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Abstract

Task functional magnetic resonance imaging (fMRI) has been widely employed for brain 

activation detection and brain network analysis. Modeling rich information from spatially-

organized collection of fMRI time series is challenging because of the intrinsic complexity. 

Hypothesis-driven methods, such as the general linear model (GLM), which regress exterior 

stimulus from voxel-wise functional brain activity, are limited due to overlooking the complexity 

of brain activities and the diversity of concurrent brain networks. Recently, sparse representation 

and dictionary learning methods have attracted increasing interests in task fMRI data analysis. The 

major advantage of this methodology is its promise in reconstructing concurrent brain networks 

systematically. However, this data-driven strategy is, to some extent, arbitrary and does not 

sufficiently utilize the prior information of task design and neuroscience knowledge. To bridge this 

gap, we here propose a novel supervised sparse representation and dictionary learning framework 

based on stochastic coordinate coding (SCC) algorithm for task fMRI data analysis, in which 

certain brain networks are learned with known information such as pre-defined temporal patterns 

and spatial network patterns, and at the same time other networks are learned automatically from 

data. Our proposed method has been applied to two independent task fMRI datasets, and 

qualitative and quantitative evaluations have shown that our method provides a new and effective 

framework for task fMRI data analysis.
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In this paper, we propose a novel supervised sparse representation and dictionary learning 

framework, named supervised stochastic coordinate coding (SCC), for task fMRI data analysis, in 

which certain brain networks are learned with known information such as pre-defined temporal 

features and spatial network patterns, and at the same time other concurrent networks are learned 

automatically from data. The proposed method takes advantages of both hypothesis-driven 

methodology and data-driven methodology for fMRI analysis.
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1. INTRODUCTION

Task functional magnetic resonance imaging (fMRI) has been well established for mapping 

brain activations and network activities (Logothetis 2008; Friston et al., 1994). It is widely 

believed that rich information is hidden in task fMRI data, but how to effectively mine them 

out has been challenging because of the intrinsic complexity (Logothetis 2008; Heeger and 

Ress, 2002; Kanwisher et al., 2010; Duncan et al., 2010). Among all state-of-the-art 

methodologies, the general linear model (GLM) has been the dominant approach in 

detecting functional networks from task fMRI data (Friston et al., 1994) by regressing the 

designed task pattern from fMRI signals. However, the simple task design patterns are 

limited in detecting the diverse brain networks that are participating in the task or 

maintaining consciousness (Bullmore & Sporns, 2009; Duncan et al., 2010). In addition, 

many human neuroscience studies have widely reported and argued that a variety of cortical 

brain regions and networks exhibit strong functional diversity (Duncan et al., 2010; 

Gazzangia et al., 2004; Pessoa et al., 2012), that is, certain cortical regions could participate 

in multiple functional networks or processes and a functional network might recruit various 

heterogeneous neuroanatomic areas (Duncan et al., 2010; Gazzangia et al., 2004). Therefore, 

the traditional hypothesis-driven methods such as GLM are limited in inferring those 

concurrent networks because they are likely to overlook the heterogeneous regions and 

diverse activities participating in a task performance (Logothetis 2008; Duncan et al., 2010). 

Consequently, they are not likely to be sufficient in exploring concurrent, particularly 

heterogeneous, task-evoked functional networks and assessing systematic brain-wide 

activities during task performance.
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Recently, dictionary learning and sparse representation methodology developed in the 

machine learning field has been shown to be efficient in learning adaptive, over-complete 

and diverse features for optimal representations (Mairal et al., 2010; Wright et al., 2009; Lin 

et al., 2014). Earlier works that adopted sparse representation in fMRI data analysis showed 

promising performance (Lv et al., 2015a; Lv et al., 2015b; Lv et al., 2015c; Lee and Ye, 

2011). The basic idea is to aggregate all the hundreds of thousands of task fMRI signals 

within the whole-brain of one subject into a big data sample pool, based on which an over-

complete dictionary and a sparse code matrix for optimal representation will be learned via 

dictionary learning and sparse coding algorithms (Lv et al., 2015a; Lv et al., 2015b; Mairal 

et al., 2010). Particularly, the signal shape of each dictionary atom represents the functional 

activities of a specific brain network and its corresponding sparse code vector among all the 

voxels can be reorganized back in brain volumes as the spatial distribution of this specific 

brain network (Lv et al., 2015a; Lv et al., 2015b). An important characteristic of this 

framework is that concurrent brain networks that are captured by task fMRI images and 

signals can be reconstructed simultaneously in an automatic way. This data-driven strategy 

naturally accounts for the fact that each brain region could be involved in multiple 

concurrent functional processes (Duncan et al., 2010; Gazzangia et al., 2004; Pessoa et al., 

2012) and thus its signal is composed of various heterogeneous components (Lv et al., 

2015a; Lv et al., 2015b; Lee et al. 2011). In the work of Lv et al., 2015a and Lv et al., 

2015b, task-evoked networks could be effectively learned from task fMRI data, as well as all 

the well-established intrinsic networks (Smith et al., 2009), which are usually modeled in 

resting state fMRI data (Lv et al., 2015a; Lv et al., 2015b). This provides new clues for the 

architecture of functional brain networks. However, because of the data-driven strategy used, 

the learned task evoked networks might be affected by noise and identifying the intrinsic 

networks from all the learned components could be difficult and ambiguous (Lv et al., 

2015a; Lv et al., 2015b).

Therefore, adopting the dictionary learning and sparse representation method into 

neuroscience applications entails a novel, flexible framework that can guide or supervise the 

learning procedure with task design and/or neuroscience knowledge. Typically, the design of 

task paradigms provides useful information about the temporal feature in the signals. 

Meanwhile, prior neuroscience knowledge could be used to constrain spatial patterns of the 

inference such as network templates or brain mapping atlases. Therefore, if prior knowledge 

about the temporal feature and spatial signatures could be incorporated into the dictionary 

learning, we could effectively integrate hypothesis-driven and data-driven methods and 

maximize the benefits of both strategies. To achieve this goal, we here propose an innovative 

supervised sparse dictionary learning framework for task fMRI data analysis based on 

stochastic coordinate coding (SCC: http://www.public.asu.edu/~jye02/Software/SCC/) (Lin 

et al., 2014). On one hand, our method could constrain temporal features such as task 

designs as part of learned dictionary in order to map the spatial distribution of these features. 

On the other hand, we could supervise the dictionary atom signal learning with known 

spatial patterns such as network templates. Thus, we call it supervised SCC. With the 

supervised SCC method, meaningful task evoked networks and well-established intrinsic 

networks can be inferred with known temporal and spatial features, and at the same time, 

other concurrent networks can be learned simultaneously and automatically from the data. 
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We then performed extensive qualitative and quantitative evaluations to demonstrate that our 

method provides a new and effective framework for task fMRI data analysis.

2. METHODS

2.1 Overview

Our supervised stochastic coordinate coding (SCC) framework for task fMRI data modeling 

is summarized in Fig. 1. Briefly, fMRI signals extracted from a brain mask can be organized 

into a signal matrix S (Fig. 1a). The original SCC method will then learn a temporal basis 

dictionary matrix D containing the most representative activities in the brain from the signal 

matrix S. And at the same time a sparse code matrix A (Fig. 1b) which structures the spatial 

organization of the brain activities are learned with sparsity constraints. In other words, the 

learning process will preserve the organization of signals of voxels so that each row in A can 

be mapped back to brain volume, which we call a brain network as shown in Fig. 1c. The 

SCC can be supervised with fixed temporal features in D and constrained spatial features in 

A as shown in Fig. 1b. Specifically, in our supervised SCC, temporal features such as task 

designs can be fixed in D as DC and they keep unchanged during the whole training. 

Accordingly, the rows in AC are learned spatial distributions of DC atoms. Based on our 

innovation of the SCC method in solving sparse coding problem, we can restrict the spatial 

patterns of networks in AR, correspondingly, and we can also learn the major signal 

contribution in DR of the restricted spatial patterns. Along with the temporal constraint and 

spatial restrictions, the rest part of D and A, i.e. Dl and Al, will be learned automatically in a 

data-driven way so that the diversity of concurrent brain networks could be modeled. More 

details will be discussed in the following sections. And explanations of variables could be 

found in Supplemental Table. 1.

2.2 Stochastic Coordinate Coding of FMRI Data

2.2.1 Background and Problem Formulation—In the task fMRI data, signals are 

organized with voxel locations. Considering each fMRI signal from a voxel as a learning 

sample, the pool of signals within the brain mask is represented as S = [s1 … … sn]εℝt×n, in 

which t is the number of time points in each signal and n is the voxel number in the brain 

mask. The aim of the sparse coding is to learn a dictionary of signal basis Dεℝt×m from the 

signal pool, and a sparse code matrix Aεℝm×n, so that S is modeled as a sparse linear 

combination of atoms of a learned basis dictionary D, i.e., si = Dai or written as S=DA 
(Mairal et al., 2010; Lv et al., 2015a; Lv et al., 2015b). The reconstruction error is required 

to be minimized and it is further assumed that each input signal can be represented only by a 

small group of dictionary atoms, that is, sparsity is constrained. In this way, the temporal 

features in the dictionary can be optimally selected and efficiently coded to represent each 

training sample.

Then, given the signal si, the above idea can be formularized as an optimization problem:

(1)
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in which both D and ai need to be learned and λ is the regularization parameter. In order to 

prevent arbitrary scaling of the sparse code, each sample si is normalized before training and 

each column of D is restricted to be in a unit ball, i.e., ||dj|| ≤ 1 during training. Given the 

whole-brain data set S, the minimization function is summarized as follow:

(2)

where D is restricted with the normalization procedure iteratively as follows:

(3)

The above problem is non-convex with respect of joint parameters of D and A = [a1, … an]. 

But it is a convex problem when either D or A is fixed. Specifically, when D is fixed, solving 

each sparse code ai is the well-known LASSO problem (Tibshirani et al., 1996), while if A is 

fixed it’s a simple quadratic problem. Therefore, alternating optimization approach is 

usually adopted to solve the above sparse coding problem. The traditional alternating 

method is usually summarized in the following way:

1. Get an input sample si.

2. Calculate the sparse code ai by using LARS (Efron et al., 2004), FISTA (Beck et 

al., 2009) or coordinate descent (Wu and Lange, 2008).

3. Update the dictionary D by performing stochastic gradient descent.

4. Go to step 1 and iterate.

2.2.2 Stochastic Coordinate Coding—In the stochastic coordinate coding (SCC: http://

www.public.asu.edu/~jye02/Software/SCC/) method (Lin et al., 2014), the same strategy 

was adopted as mentioned in the Section 2.2.1, but with significant innovation in updating ai 

and D (Lin et al., 2014), which makes the method much more efficient in dealing with big 

fMRI data. Details will be discussed in the following paragraphs.

Some concepts are firstly defined for the method to be better illustrated. In the method, each 

ai is called sparse code. Since ai is sparse, only a few entries in ai are non-zero. The non-zero 

entries of ai are defined as its support, i.e., support (ai)={ 1, if ai,j ≠ 0; 0, if ai,j = 0. (j = 1, …, 

m)}ε {0,1}m×1. The support will be a screen that guides necessary and efficient updating of 

ai and D. The training process will take a few cycles on the whole data set, and each cycle, 

i.e., each input signal in S has been trained once, is called as an epoch. In the following 

sections, superscript k will be used to represent the number of epochs and subscript i will be 

used to represent the index of data samples. Note that another innovation of the method is 

that the approximation of the inverse of Hessian matrix of the objective function is used to 

define the learning rate of gradient descent. In this way, manually tuning the learning rate 

parameter is avoided (Wu and Lange, 2008). Specially, the matrix , is an 
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approximation of the Hessian when k and i go to infinity in the step 2 of Algorithm 2. The 

SCC algorithm is detailed as follows.

Initialize the dictionary via any initialization method, such as random weights, random 

patches or k-means (Jarrett et al., 2009). And denote it as , Initialize the sparse 

code , for i=1,…, n, support ( ) is all zero. H is initialized as 0. Then starting 

from k=1 and i=1:

1. Get an input sample si.

2. Update  with Algorithm 1.

3. Update the dictionary D with Algorithm 2.

4. i = i + 1. If i > n, then set , k= k + 1 and i = 1. Go to step 1.

Algorithm 1

Update .

1. Perform a few steps of Coordinate Descent (CD) until the locations of non-zero entries achieve stability:

ai
k − 1 = CD (Di

k, ai
k − 1, si) (4)

 One step of coordinate descent:

 for j=1 to m do

b j (di, j
k )T(si − Di

kai
k − 1) + ai, j

k − 1, (5)

ai, j
k − 1 hλ(b j), (6)

 end for

2.

Update support ( ).

3.

Update  with certain number of coordinate descent on the support:

 One step of coordinate descent on the support:

 for j=1 to m do

  if support  do
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b j di, j
k T si − Di

kai
k − 1 + ai, j

k − 1, (7)

ai, j
k − 1 hλ(b j), (8)

  end if

 end for

4.

The four steps are conceptually illustrated in Fig. 2 and details are demonstrated in 

Algorithm 1 and Algorithm 2. In Algorithm 1, updating  is the classical LASSO problem, 

in which it usually takes tens of hundreds of steps to converge. But as reported in Lin et al., 

2014, the support of the coordinates, i.e., the location of the non-zero entries will keep 

accurate after only a few steps. Thus, the algorithm firstly takes a few steps of coordinate 

descent to fully update the vector  until the locations of non-zero entries achieve stability, 

and in this way the Support ( ) will be determined. As a result, the next steps of coordinate 

descent will only focus on updating  on the support (Fig. 2), which will save much 

computing time. Note that Support  denotes the j-th value in the vector of Support 

( ). And while applying the L1 norm, the soft shrinking function is defined as follow:

(9)

Algorithm 2

Update D

1.

Update support ( ).

2.

3. Update the dictionary D by using stochastic gradient descent:

Di + 1
k = PBm

(Di
k − ηi

k ∇
Di

k f i(Di
k, ai

k)) (10)
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∇
Di

k f i Di
k, ai

k = (Di
kai

k − si)(ai
k)T

(11)

 One step of stochastic gradient descent:.

 for j=1 to m do

  if support  do

di + 1, j
k di, j

k − ηi, j
k ai, j(Di

kai
k − si) (12)

  end if

 end for

*
PBm means applying the Bm constraint defined in Eq.3.

In Algorithm 2, suppose that , then , therefore 

 dose not need to be updated, which saves a lot of computing and is the advantage of SCC 

(Lin et al., 2014).

2.3 Fixing Temporal Features in Stochastic Coordinate Coding

When modeling the task fMRI data, the exterior paradigm designs are usually summarized 

as the design matrix, which is a set of time series that is coded with stimulus knowledge. In 

the traditional GLM method, these time series are used as explanatory variables of the real 

fMRI data for activation detection. In our method, we normalize these task designs into the 

Bm constraint (Eq.3) and set them as the dictionary of stochastic coordinate coding or part of 

the dictionary.

If the task designs are treated fully as a fixed dictionary D, the problem becomes easier 

because it turns into a LASSO problem, as discussed in Section 2.2.1. But if we only fix the 

task designs as part of the dictionary, the dictionary will be composed of a constant part Dc 

and a learned part Dl.

Then the optimization function turns into Eq.13.

(13)
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The alternative updating of D and ai still works on this non-convex problem. The only 

difference is that Eq.10 will turn to Eq.14.

(14)

In Algorithm 2, the updating process will jump over the constant dictionary part but only 

update the learned part. However, during each iteration the sparse code of the whole 

dictionary including Dc and Dl will update accordingly. In this way, we will find the 

contribution of the task designs on each voxel, and in a global view we will find the 

distribution of the task designs on the brain volume.

2.4 Minimizing Intra-correlation in the Learned Dictionary

In the previous section, Dc is fixed in the dictionary learning, while Dl is automatically 

learned. However, because the task designs are usually ideally hypothesized signal patterns 

without any noise considered as shown in Fig. 4 and Fig. 5, based on our experience it 

would be possible that a few atoms in Dl are correlated with Dc, which we call intra-

correlation of the dictionary atoms. The intra-correlation will potentially affect the detection 

of task-evoked networks, so that we propose to minimize it while learning the entire 

dictionary. In order to minimize the intra-correlation, we introduce a new term to Eq.13 as 

shown in Eq.15.

(15)

where the second term  ensures the low correlation between Dc and Dl. The 

updating rule of Dl should be changed accordingly. Basically, when performing stochastic 

gradient descent, there will be a new term in the gradient of Dl, i.e. Eq.12 will be written as 

Eq.16. And note that in the whole learning procedure, the Dc will keep unchanged as 

initialized.

(16)

2.5 Constraining Spatial Maps in Stochastic Coordinate Coding

In neuroscience, atlases or interested networks are usually defined in the spatial domain, 

such as the default mode network (DMN), executive control network and auditory network, 

and etc. So it will be interesting to investigate what is the major signal pattern in a certain 

interested region or network. The premise is as follows. The signal set S = [s1, … sn]εℝt×n is 

a collection of fMRI signals of voxels within the brain mask. They are extracted with a 

certain principle, and the SCC method will preserve the principle, i.e., the order of voxels, in 
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the learned sparse code matrix A = [a1, … an] εℝm×n. In this way, if we map each row of the 

sparse code back following the principle of signal extraction, there will be m spatial maps 

which correspond to the distributions of m dictionary atom signals. We call these spatial 

maps as interested brain networks (Lv et al., 2015a; Lv et al., 2015b).

In this section, we will adjust the SCC by restricting certain rows of the support matrix of A 
with the spatial distribution information, as illustrated in Fig. 3. Suppose we have an 

interested spatial pattern within the brain mask, the pattern itself is labeled by 1, and the rest 

of brain mask is labeled by 0. Then the pattern can be represented as a binary vector 

Vε{0,1}1×n with the same voxel organization of A. We set the pattern as constraint of the p-

th row of A, so that support(ai)(p)=V(i), for i = 1, …, n. After the support of each voxel at 

the p-th row is set at the initialization, they will keep unchanged during the whole training 

procedure, and the updating of A on this row will only happen on the non-zero part of the 

support.

Since the support of the p-th row was predefined while the supports of the other rows are 

initialized with 0, a regularization will be made before the updating of , that is, if j=p the 

Eq.6 turns to Eq.17.

(17)

Note that, in Eq.17, if the shrinking function hλ(bj) returns 0 in a certain iteration, we will 

update  as an infinite small value, such as 1×10−4. In following step of Algorithm 1 and 

Algorithm 2, we make sure the support of ai at the p-th row keep the same as what is 

initialized. And in future analysis of the spatial map, the voxels with value of 1×10−4 will 

not be considered because they are supposed to be zero. With the help of restriction on the 

support, we can learn the major signal contributions and their strength distributions in the 

interested brain region or network.

2.6 Group-wise Statistical Analysis of Network Spatial Maps

Individual variability widely exists in the learned network spatial maps. Similar to the 

statistical parameter mapping (SPM) (Friston et al., 1994), we can also perform group-wise 

statistical analysis on the spatially normalized networks across subjects with the 

correspondences established by DC and AR. In this paper, all data are registered into the 

MNI atlas space before applying our method, and null hypothesis t-test was applied to 

generate group-wise statistical z-score maps for each corresponding network in AC and AR. 

This is one major advantage relative to the data-driven method in (Lv et al., 2015a; Lv et al., 

2015b), because task networks and intrinsic networks could easily be identified in each 

individual and statistically assessed across populations.

However, there are still many learned concurrent networks in Al which are learned 

automatically without any prior correspondence settled. Thus, we employ K-means 
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clustering method to find networks which possess spatial pattern similarity among subjects, 

i.e., these networks consistently exist across subjects with similar spatial patterns. In this 

way, correspondence of automatically learned networks could also be roughly established.

3. RESULTS

We evaluated our method on two independent task fMRI datasets. These two datasets are 

described in Section 3.1. Then the following sections examine task-evoked networks inferred 

by fixing temporal features (Section 3.2), motion components modeled by supervised SCC 

(Section 3.3), the effects of minimizing intra-correlation (Section 3.4), the networks detected 

by restricting spatial templates (Section 3.5), automatically learned networks from data 

(Section 3.6), and the influence of parameter selection (Section 3.7). The results in Section 

3.2, Section 3.3, Section 3.5 and Section 3.6 are generated based on the setting of dictionary 

size as 200, λ=0.16 and γ= 2×10−3 for both data sets.

3.1 FMRI Data and Preprocessing

Working Memory (WM) task dataset—This dataset were acquired on a 3T GE Signa 

scanner at the University of Georgia under IRB approval (Faraco et al., 2011). Here, 28 

subjects performed an operational span (OSPAN) working memory task while fMRI data 

was acquired. Acquisition parameters are as follow: 64×64 matrix, 4mm slice thickness, 

220mm FOV, 30 slices, TR=1.5s, TE=25ms, ASSET=2. Each participant performed a 

modified version of the OSPAN task (4 block types: OSPAN, OSPAN response, Arithmetic, 

and Baseline). For more detail of data collection please refer to (Faraco et al., 2011). And 

the block designs of the task are visualized as the red curves in Fig. 4.

Motor task dataset—In the human connectome project (HCP) Q1 data set (Barch et al., 

2013), a motor task fMRI dataset was acquired for 68 subjects. The acquisition parameters 

of fMRI data are: 90×104 matrix, 220mm FOV, 72 slices, TR=0.72s, TE=33.1ms, flip angle 

= 52°, BW =2290 Hz/Px, in-plane FOV = 208 × 180 mm, 2.0 mm isotropic voxels. Six 

different stimulus designs, including visual cues and movements of left toe, left finger, right 

toe, right finger and tongue are alternated in different blocks. The block designs of the task 

are visualized as the red curves in Fig. 5.

The preprocessing pipeline includes motion correction, slice time correction, spatial 

smoothing and high-pass filtering. After pre-processing the fMRI data of all subjects are 

registered to the MNI space with the non-linear registration tool FSL FNIRT (Andersson et 

al., 2010), and for better registration accuracy the high resolution structure images were used 

to guide the registration. Whole brain signals of each subject were extracted voxel by voxel 

and arranged into a signal matrix, and each signal are normalized with mean of 0 and 

standard deviation of 1.

3.2 Detecting Task-evoked Networks using Supervised SCC

The block-designed stimuli in Section 3.1 are set as the fixed temporal features in our 

supervised SCC method. These task designs are firstly convolved with hemodynamic 

response function (HRF) before the training, as shown in the first column of Fig. 4 and Fig. 
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5. The results from the supervised SCC in this section are based on the setting of 

minimization of intra-correlation in Section 2.4, and parameter λ was set so that the learned 

task evoked networks exhibit the similar level of noise to GLM activations. The discussion 

about the effects of intra-correlation minimization is in Section 3.4. For comparison, the 

same designs are also set as explanatory variables of GLM based method with FSL FEAT 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT). We compared the results from the two methods 

at both the single subject level and at group level. Specifically, in Fig. 4 and Fig. 5, we show 

the task-evoked networks of two randomly selected subjects using either the supervised SCC 

or the GLM based method. From the comparison, we found that spatial patterns were quite 

similar from both methods. This observation is consistent across different subjects. After 

applying the statistical analysis in Section 2.6, group-wise statistical maps are compared 

with group-wise activation from FEAT (Beckmann et al., 2003) in Fig. 6. The results are 

also very similar between two methods, although variation exists because of algorithm 

difference and parameter settings. Quantitatively, we used the Dice’s coefficients to measure 

the similarity of the group-wise results and found high similarity (Table. 1 and Table. 2). 

Thus, our supervised SCC method is comparable with GLM in detecting task-evoked 

activations or networks.

3.3 The Motion Components Modeled by Supervised SCC

Motion correction is a crucial step in fMRI analysis to remove the artifacts caused by head 

motion. However, even after motion correction there are still residual effects of motion left 

in the data (Jenkinson et al., 2002). In the GLM based method like FSL FEAT, the motion 

parameters estimated from data are usually set as confound explanatory variables (Friston et 

al., 1994). In our supervised SCC method, similar as Section 3.2, we set the six motion 

parameters estimated from motion correction (Jenkinson et al., 2002) as part of the fixed 

dictionary Dc, and two exemplar results from both data sets are shown in Fig. 7. In Fig. 7, by 

mapping the corresponding coefficients back to the brain volume, we could visualize the 

effect strength of motion on each voxel. By minimizing the intra-correlation between the 

motion parameters and other dictionary atoms with the setting in Section 2.4, the head 

motion artifacts could be minimized while modeling other brain networks in the dictionary 

learning. Quantitatively, without fixing motion parameters, the average Pearson’s correlation 

between the motion parameters and the dictionary atoms learned is relatively high, 

indicating the impact from head motion (the second row of Table. 3 and Table. 4). In 

contrast, by setting the motion parameters as part of the fixed dictionary, the correlation 

between motion atoms and other atoms are significantly (about 1000 times) reduced (the 

third row of Table. 3 and Table. 4). In this way, we can substantially improve the quality of 

the reconstructed networks by minimizing the motion effects.

3.4 The Effects of Minimizing the Intra-correlation

The stochastic coordinate coding method itself employs L1 penalty to regularize the 

dictionary learning, i.e., the sparsity is the rule of representing fMRI signals, which coincide 

with the intrinsic organization of neurons (Olshausen, 1996; Olshausen and Field, 2004). 

However, although the dictionary is learned with optimized differences among atoms, the 

correlation among them are not minimized. As a consequence, when we set the designed 

task paradigms as the fixed part of the learned dictionary, there is a chance that the noise-
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free paradigm will not be selected or weakly selected while alternative atoms will be learned 

out in the Dl part. This will cause uncertainty to the detection of task-related networks. For 

example, in Table. 5 and Table. 6, before minimizing the intra-correlation, we could possibly 

learn other dictionary atoms with high correlation (maximally 0.77) with task designs. 

Hence we propose to minimize the intra-correlation in Section 2.4, through which the task-

evoked networks will be concentrated in the Dc and Ac part. Here we introduce the tunable 

parameter γ to regularize the minimization. As shown in Fig. 8, we compared the correlation 

matrix of the learned dictionary with γ=0 and γ=0.02. As highlighted by the red block in 

Fig. 8, the absolute values of correlations between Dc and Dl for both tasks are significantly 

reduced after turning on the minimization. Quantitatively, we measured the maximum 

correlation between the task designs and other learned atoms with and without intra-

correlation minimization in Table. 5 and Table. 6. From the comparisons in Table. 5 and 

Table. 6, we can infer that with the minimization of intra-correlation, the learned atoms 

exhibit quite low correlation (around 10−3) with task designs, so that the task-related 

networks are concentrated in the Dc and Ac part. In addition, corresponding Ac with both 

settings are mapped back to brain volume for comparison, as shown in Fig. 9. By comparing 

the second and third column of Fig. 9, it’s quite obvious that after turning on the intra-

correlation minimization, the task-evoked networks are enhanced. We also quantitatively 

compared the voxel number of task-evoked networks with and without intra-correlation 

minimization in Table. 7 and Table. 8, and found that with intra-correlation minimization, 

the task networks are enlarged 1.5~2.5 times. In summary, by using the intra-correlation 

minimization, the task-evoked networks could be significantly enhanced. The selection of γ 
is further discussed in Section 3.7.

3.5 Networks Detected by Restriction of Spatial Maps

With our method, we could also set the well-established brain network templates (like the 

default mode network (DMN), auditory network, executive control network etc.) (Smith et 

al., 2009), which are believed to function in different brains and across different tasks (Smith 

et al., 2009; Lv et al., 2015a; Lv et al., 2015b), as spatial restrictions while learning 

dictionaries. As shown in the first column of Fig. 10, we selected 6 networks for this 

experiment, and the red regions are the constrained regions in which the updating of 

temporal patterns and sparse codes take place. The learning results of both working memory 

task and motor task are visualized for two random subjects (second and third column of Fig. 

10), showing that there are reasonable Gaussian-like distributions in the restricted regions. 

Note that certain regions are valued with 1×10−4: these regions are supposed to be zero 

according to our algorithm in Section 2.5 and were dropped from our results because the 

difference across subjects turns out to account for the individual variability of the same 

network. And we further perform group-wise statistical t-test as illustrated in Section 2.6, 

and the group-wise networks by spatial restriction are shown in Fig. 11. The distributions of 

the networks are consistent with the previous report (Smith et al., 2009).

In addition, we explored the temporal and frequency features of the learned networks in Fig. 

12. The temporal patterns corresponding to the networks in Fig. 11 are shown in Fig. 12. For 

each corresponding intrinsic network, we averaged the learned signal patterns from all the 

subjects in the same task (Fig. 12a), and at the same time we average the stimuli in each task 
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as the global task curve (white curves on the top of Fig. 12a). And in Fig. 12b, the frequency 

spectrum of the task designs and network signals are visualized. From the inspection on the 

two task datasets, it’s evident that the temporal patterns of these networks are potentially 

tuned or affected by the task input, e.g., the temporal patterns of the default mode network 

tend to be like anti-task shape; the executive control network tends to peak at task change 

points, and more high frequency components could be observed as shown in Fig. 12b. These 

observations are in agreement with the functional mechanism of these networks (Smith et 

al., 2009). The frequency energy peaks of the networks in Fig. 12b are partially or fully in 

agreement with the task frequency spectrum. Additionally, quantitative correlation analysis 

can be found in Table. 9 and Supplemental Table. 2. From both tables, we can infer that 

DMN networks consistently exhibit anti-correlation with task design. The cerebellum and 

left frontoparietal networks exhibit high correlation with task designs.

Note that we didn’t select network templates with conceptual conflict with our task design, 

like motor and visual networks, because motor networks should be learned with fixed task 

design in motor task data and visual networks are task-related networks in both data sets. On 

the other hand, from the temporal feature analysis in this section, we found that the activities 

of these well-established intrinsic networks are more or less coded by the task designs. So 

when modeling these networks with spatial restriction, we suggest to tune to a small value 

(like γ = 2×10−3) to avoid potential side effects. In addition, the spatial restriction could be 

set independently from the temporal constraint while training, so that it could be used for 

resting state fMRI analysis in the future.

3.6 Automatically Learned Concurrent Networks

Besides the supervised networks in the previous two sections, multiple concurrent networks 

can also be learned from our method at the same time, as shown in Fig. 13. Although the 

temporal responses of these networks might not be directly interpreted in the second column 

of Fig. 13, it is quite interesting that some motor networks can be detected in the working 

memory task fMRI data, as shown in the spatial patterns of WM-N1 and WM-N2 in Fig. 

13a. Meanwhile, some working memory networks can also be detected in the motor task 

data, as shown in the spatial patterns of Motor-N1 and Motor-N2 in Fig. 13b. This finding 

suggests that these brain networks intrinsically exist in the human brain, which might show 

different activity during different tasks. Additionally, through clustering all automatically 

learned networks from all subjects with spatial similarity as a metric, we found that the 

networks in Fig. 13 consistently exist across subjects, and their average patterns are shown 

in Fig. 14a and Fig. 14b. From the clustering analysis, we also found other concurrent 

networks (Fig. 14c) but cannot explain their spatial and temporal patterns. For instances, 

Other-N1 mainly concentrated in the white matter, while Other-N2 and Other-N3 located on 

the thalamus and ventricle areas, respectively. Other-N4 and Other-N5 are distributed 

bilaterally, while Other-N6, Other-N7 and Other-N8 are unilateral. It’s interesting that these 

networks could be consistently clustered from multiple subjects and different tasks, 

suggesting a common network architecture across different subjects and conditions. 

Meaningful interpretation of these networks entails further investigations in the future.
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3.7 The Influence of Parameter Selection

Three parameters are crucial in our proposed method, i.e., λ, γ and the dictionary size. In 

this section, we investigated the influence of these parameters on the network reconstruction. 

In our experiments, we explored each parameter while the others are fixed.

Firstly, we set λ from 0 to 0.24 with interval of 0.04 (γ=2×10−3, dictionary size is set as 

200). In supplemental Fig. 1, one task related network was visualized with different λ 
settings. From the figures, we could infer that, without the sparsity constraint, although we 

still have the network foci, the network looks quite noisy. If λ was set too high, the network 

foci are corrupted. So the parameter λ controls the network noise level and setting an 

appropriate λ could control the noise level of the networks. In this work, λ was chosen 

when the resultant networks showed comparable level of sparsity to GLM activations.

Secondly, we have introduced γ to control the intra-correlation of the learned dictionary. As 

we mentioned in Section 3.4, an appropriate γ could improve the estimation of the task 

networks. Actually, it’s also a tunable parameter, but not a very sensitive one. In our 

experiments, we set γ as 0 and from 2×10−5 to 2×10−1 (λ =0.16, dictionary size is set as 

200). The correlation matrices of the learned dictionaries are shown in Supplemental Fig. 2, 

and the maximum correlation values in the red block (constrained part) were shown in 

Supplemental Fig. 3. From both figures, we could see the correlation gradually decreased 

with increased γ. We also visualized one example task network by different settings of γ in 

Supplemental Fig. 4, from which we can see that with γ set as 0 and very small values, the 

foci of the network are not prominent. So we suggest to set γ> 2×10−4. However, as we 

mentioned in Section 3.5, high γ could cause side effects on the spatially constrained 

networks if the networks exhibit potential correlation with task design. With our experience, 

setting a moderate value, like γ= 2×10−3, could reach ideal balance.

Finally, with the optimal setting, λ =0.16 and γ= 2×10−3, we explored the influence of 

dictionary size. By setting dictionary size from 50 to 400, Supplemental Fig. 5 visualized 

examples of temporally constrained task network, spatially constrained DMN network and 

the automatically learned Motor-N1 network named in Section 3.6. Theoretically, the 

dictionary size can be over complete. However, in our experiment even with small dictionary 

size, the reconstructed networks are all meaningful and reliable. From supplemental Fig. 5, 

we could see that with the increment of dictionary size, the constrained task network and 

DMN network are quite stable and change only slightly. On the other hand, the 

automatically learned networks could be influenced by the dictionary size: the Motor-N1 

network, which is consistent with dictionary size from 50 to 300, is decomposed into several 

sub-networks when dictionary size reaches 350 and 400. Currently, there is not criterion for 

an optimal dictionary size, because the mechanism and neuroscience meaning of the 

automatically learned networks remain elusive. We selected a moderate size of 200 for the 

current work and are in the process of developing new method to determine dictionary size.

In summary, parameter tuning could improve the performance of our method. Here, we 

recommend the optimal setting as dictionary size = 200, λ=0.16 and γ= 2×10−3, and the 

results in Section 3.2, Section 3.3, Section 3.5 and Section 3.6 are generated with these 

settings. In our experiments, we set the same parameter for two datasets with totally 
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different acquisition protocols and the results are quite consistent and stable. Slightly tuning 

of parameters is suggested when the supervised SCC is applied on a new dataset. In the 

future works, we will explore solutions for automatic parameter setting.

4. DISCUSSION AND CONCLUSION

In this paper, we proposed a novel supervised dictionary learning and sparse coding method 

named supervised stochastic coordinate coding (SCC) for task fMRI data analysis. The 

major advantage of this method is that temporal models and spatial templates can be 

supervised as constraints for network inference, and at the same time, other concurrent 

networks can be learned automatically from data in a data-driven fashion. With the 

correspondence established by the supervised temporal and spatial information, group-wise 

statistics could be performed on both task-evoked and intrinsic networks. Furthermore, by 

group-wise clustering of the networks from automatic learning, other meaningful networks 

could be discovered.

We applied the proposed method on two independent fMRI data sets and obtained robust 

results. First, the task-evoked networks learned by our method are comparable with the 

GLM based activation at single subject level as well as at group level. Second, by utilizing 

motion parameters in the dictionary learning, motion artifacts would be removed while 

modeling brain networks, and by minimizing the intra-correlation, the task-evoked networks 

could be enhanced. Then, by restricting spatial templates, the major signal patterns of the 

well-known intrinsic networks could be learned and interpreted. In addition, the individual 

variability in spatial patterns could also be learned and evaluated. Finally, by clustering the 

spatial maps of the automatically learned networks, we also detected additional networks 

with high cross-subject consistency.

It should be noted that this work significantly improved the performance of the approach 

proposed in Lv et al., 2015a and Lv et al., 2015b. In the previous work with totally data-

driven dictionary learning and sparse coding, the networks, especially task networks, are 

learned individualized and arbitrarily, e.g., one task network could be decomposed into 

multiple subnetworks or a few networks could be merged together. This makes it difficult to 

identify networks. Also these networks lack cross-subject correspondence, and as a result, 

the group-wise statistics could not be realized. The improvement of the supervised SCC lies 

in the following aspects. 1) The identification of task-evoked and intrinsic networks is 

realized and enhanced by supervised information. 2) With the correspondence established by 

supervised information, group-wise statistics could be performed. 3) The prior knowledge 

has been utilized in dictionary learning so that the hypothesize-driven and data-driven 

strategies are balanced. It should also be noted that the temporal constraint and spatial 

restriction could be applied independently while using the method. Therefore, the spatial 

restriction could be used for resting state fMRI analysis and network modeling, which will 

be explored in the future. We explored the influence of parameter selection of our method 

and suggested relatively optimal parameters. Future improvements and extensions of this 

work will be considered in the following perspectives. 1) The parameters such as the 

dictionary size, λ and γ are currently determined manually by trying different combinations, 

automatic or semi-automatic solutions for parameter selection will be explored in the future. 
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2) The networks learned by automatic learning and group-wise clustering could be 

potentially affected by the setting of dictionary size, and the interpretation and optimization 

of these networks entails further efforts. 3) This framework could be applied to other task/

rest fMRI datasets, including applications to clinical fMRI data for discovery of network 

disruptions in brain disorders.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Novel approach of sparse representation on the fMRI data.

• Temporal features and spatial patterns could be supervised in dictionary 

learning on fMRI data.

• Modeling brain networks with correspondence of prior knowledge makes 

group-wise analysis feasible.

• Automatic learning makes it flexible to detect meaningful concurrent brain 

networks hidden in the data.
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Fig. 1. 
Illustration of the framework of supervised stochastic coordinate coding (SCC) for task 

fMRI data modeling. (a) FMRI signals in the brain mask are extracted and organized into a 

signal matrix S. (b) S is decomposed into a dictionary matrix D and a sparse code matrix A 
by the supervised SCC. DC: Fixed dictionary atoms. DR: learned dictionary atoms for 

constrained spatial patterns. Dl: Automatically learned dictionary atoms. AC: learned spatial 

maps corresponding to DC. AR: Restricted spatial maps while learning. Al: Automatically 

learned concurrent networks. (c) Each row of A can be mapped back to brain volume as a 

spatial network.
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Fig. 2. 
Illustration of the mechanism of updating coefficients and dictionary in the Stochastic 

Coordinate Coding method. The support is defined by a binary screen to guide the updating 

(Lin et al., 2014). CD stands for Coordinate Descent.
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Fig. 3. 
Illustration of restricting spatial templates by defining support on a certain row. The binary 

spatial map will be encoded in the support matrix as a row. Updates will only happen on the 

green entries of the row.
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Fig. 4. 
The task-related networks in two single subjects in the working memory task detected by 

fixing task designs in the dictionary. First column: Fixed task designs. Second column: 

Subject IDs. For each task design we visualized results from two randomly selected subjects. 

Third column: Learned spatial patterns of the supervised SCC method. Fourth column: 

Activation maps (Threshold: z>2.3) detected by the GLM method for comparison.
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Fig. 5. 
The task-related networks of two single subjects in the motor task detected by fixing task 

designs in the dictionary. First column: Fixed task designs. Second column: Subject IDs. For 

each task design we visualized results from two randomly selected subjects. Third column: 

Learned spatial patterns of the supervised SCC method. Fourth column: Activation maps 

(Threshold: z>2.3) detected by the GLM method for comparison.
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Fig. 6. 
Group-wise statistical z-score maps from Supervised SCC method and GLM method 

(Threshold: z>6.5). The task designs are corresponding to Fig. 2. (a) Group-wise maps from 

working memory task; (b) Group-wise maps from the motor task.
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Fig. 7. 
The spatial patterns learned from the Supervised SCC method by fixing the motion 

parameters. Results of one subject from the working memory and motor task are visualized, 

respectively. The second column shows the motion patterns from each subject and the third 

column shows the spatial maps learned from Supervised SCC.
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Fig. 8. 
The comparison of correlation matrix of learned dictionary with and without minimization 

of intra-correlation. (a) and (b) are for the working memory task. (c) and (d) are for the 

motor task.
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Fig. 9. 
The effects of minimization of intra-correlation on the learned task related networks. The 

first column shows the task designs from both the working memory task and motor task. The 

second column shows the results without intra-correlation minimization from one single 

subject of each task. And the third column shows the results with intra-correlation 

minimization from one single subject of each task.
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Fig. 10. 
The networks detected by restricting network templates in supervised SCC of two single 

subjects. First column: Restricted spatial patterns. Second column: Subject IDs. Third 

column: The learned intrinsic networks of two randomly selected subjects in the working 

memory task dataset. Fourth column: The learned intrinsic networks of two randomly 

selected subjects in the motor task dataset.
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Fig. 11. 
Group-wise statistical z-score maps of the networks derived by restricting spatial templates. 

Templates are corresponding to those in Fig. 10.
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Fig. 12. 
(a) Comparison of temporal patterns of the spatially restricted networks with the task 

designs. (b) Comparison of frequency energy distribution with the task frequency spectrum.

Lv et al. Page 31

Med Image Anal. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 13. 
Automatically learned concurrent networks of one subject. Panel (a) is from the working 

memory task. Panel (b) is from the motor task. First Column: Spatial patterns of the learned 

networks. Column 2: Temporal patterns of the learned networks.
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Fig. 14. 
Averaged group-wise consistent networks through clustering. (a) The group-wise maps of 

networks in Fig. 13a. (b) The group-wise maps of networks in Fig. 13b. (c) Other group-

wise networks from clustering method.
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Table 1

The Dice’s coefficients of group-wise task-evoked networks from two methods (supervised SCC and GLM) in 

the Working Memory task.

WM Task OSPAN OSPAN Response Arithmetic

Dice’ Coefficient 0.82 0.80 0.83
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Table 5

The maximum correlation between task designs and other learned dictionary atoms in the Working Memory 

task. “With” means “with minimizing intra-class correlation”. “Without” means “without minimizing intra-

class correlation”.

WM Task OSPAN OSPAN Response Arithmetic

Without 0.49 0.48 0.40

With 0.0010 0.0017 0.00056
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Table 7

The voxel number of the detected task-evoked networks in the working memory task. With” means “with 

minimizing intra-class correlation”. “Without” means “without minimizing intra-class correlation”.

WM Task OSPAN OSPAN Response Arithmetic

Without 12366 5748 21464

With 37649 12187 35436
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