Skip to main content
. 2017 Mar 22;137(5):693–700. doi: 10.1007/s00402-017-2661-7

Table 2.

Logistic regression analysis to identify independent pre-operative predictors of good to excellent satisfaction with hospital stay

Predictors in model Odds ratio 95% CI p value
Lower Upper
Gender 1.09 0.82 1.37 0.57
Age 1.01 1.00 1.03 0.15
Comorbidity
 Heart disease 0.76 0.53 1.12 0.14
 Hypertension 0.86 0.65 1.14 0.30
 Lung disease 0.89 0.57 1.33 0.60
 Vascular disease 0.71 0.38 1.33 0.28
 Neurological disease 1.19 0.58 1.90 0.64
 Diabetes mellitus 0.85 0.56 1.25 0.42
 Gastric ulceration 1.40 0.66 2.16 0.38
 Kidney disease 0.38 0.16 1.27 0.03
 Liver disease 10.47 1.13 12.70 0.05
 Anaemia 1.74 0.87 2.43 0.12
 Back pain 0.75 0.56 1.04 0.049
 Depression 0.80 0.53 1.21 0.28
Length of stay 0.99 0.94 1.03 0.56
Prosthesis
 PFC Reference
 Triathlon 0.91 0.69 1.22 0.53
 Kinemax 1.25 0.76 2.05 0.38
Functional measures
 OKS 1.01 0.99 1.04 0.27
 SF-12 PCS 1.00 0.97 1.02 0.82
 SF-12 MCS 1.03 1.02 1.04 <0.001

All variables (in Table 1) were all entered into the model using “enter” methodology (Nagelkerke R 2 = 0.06)

Significant values (p < 0.05) have been highlighted in bold