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Logistic regression?explanation and use 

ABSTRACT?The aim of this article is to provide a 

simple explanation of the logistic regression process 
and a guide of what to look for when assessing a study 
involving logistic regression. 

Medical outcomes are often influenced by many fac- 
tors, the individual and joint contributions of which 
need to be evaluated. The statistical techniques of mul- 
tivariate analysis are increasingly utilised for this pur- 
pose and important conclusions have been drawn 
from data analysed by logistic regression: for example, 
the routine use of intramuscular vitamin K in neonates 

has been questioned because of a possible carcino- 

genic effect thought to be separate from that of other 
risk factors [1]. The validity of the method is therefore 
a matter of proper concern for all doctors. A survey in 

our district general hospital (n = 278; 171 respon- 
dents) indicated that only 6% of doctors (95% CI: 
2.8-10.6%) claimed to have a reasonable understand- 

ing of logistic regression, and only 5% (CI: 2.4-9.1%) 
gave correct answers to two simple questions about the 
method. There are many excellent accounts of logistic 
regression [2-5], but they have a statistical or mathe- 
matical emphasis which makes them difficult to com- 

prehend. It is hoped that the following explanation 
will enable doctors to gain some insight into the basic 
ideas of logistic regression and assist interpretation of 
the results. 

The logistic regression model 

Suppose we are interested in a particular outcome: for 

example, the development of coronary heart disease. 
Previous research has shown that many factors appear 
to influence this outcome, including smoking, serum 
cholesterol and blood pressure. The effect of any one 

of these could be determined by comparing the mor- 

tality rates for those people with the risk factor to the 
rates for those without it. The ratio of the two rates is 

called the relative risk. If this is greater than one, it indi- 

cates that the people with the risk factor have a higher 
mortality than those who do not. Ideally, these rates 
should be obtained from large random samples so that 
the other factors which may affect the results are even- 

ly distributed within the two groups?otherwise the 
effect of, say, smoking may be exaggerated or dimin- 
ished if the proportions of those with high blood pres- 
sure are different in the smoking and non-smoking 
groups (confounding). To allow for this, it is possible to 

split the groups further and consider separately smok- 
ers with high blood pressure, smokers with normal 
blood pressure, and so on (stratification). As the num- 
ber of factors increases, the number of combinations 

grows rapidly (2n for n factors), so even with very large 
data sets the number in each possible subset can 
become too small to provide statistically significant 
results. 
To avoid this difficulty, the methods of multivariate 

analysis have been employed [6]. In general, a mathe- 
matical model is formulated which tries to describe 

the data set. Logistic regression is one example of such 
a model, dealing particularly with yes/no outcomes, 
such as dead or alive, disease absent or present. As in 
all models, certain assumptions are made to fit the 

model to the data. It is suggested that if the effects of 
each variable could be isolated from those of the oth- 

ers, the overall effect on the outcome could be 

expressed as an algebraic sum. The chance of the out- 
come being favourable would depend on the findings. 
This 'chance' may be represented by probability (lying 
between 0 and 1) or by the odds. The odds are the 
ratio of the probability of the event occurring to the 

probability of it not occurring. For example, if a horse 
has a probability of 0.8 of winning a race, the odds of it 

winning are 0.8/(1-0.8) = 4:1. In fact, ratios of odds 
are frequently used in logistic regression presenta- 
tions, for example, the odds ratio for smokers versus 
non-smokers in developing lung cancer is the ratio of 
the odds of smokers getting it to the odds for non- 
smokers. The advantage of odds ratios is that they 
approximate relative risks when the disease state is 

rare and are the same for population or case-control 
studies. 

In the logistic regression model, the relationship 
between the outcome and the variables thought to 
affect the outcome is expressed as a simple equation. 
The relative importance of each variable is deter- 
mined by weighting factors or coefficients. A constant 
term must be included because all the factors influenc- 

ing the outcome may not have been identified. When 
more than one variable is present, their effects are 

multiplied together so that, for example, the odds of 
disease being present in hypertensive smokers is a 

product of the odds of disease presence in smokers 
and the odds of disease in hypertensive people, all 

multiplied by the constant term. The mathematical 

handling is simplified if this relationship is converted 
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to a sum rather than a product, by taking logarithms 
(usually to the base e). The logistic regression equa- 
tion then becomes: 

logarithm of odds = a + + b^x^^+b-^ + bnxn of out- 
come, 

where a = constant term; 
x = the presence or absence (scored 1 or 0, 

respectively) of a variable or its value; and 
b = log weighting coefficient for a variable. 

This expresses the likelihood of the outcome as the 

sum of the effects of each 'explanatory' or 'indepen- 
dent' variable considered. It is helpful to recognise 
that the b coefficients are in fact the logarithms of the 
odds ratios for each variable. 

As an example, consider the effects of smoking and 

hypertension (defined as systolic blood pressure >160 

mmHg) on the odds of developing a heart attack, 
compared with the experience of non-smokers and 
normotensives. Suppose the odds ratio for smokers 

developing a heart attack is 3. Then the b coefficient 
would be log 3, or 1.099. Similarly for the hyperten- 
sives, the odds ratio is 2, and the b coefficient 0.693. 
When the variable is present, x = 1, and when absent, 
x = 0, and the constant term, a = -3.892. 

Then, log odds of heart attack = -3.892 + (1.099 x 1) 
+ (0.693 x 1) =-2.1 
and for non-smokers and normotensives, log odds of 
heart attack = -3.892 + (1.099 X 0) + (0.693 x 0) = 

-3.892 
The odds are divided to calculate the odds ratio but, 

since these are logarithms, the log odds can be sub- 
tracted, thus: 

Log odds of heart attack for hypertensive smokers 
compared to normotensive non-smokers = -2.1 
(-3.892) = 1.792, and antiloge 1.792 = 6. 
Therefore, the odds ratio of a heart attack is 6, and 

hypertensive smokers in this population are six times 
more likely to suffer a heart attack than normotensive 
non-smokers. 

For population studies, the probability of an event 
can be calculated directly from the odds. By putting 
different factors into the equation, their effects can 

easily be demonstrated. 
When a condition is rare, it may not be practicable 

to assess the effects of exposure to putative risk factors 

by random sampling of a population. The case-control 
method circumvents this difficulty by collecting cases 
with the disease and comparing the rates of exposure 
in this group with those in a control sample (Table 1). 
One of the great strengths of the method is that odds 
ratios can still be calculated from the results of such 

studies and used in logistic regression equations. Note, 
however, that individual prediction of outcomes is not 

necessarily valid. 
The logistic regression model provides the following 

information: 

Table 1. Case-control study 

Cases Exposed to risk factor 

Yes No 

a b 

c d 

Odds ratio = ad/bc 

The odds ratio will be the same for random samples and 
case-control studies because it depends on the proportions 
exposed in the diseased and non-diseased groups (a:b, and 
d:c) and not on their relative numbers [(a + b):(c+ rf)]. 

Yes 

Diseased 

No 

1 The b coefficients in the logistic regression equation 
provide a measure of the degree of association 
between each variable and the outcome. This associ- 

ation is represented as the logarithm (to the base e) 
of an odds ratio. In our example, the odds ratio of a 
heart attack for smoking versus non-smoking 
groups is antiloge 1.099 = 3. Thus, smokers would 
be thrice as likely as non-smokers to develop a heart 
attack in the population under study. Likewise, the 
odds ratio for hypertensives versus normotensives is 
2. These effects are independent of each other, and 
the odds ratios are often described as being correct- 
ed (or adjusted), for the presence or absence of 
other variables. It is this property that makes logistic 
regression so attractive when analysing multifactori- 
al data. 

2 The explanatory power of each variable (that is, the 
difference that addition of a variable to the logistic 
regression equation makes to the correctness of the 

prediction) can be estimated. Generally, only those 
variables that confer a statistically significant contri- 
bution (the G statistic) by some chosen amount will 
be selected for inclusion in the final equation. 
Unfortunately, the particular selection of variables 

may make a great difference to the value of the b 
coefficient. Various procedures have been devised 
to obtain the 'best' combination, for example, step- 
wise methods, but some caution should be exer- 
cised if variables are selected by rote without refer- 
ence to a hypothesis or model previously framed by 
the investigator. 

3 The logistic regression model can be used to 

explore the effect of interactions between variables. 
Consider the effects of smoking and hypertension 
on coronary disease. The expected combined effect 
would be to increase the attack rate sixfold (3x2). 
If, in fact, the attack rate is greater or less than this, 

positive or negative interaction has occurred. In the 

logistic regression equations, an additional explana- 
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tory variable (combined smoking and hyperten- 
sion) will allow for this, but in these circumstances 
the b values no longer represent the adjusted odds 
ratios. 

As with most statistical parameters, tests of signifi- 
cance and of appropriate hypotheses can be applied to 
the b values. It is important to remember that these 
values are estimates of a 'true' value, and confidence 
limits can be applied to them. The Wald statistic gives 
some idea of the errors attached to the estimates [5]. 

In summary, the logistic regression model will evalu- 
ate the separate and combined effects of certain cho- 
sen predictor (or explanatory) variables on the proba- 
bility of a given outcome. The predictor variables may 
be either categorical (yes/no) or continuous (over a 

range of values) whilst the outcome variable is usually 
categorical. 

Precautions in interpretation of the logistic 
regression model 

Many statistical texts rightly counsel great caution in 
the use and application of logistic regression models. 
The widespread and occasionally uncritical use of 

logistic regression has become possible only by the 

ready availability of computer progammes. This poses 
certain problems if the underlying assumptions or lim- 
itations are not understood. 

Independence of the predictor variables 

When estimating the values of the b coefficients from 
the data set, the mathematical procedure needs to 
assume independence in behaviour of the predictor 
variables. Thus, although the subsequent model 
exhibits the desired property of independence of the 

explanatory variables, this may not reflect the actual 
state of affairs. Variables in the real world are usually 
correlated to some extent: for example, body weight 
and blood pressure, and when the value of one 

changes, so does the value of the other. 

Handling interaction 

Logistic regression has been designed to provide a 
smoothed version of the data when an adequate num- 
ber of observations is not available on all possible com- 
binations. Unfortunately, gaps in the data may lead to 

neglect of interactions because of the high standard 
errors of the estimates. This promotes type II errors: 
interactions will not be detected when they actually 
exist. There is a temptation to exclude the interaction 
terms because the b values no longer represent indi- 
vidual odds ratios, which makes interpretation of the 

equation more difficult. In addition, statistical efficien- 

cy dictates the use of a parsimonious model, but this 

may not necessarily provide the best explanation of 

biological phenomena. 

The multiplicative nature of the model 

The multiplicative effect of increasing the 'dose' of a 
risk factor in the model is sometimes liable to misre- 

present reality. Thus, the effect on the odds of devel- 

oping coronary heart disease as the result of an 
increase of 1 mmol in serum cholesterol is estimated 

as 1.36 [7], With 5 mmol/1 as the baseline, the odds 
would be increased by 1.36 for a rise to 6 mmol/1, but 

by 2.27 for a rise from 11 to 12 mmol/1. There is no 

experimental evidence to confirm this. For this reason, 
it is usually recommended to avoid using continuous 
variables in the equation and to use only categorical 
variables. 

Selection of variables 

Although selection of the best explanatory variables by 
automatic procedures (eg stepwise analysis) may satisfy 
statistical criteria, it may not be the best approach. For 

example, the choice of variables may be guided by 
examination of the univariate odds ratios in the raw 

data, selecting first those of the highest values [5]. Dif- 
ferent combinations of variables will produce different 
b values, indicating the subjective element in con- 

structing the model. Moreover, the standard errors of 
the coefficients will change, leading to exclusion of 
some variables in one combination and not in another. 

Occasionally, interaction coefficients will be significant 
even when separate components are not. 

Testing the model 

Given these reservations, how can the model be test- 
ed? Once the b values have been estimated, it should 
be possible to assign a value to the probability of an 
outcome from a given set of data pertaining to an indi- 
vidual. The techniques involved are designed to min- 
imise erroneous assignments for the population under 

study. Overall 'goodness-of-fit' estimates of the model 
tested by the %2 statistic may obscure important devia- 
tions for data at the extreme ranges of probability of 
the outcome. Also, tests of goodness-of-fit merely 
determine whether that model accurately describes 
the particular data observed. For general application, 
the models should be tested on a different population. 
This often leads to disappointing results (eg the seven 
countries study [98]). 

In summary, the behaviour of the variables in the 

model may well differ greatly from the events in the 
real world, even though average predictions are rea- 
sonable. Accepted scientific method demands the for- 
mulation of a hypothesis as the basis for the design of 
a study, and this also applies to logistic regression 
design. Once the model is formulated, the effects of 
the variables are estimated, and an assessment made of 
the fit of the data to the model. Other possible models 
should be considered (with perhaps different assump- 
tions and constraints), and conclusions can be drawn. 
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Finally, further hypotheses can be formed for future 
testing. 

Approach to assessment of a logistic regression 
analysis 

Evaluation of the results of logistic regression would 
be assisted if answers to the following questions were 
made available: 
1 Are the original question, the hypothesis to be 

tested and the model utilised clearly described? 
2 Is a complete list of variables considered for inclu- 

sion at the start? 

3 Are all the relevant univariate risk or odds ratios 

provided? 
4 Are reasons given for the inclusion or exclusion of 

each variable, and are the procedures used to 
select them described? 

5 Is the final logistic regression equation given in 
full? 

6 Have interaction effects been studied? What are 
the sizes and standard errors of the interaction 
coefficients? 

7 Has the contribution been given of each variable 
(with confidence limits) to the overall explanatory 
power of the model (log likelihood contribution)? 

8 Have the standard errors of the b coefficients been 

stated? 
9 What is the overall goodness-of-fit? 
10 What attempts have been made to identify any pat- 

terns of variable contributions which are not well 

fitted? 
11 Has the model been tested on a different popula- 

tion (ie what is its general applicability)? 
12 Have other models been suggested, tried and 

rejected? 

Discussion 

Interpretation of medical and epidemiological phe- 
nomena has come to rely heavily on statistical meth- 
ods: the randomised controlled clinical trial of new 

treatments and the importance of careful design of 
such trials are good examples. It may not be obvious 
that statistics, like medicine, is subjective in the sense 
that alternative techniques may often be employed 
which may produce different results. Logistic regres- 
sion is only one way of analysing multivariate data but 
even within this technique differing approaches can 
be used. Hence the importance both of a basic under- 

standing of what the method can and cannot be 

expected to do, and of close collaboration with statisti- 
cal colleagues. 
Even when a particular technique has been selected 

as the most suitable, caution must be exercised. The 

difference between the estimates provided by a model 
(such as the logistic regression model) and the real 
world is not always adequately appreciated. It is easy to 

see that the statement 'an average of 2.4 children' 

applies only to a model and not to an actual family, but 
distinctions become less obvious when the statistical 

processes are complex. For instance, it is often said 
that a certain variable has been shown to be an 'inde- 

pendent predictor of an outcome', but this is true only 
of the model. Empirical testing of the results of an analy- 
sis on a different population is therefore important in 
the same way as the efficacy of a new drug is tested in 
various groups of patients. 
Any conclusion is only as sound as the observations 

upon which it is based, and no statistical method can 
correct for poor data. In this respect, data from obser- 
vational studies can be misleading, particularly if 
causal inferences are drawn from associations [9]. 

Experimental studies, on the whole, provide stronger 
evidence of causality. Nevertheless, there are other pit- 
falls in determining the meaning of statistical associa- 
tions revealed by a study but which are not capable of 

being interpreted in the light of current medical 

thinking. Davey Smith et al [10] cite an observed asso- 
ciation between smoking and suicide. This finding 
seems implausible on other grounds, so should it be 

dismissed? To do so would immortalise preconceived 
ideas, but to accept the association risks acceptance of 
a statistical artefact. Hence the importance of attempt- 
ing to reproduce observed findings. It is impossible to 
reach conclusive proof, but unsuccessful trial of refuta- 
tion (preferably in different populations) adds to the 
weight of evidence?Popper's falsification theory, 
which states that statements that are unprovable 
remain in principle disprovable, but that a theory 
holds until it is disproved. 
The strength of logistic regression is also its weak- 

ness, in that complex matters are presented in simple 
form. Although this may not mimic the real world, it 
can afford a useful description and provoke further 
insights to many medical problems provided that its 
limitations are realised. 
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