstrap samples were used, based
on which the partial area under the FROC curve (pAUC) was
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obtained. This bootstrapping procedure was also used to perform
statistical comparison of the performance by the two detection
methods.*’ To speed up the FROC analysis, in the experi-
ments we first applied a prescouting step as in Ref. 10 during
which up to four most suspicious regions of 5 cm X 5 cm in
size were identified in each mammogram image for further
consideration.

4 Results

4.1 Model Training and Selection

For model selection, in Table 2, we show the classification error
achieved by the trained network on the image samples in the
validation subset. For each network structure (from five-layer
to eight-layer), the optimal classification error and the corre-
sponding number of iterations are given in the first two rows
in Table 2, respectively. In addition, the mean and standard
deviation (std) of the classification error achieved by the net-
work with different number of iterations are given in the third
and fourth rows in Table 2, respectively. These values were cal-
culated from the classification error of the trained network after
4000 iterations with an increment of 1000.

It can be seen from Table 2 that the seven-layer CNN
achieved the best classification error of 0.0578 with 8000 iter-
ations of training. Moreover, it is noted that the seven-layer
CNN achieved the lowest mean error of 0.0634, along with
the second lowest std of 0.0037. Based on these results, the
seven-layer CNN was chosen as the best structure for sub-
sequent evaluation in detection of MC clusters.

4.2 Test 1: Classification Accuracy on MC Cluster
Samples

In Fig. 4 we show the ROC curve obtained by the seven-layer
CNN classifier on the test set of cluster and noncluster samples.
For comparison, the ROC curve obtained by the unified SVM
detector is also shown in Fig. 4. As can be seen, the ROC curve
is notably higher (hence better classification performance) for
the CNN classifier. Indeed, its AUC value is 0.971, compared
to 0.944 for the unified SVM. A statistical comparison between
the two yields a p-value < 10™* and a 95% confidence interval
(C. 1) of [0.0233, 0.0308] on the AUC difference. In particular,
with TP rate at 95%, the CNN classifier achieved an FP rate of
12.71%, compared to 39.08% for the unified SVM. The results
indicate that the CNN classifier could significantly reduce the
FP rate in classifying image regions of MC clusters.

Table 2 Classification errors achieved by different architectures on
the validation set.

Network Five-layer Six-layer Seven-layer Eight-layer
Optimal error 0.0637  0.0594 0.0578 0.0587
Number of iterations 7000 8000 8000 9000
Mean error 0.0675  0.0649 0.0634 0.0649
Standard deviation 0.0032  0.0045 0.0037 0.0051
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Fig. 4 ROC curves obtained by the CNN classifier and the unified
SVM detector.

4.3 Test 2: Detection of MC Clusters on
Mammograms

In Fig. 5, we show the FROC curve obtained by the CNN clas-
sifier in detection of MC clusters in mammograms. For compari-
son, the FROC curve obtained with the unified SVM detector is
also shown. As can be seen, the FROC curve is higher for the
CNN classifier. A statistical comparison between the two yields
a difference of 0.0981 in pAUC (p-value = 0.0082) for FP rate
over the range of [0, 2] clusters/image (95% C. 1. of [0.0170,
0.1792] in pAUC difference). In particular, with TPF at 90%,
the CNN classifier achieved an FP rate of 0.69 clusters/image,
compared to 1.17 by the unified SVM (a reduction of 41.03%).
Moreover, with FP rate at 0.5 clusters/image the CNN classifier
achieved a sensitivity of 86.55%, compared to 84.58% for the
unified SVM.

In the experiments, the unified SVM detector was imple-
mented in MATLAB® and it took 1.96 s per mammogram on
average (Intel Core 17-3770 CPU, 3.40 GHz, 16 GB memory).
The CNN detector was implemented using the Caffe package
and it took 45.24 s per mammogram on average (GPU of
GeForce GTX TITAN X with 12 GB memory). Both detectors
were applied to the mammogram images after the prescouting
step (Sec. 3.3).
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Fig. 5 FROC curves obtained by the CNN classifier and the unified
SVM detector.
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4.4 Visual Interpretation of Feature Maps

The results both on classification of cluster image samples and
on detection of MC clusters in mammograms above demonstrate
that the CNN classifier is more effective in rejection of FPs. To
illustrate how the CNN classifier achieved this through its multi-
ple layers of feature extraction, below we examine the response
on several representative image samples with and without clus-
tered MCs. Specifically, in Fig. 6(a), we show an image sample
(95 x 95 pixels in size) of clusters MCs; in Figs. 6(b)-6(f), we
show the corresponding response at the five Conv layers, where
the two feature maps with the highest energy in response within
each layer are shown. As can be seen, the individual MCs gen-
erated high response in Figs. 6(b) and 6(c), which appears to
match the local image features of MCs. Furthermore, the multi-
ple MCs also led to high response in Figs. 6(e) and 6(f),
although the locations of individual MCs seem to have been
somewhat suppressed. The predicted probability is 0.9996 by
the CNN classifier for this sample to be an MC cluster, indicat-
ing a high confidence for the cluster class.

For comparison, in Fig. 7(a), we show a noncluster image
sample that has no MCs. As in Fig. 6 above, the two feature
maps with the highest response are shown for each of the five
Conv layers in Figs. 7(b)-7(f). These feature maps are shown in
the same range as their counterparts in Fig. 6. As can be seen,
these feature maps show that the response is much lower for the
input image in Fig. 7(a), indicating that there is no relevant MC
features. Indeed, the predicted probability by the CNN classifier
is 0.0087 for this sample to be an MC cluster, indicating a high
confidence for the noncluster class.

Finally, in Fig. 8(a), we show a noncluster image sample with
the presence of linear structures, which are a known cause
of FPs in MC detections.”'” The corresponding two feature
maps with the highest response are shown for each of the
five layers in Figs. 8(b)-8(f). As can be seen, the linear struc-
tures generated some noticeable response in the lower layer

Fig. 6 (a) An input image sample of clustered MCs; (b)-(f) feature
maps obtained from the first to the fifth Conv layers, respectively.
For each layer, the two feature maps with the highest energy in
response are shown.
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a) (b)

(e)

Fig. 7 (a) An input image sample without any MCs; (b)-(f) feature
maps obtained from the first to the fifth Conv layers, respectively.
For each layer, the two feature maps with the highest energy in
response are shown.

(e)

Fig. 8 (a) An input image sample with linear structures present; (b)-
(f) feature maps obtained from the first to the fifth Conv layers, respec-
tively. For each layer, the two feature maps with the highest energy in
response are shown.

maps in Figs. 8(b) and 8(c). However, they are effectively sup-
pressed in the higher layer maps in Figs. 8(d)-8(f). Indeed, the
predicted probability by the CNN classifier for this sample to be
an MC cluster is only 0.0034, indicating a high confidence for
the noncluster class.

The above examples illustrate that the first two Conv layers
in the network mainly respond to low-level image patterns, such
as edges of MCs and linear structures. However, the later Conv
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layers in the network have the capability to discriminate MCs
from other non-MC features such as linear structures. The latter
is believed to have contributed to the reduction of FPs in clas-
sification of cluster versus noncluster samples.

4.5 Discussions

In this work, we developed a deep learning approach for directly
identifying whether a given image region contains multiple MCs
or not. Such an approach allows the MC signals to be processed
on a scale much larger than the size of individual MCs by the
classifier. When applied to a mammogram, the CNN classifier is
designed to detect the presence of suspicious regions of clus-
tered MCs for further consideration. Our evaluation results dem-
onstrate that it could effectively reduce the level of FPs in
detection of clustered MCs.

However, unlike traditional MC detectors that are aimed for
detecting individual MCs, the CNN classifier does not localize
the individual MCs in a detected region. Nevertheless, if there is
aneed in applications for individual MCs to be further analyzed,
for example, in computerized analysis of a detected MC lesion
being malignant or benign,*> one may apply an existing MC
detector (e.g., DoG detector’ or SVM detector’) to further local-
ize the individual MCs in a detected region by the CNN clas-
sifier. It would be interesting to investigate the accuracy of the
resulting individual MCs with such an approach in the future. It
would be also interesting to incorporate the location of individ-
ual MCs in the training of a deep CNN classifier for locating the
individual MCs in a cluster.

Noted that the FROC curve for MC detection can be sensitive
to a number of factors, including the detection criteria used'” and
the distribution of cases in the test set, so one has to be cautious
when comparing the FROC results reported from different
sources. However, the relative performance by the different
methods with respect to a common set of criteria and test
cases tends to be consistent.” In this study, we compared the
performance of CNN (a cluster-based detector) and the unified
SVM (an MC-based detector). The comparison between them
may not be completely equivalent because of the use of the clus-
tering and dilation of the MC detections in the unified SVM.

Finally, all of the cases used in this study contain MC clus-
ters. It might be desirable to also include a number of normal
cases with no MC clusters. However, the spatial extent of an MC
cluster in a mammogram is typically well localized to a small
area (<1 cm?); the overwhelming majority of the area in a mam-
mogram does not have any MCs and thus can be viewed as a
substitute for normal mammograms. Therefore, the reported FPs
per image in the FROC analysis would likely change little when
normal cases are included.

5 Conclusion

In this study, we investigated the feasibility of a direct detection
approach for clustered MCs in mammograms. That is, for a
given mammogram region, we aimed to determine whether it
contains clustered MCs or not. We formulated this task as a
two-class classification problem and developed a deep CNN
classifier to discriminate between “cluster” and ‘“noncluster”
classes. We demonstrated this approach with both SFM and
FFDM images in this study, which included 521 SFM images
and 188 FFDM images. We evaluated the performance of the
proposed method both on classification of image regions of clus-
tered MCs and on detection of clustered MCs on mammograms.
The results demonstrate that the proposed approach can improve
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the detection performance significantly, both in classifying
image regions of clustered MCs and in detecting clustered
MCs on mammograms. In the future, it would be interesting
to further investigate how this approach can be adapted for locat-
ing the individual MCs in a detected image region.
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