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Abstract

Interest in the human microbiome is at an all time high. The number of human microbiome studies 

is growing exponentially, as are reported associations between microbial communities and disease. 

However, we have not been able to translate the ever-growing amount of microbiome sequence 

data into better health. To do this, we need a practical means of transforming a disease-associated 

microbiome into a health-associated microbiome. This will require a framework that can be used 

to generate predictions about community dynamics within the microbiome under different 

conditions, predictions that can be tested and validated. In this review, using the gut microbiome to 

illustrate, we describe two classes of model that are currently being used to generate predictions 

about microbial community dynamics: ecological models and metabolic models. We outline the 

strengths and weaknesses of each approach and discuss the insights into the gut microbiome that 

have emerged from modeling thus far. We then argue that the two approaches can be combined to 

yield a community metabolic model, which will supply the framework needed to move from 

high-throughput omics data to testable predictions about how prebiotic, probiotic, and nutritional 

interventions affect the microbiome. We are confident that with a suitable model, researchers and 

clinicians will be able to harness the stream of sequence data and begin designing strategies to 

make targeted alterations to the microbiome and improve health.
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INTRODUCTION

Enthusiasm for understanding the human microbiome’s effect on health is at an all-time high 

and appears to be growing. The microbiome has been featured in high-profile journals, such 

as Science and Nature; on the cover of the New York Times Magazine; and in bestsellers 

such as Gut [1] and The Microbiome Solution [2]. Meanwhile, the amount of microbiome 

data is exploding; a Google Scholar search reveals that 1,540 articles about the microbiome 

were published in 2005, whereas roughly 20,000 were published in 2015. Clinicians have 

begun to tap the potential of microbiome-based therapies: fecal transplant is now a well-

established therapy for Clostridium difficile infection [3]. Unfortunately, despite this 

singular advance, the intense interest from both the research community and the public, and 

reams of data, we still lack an effective and palatable approach to microbiome manipulation. 

To transform the microbiome, and thus improve health, we require a theoretical framework 

that can be used to generate predictions about community dynamics within the microbiome 

under different conditions, predictions that can then be tested and validated. Until we 

possess such a framework, the promise of the microbiome and health interventions such as 

prebiotics, probiotics, and nutritional changes will go unrealized.

We already have a good idea about what the ideal framework for analyzing microbiome data 

and predicting community dynamics that promote health, looks like.. First, it should focus 

on microbe-microbe and microbe-host interactions. Complex behavior in other systems, 

such as the coordination of pacemaker cells in the heart or the synchronized flashing of 

fireflies, has been unraveled by focusing on such small-scale interactions [4]. Second, it 

should include enough detail on these interactions to yield accurate predictions, but not so 

much that researchers find it difficult to discern which variables are important drivers of 

community dynamics. Third, it should facilitate analysis of the high-throughput data 

emerging from microbiome studies.

Currently, two main classes of model are being used to study community dynamics within 

the microbiome: ecological models and metabolic models. In this review, we explore both 

approaches, including their strengths and weaknesses, focusing on the gut. We conclude by 

arguing that the two approaches can be combined to yield a community metabolic model 
that meets our criteria for the ideal analytic framework for yielding accurate and helpful 

predictions about microbial dynamics. Our goal is to demonstrate how models can be used 

to develop interventions that involve targeted alterations to the gut microbiome.

HOW METABOLISM SHAPES THE HUMAN GUT MICROBIOME: A PRIMER

The diverse microbes within the gastrointestinal tract encompass an equally diverse set of 

metabolic phenotypes [5], resulting in a tangled web of interdependence between different 

species within the community (Figure 1). Host epithelial cells excrete high levels of mucins: 

high-molecular-weight, heavily glycosylated proteins (glycans) that carry out a number of 

important physiologic functions, including lubrication, cell signaling, and mediation of 

pathogen binding [6,7]. Several well-studied microbial genera, including Akkermansia, 
Bacteroides, Bifidobacterium, Clostridium, Helicobacter, Prevotella, and Ruminococcus, 
produce glycosidases (e.g. fucosidase, sialidase, sulfatase) and proteases that degrade mucin 
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into monosaccharides, oligosaccharides, sulfates, and amino acids. These metabolites, now 

in a form that more microbes can use, help determine the types of interactions that occur 

between the various species within the gut [7,8]. Microbes dependent on glycosidase-

producing bacteria include groups as diverse as macromolecule degraders [9–11], nitrogen 

fixers [12], lactic acid bacteria [13], and various hydrogenotrophs [14], such as sulfate-

reducing bacterium, methanogens, and acetogens. Thus, metabolism underlies many of the 

key interactions that connect the varied members of the gut microbiome. (Note: For a more 

detailed description of microbial metabolic relationships in the gut, we encourage the 

interested reader to peruse some of the many excellent reviews on this subject [15–18]).

Oxygen is an important determinant of microbial spatial structure and interactions within the 

gut—indeed, the steepest oxygen gradient in the body occurs in the intestine, with levels 

highest along the host cells lining the intestine and declining rapidly further into the gut 

[19,20]. Research on mice supports the hypothesis that the microbiome actually contributes 

to the oxygen gradient, with aerotolerant species colonizing the intestine after birth, creating 

a less oxygenated space in the lumen for less aerotolerant species[19]. In the mature gut, 

different species continue to position themselves along this radial oxygen gradient in the 

same manner, with bacteria capable of consuming oxygen concentrated near the oxygen-rich 

gut mucosa[21]. Importantly, research in mice shows that altering the host’s oxygen levels 

can modify the composition of the gut microbiota[21]; in humans, it has been proposed that 

diet may affect oxygenation levels in the gut by modulating the availability of 

antioxidants[22].

Many community traits cannot be explained as a sum of individual contributions; these so-

called collective effects [23] are the result of interactions between community members. 

Because metabolism determines the nature of so many microbe-microbe and host-microbe 

interactions within the gut microbiome, any reasonable framework seeking to predict 

community traits must therefore take it into account. The importance of collective effects is 

evidenced by the metabolic behavior of microbes growing together. For example, work by 

Chiu et al. [24] suggests that emergent biosynthetic capacity is relatively common; that is, 

when grown in two-species culture, some bacteria are predicted to produce metabolites that 

neither species produces when grown individually. In another example, when exposed to one 

another, the microbes Eubacterium rectale and Bacteroides thetaiotaomicron alter their 

nutrient utilization in the gut [25]. Specifically, B. thetaiotaomicron signals the host to 

produce mucins that only it can use and upregulates expression of the genes needed to 

metabolize them. E. rectale, in turn, decreases production of mucin-degrading enzymes, 

instead focusing on other nutrients by increasing expression of select amino acid and sugar 

transporters. Given this evidence that collective effects are common within the gut, it is 

important to be able to model how metabolic interactions between multiple species 

determine the community traits of the microbiome, which may in turn affect health.

ECOLOGICAL MODELS OF THE GUT MICROBIOME

Theoretical ecologists have long studied the effects of species interactions on community 

dynamics, and basic ecological models can be applied to the study of the microbiome [26]. 

For example, the Lotka-Volterra model, originally applied to predator-prey dynamics [27], 
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can easily be co-opted to investigate the dynamics of complex communities; variants of the 

basic model address spatial heterogeneity [28], lags in reproduction [29], and food-web 

dynamics [30]. Recently, Coyte et al. [31] published a generalized, unforced Lotka-Volterra 

model designed to analyze the microbiome. Essentially, this model uses between-species 

interaction terms to predict the rise and fall of different species within a community. This 

type of model is well suited for exploring general trends in the way that between-species 

interactions affect community dynamics. For example, Coyte et al. have already used their 

model to make the unintuitive prediction that cooperative networks of microbes can be 

unstable. One might expect that cooperative metabolism among microbes could promote 

stability, but their simulations indicate that dependence between microbes can reduce 

community stability because a decrease in the abundance of one species can pull other 

species down with it. This interesting and testable prediction highlights the contributions 

that an ecological model can make to the study of the microbiome.

Whereas the Coyte et al. model is very general and can be applied to any microbiome, 

Lotka-Volterra–type models have also been designed to investigate more specific scenarios. 

For example, Stein et al. [32] recently used data on community membership at different time 

points in C. difficile-challenged mice to derive the interaction terms in a modified Lotka-

Volterra model. By fitting the model with empirical data, they were able to simulate the 

specific conditions present in their system of interest: the gut microbiomes of mice that had 

been pre-treated with antibiotics vs. those that had not, post-pathogen exposure. Their results 

indicated that the gut microbiome is intrinsically stable, but antibiotic perturbation 

dramatically increases susceptibility to C. difficile infection. Furthermore, this analysis 

implicated a subnetwork of bacterial groups in protection against the pathogen. This 

example demonstrates the ability of basic ecological models to provide insight into both 

broad community dynamics and, when paired with empirical data, the roles of specific 

species in creating those dynamics.

Although ecological models are very helpful for elucidating broad trends in community 

dynamics, they have several important drawbacks. One drawback is that the interaction 

terms are purely descriptive and thus provide little practical insight into the mechanisms 

underlying the trends observed. In the models discussed above, a single interaction term 

exists for each two-species pairing; the values for these terms can be inferred by observing 

changes in empirical populations over time and working backward, as described for the 

Stein et al. [32] study. However, the interaction term is essentially a black box; we know 

little about the molecular mechanisms—such as the metabolic dependence of one microbe 

on another—that drive the interaction between two-species. Moreover, because these 

interaction terms are often estimated based on correlations between population numbers, 

they are prone to error, as correlations do not necessarily imply that two species are 

interacting [33]. Without detailed knowledge of the interactions taking place in a 

community, it is difficult to translate a model’s findings into designer probiotics, prebiotics, 

or nutritional interventions. Another drawback is that a model’s parameters must be 

estimated anew for each community studied, which also limits this approach’s practical 

utility. Suppose, for example, that we want to determine the effects of a nutritional 

intervention—adding starch to a diet—on the gut microbiome. To investigate this problem 

using an ecological model, we would have to give subjects in the study starch, document 
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changes in their microbiome over time, and use correlation coefficients between species to 

infer interaction parameters specific to this dietary intervention (inferred from correlation 

coefficients between species). Only then could we begin our simulations. Moreover, should 

we want to study a different nutritional component, such as fat, we would need to repeat this 

process over again. Thus, a great deal of time, effort, and money is required to generate 

predictions using this type of model.

METABOLIC MODELS OF THE GUT MICROBIOME

Unlike ecological models, metabolic models contain a great deal of mechanistic detail. 

Based largely on biochemistry, they include information on the metabolic reactions that 

represent the basis for species-species interactions [34]. Whereas ecological models infer the 

strength and type of species-species interactions from time series data, metabolic modeling 

starts with sequence data. Sequence data can be converted into metabolic networks that are 

then used to predict the interactions between species present in the gut, and thus community 

dynamics. Here, we give an overview of how metabolic models are constructed and describe 

the two most popular approaches for analyzing the gut microbiome: topological and 

constraint-based models.

RECONSTRUCTING METABOLIC NETWORKS

Genome-scale models (GEMs) are the basis of every type of metabolic model. Any 

organism’s metabolism can be represented by a GEM, which is the mathematical format of 

an organism’s genome-scale metabolic network reconstruction [35]. GEMs provide a 

mechanistic framework for integrating data from multi-omics studies, providing the structure 

onto which proteomic and transcriptomic data can be mapped—the so-called “context for 

content” [36]. Essentially, they can be used to unify genomic, transcriptomic, proteomic, 

metabolomic, and biochemical kinetic information relevant to metabolic models [37–40]. 

(See, for example, the recent study by Noecker et al. [41], which combined taxonomic, 

genomic, and metabolic data to determine whether shifts in the vaginal microbiome explain 

shifts in the vaginal metabolome.) Because GEMs are the foundation of metabolic modeling, 

we give a concise explanation of how they are created here (Figure 2; but for a more 

extensive protocol see [42]).

First, an annotated genome of the organism of interest is required. Databases such as 

EcoCyc [43,44] and PATRIC [45] contain annotated genomes for a large variety of 

organisms. However, tools such as RAST [46] and the Prokaryotic Genome Annotation 

Pipeline [47] allow users to annotate the genomes of organisms that are not present in these 

databases. Gene annotations, in the form of identified proteins, are then matched to the 

biochemical reactions that ultimately make up the metabolic network of the organism of 

interest. Gene-protein-reaction matches are made with databases such as KEGG [48], 

BRENDA [49], and SEED [50], which contain collections of metabolic reactions shown to 

exist in a variety of organisms. At this point, the metabolic network of the organism of 

interest is largely populated with reactions whose existence is supported by genomic 

information. However, because many genes in a genome have unknown function, further 

curation is required to complete the model, so that most of the organism’s known metabolic 
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reactions are included. This process is known as gap filling. Finally, metabolic reaction 

information is converted into a mathematical representation, the GEM, that allows users to 

investigate the qualitative and quantitative features of an organism’s metabolism.

Reconstructing GEMs once involved a laborious manual process that took at least 6 months 

per microbial species [42], but today automatic metabolic reconstruction tools such as the 

RAVEN Toolbox [52], Pathway Tools [53], MicrobesFlux [54], merlin [55], and 

ModelSEED [56] have significantly reduced the time and effort required. ModelSEED, the 

most widely used tool, automatically reconstructs metabolic models for bacterial species 

with full genome sequences, and gap-fills them using a parsimonious approach in which the 

least number of reactions is added to complete a particular pathway. The first version of this 

framework created models with an average accuracy of 66% before optimization and 87% 

after optimization, as determined using experimental validation [56]. However, recent 

advances in automated metabolic modeling have expanded the ModelSEED algorithm to 

include a likelihood maximization approach to gap filling that resulted in greater accuracy 

and the identification of 5–30% additional reactions compared to the original parsimony-

based approach[51]. Of the reactions identified by this new approach, 5 to 30% are not 

identified using the original parsimony-based approach. Given the substantial benefits 

associated with these automated reconstruction methods, including the ability to analyze 

high-throughput sequence data, this level of accuracy represents a good avenue into large-

scale model creation [57,58].

ANALYZING METABOLIC NETWORKS

Once a GEM is in hand, it can be analyzed either in isolation or together with that of GEMs 

from other organisms living in the same community. Two of the main avenues for 

understanding complex microbiomes are topological maps and constraint-based models. 

Here, we outline each approach.

Topological Metabolic Maps—Topological metabolic maps predict species-species 

interactions by focusing on metabolic connectivity. An organism’s GEM reveals its potential 

for carrying out various metabolic functions; for example, based on its genome alone, 

researchers were recently able to infer that a novel human gut microbe produces the anti-

inflammatory short-chain fatty acids butyrate and acetate, and relies on other organisms for 

metabolically costly molecules such as cobalamin, methionine, and branch-chained amino 

acids [59]. This illustrates how sequence data can be used to infer a substantial amount of 

information about an organism’s metabolic niche in the gut. In a topological map, this 

information is used to draw connections between different organisms based on possible 

metabolic functions: If one microbe’s genome encodes the cellular machinery to make a 

sugar and another organism’s genome encodes the machinery to metabolize that sugar, the 

two are linked in a network.

This network can then be used to make predictions about how a community functions. For 

example, Zelezniak et al. [57] have used these maps to identify specific metabolites that can 

promote the survival of metabolically interdependent groups of bacteria under nutritionally 

challenging conditions; such information might one day prove useful in protecting desirable 
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gut microbes. And Freilich et al. [60] have predicted that metabolic flexibility (measured by 

the number of metabolic environments in which a species is predicted to grow) is associated 

with a need to grow rapidly. Interestingly, Levy and Borenstein [61] have used interaction-

based topological metabolic maps to investigate the relative importance of cooperation and 

competition in determining the makeup of the microbiome. They observed a positive 

association between species co-occurrence and competition, suggesting that species with 

similar nutrient requirements establish themselves in similar environments; this scenario 

differs from one in which species are distributed in the gut according to competitive 

exclusion by other species with similar metabolic requirements. Clearly topological 

metabolic maps have already generated intriguing hypotheses about community dynamics 

within the gut microbiome that are worth testing.

Topological metabolic maps have both advantages and drawbacks. One major advantage of 

these maps is that the metabolic links between species recapitulate a significant portion of 

interactions identified by correlation coefficients between species [57]. Thus, providing 

evidence that GEMs can be used to predict species-species interactions and thus community 

dynamics. Another advantage is that they are easy to produce, as they require no 

simulations. They are thus well suited to analyzing high-throughput data, and researchers 

have published several user-friendly tools for creating this type of map, of which NetSeed is 

the most popular for single species [62] and NetCooperate for pairs of organisms [63]. The 

main drawback of topological metabolic maps is that they infer species-species interactions 

based on organisms’ potential to carry out metabolic reactions. In reality, no organism 

carries out every potential function encoded by its genome; just because a gut microbe can 
produce a certain sugar transporter does not mean that it does so under normal 

circumstances. Because the nutritional environment plays an important role in influencing 

microbial metabolism, topological maps—which ignore context—run the risk of inferring 

species-species interactions that do not occur in the particular scenarios that researchers 

wish to study [57].

Constraint-based metabolic models—Constraint-based metabolic models address the 

major drawback of topological metabolic maps by considering context. The most common 

approach to describing the metabolism of an organism in constraint-based modeling is flux 

balance analysis (FBA). FBA incorporates information on the flow of nutrients, or flux, to 

an organism, allowing researchers to predict which potential metabolic reactions it actually 

carries out. This information can then be used to generate more accurate species-species 

interaction networks and even growth and secretion rates, which lead to more accurate 

predictions about community dynamics. Moreover, dynamic FBA (dFBA) models allow 

users to simulate conditions in which the level of nutrient flux changes [64], as occurs 

constantly within the gut, providing an opportunity to improve the accuracy of predictions 

even further.

Abundant evidence underscores the utility of constraint-based metabolic models. For well-

studied organisms, such as E. coli, FBA predictions are fairly consistent with experimental 

observations in a variety of environments [36,65]. This framework has been successfully 

used to not only predict bacterial growth rates under different media conditions [66], but to 

test the effect of gene knockouts on growth [67], and to predict drug targets [68]. In addition, 
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Klitgord and Segrè [69] have used FBA to identify culture media that would induce various 

types of interactions between pairs of microbes. They predicted and experimentally 

confirmed that, when cultured with NH3, H2S, and lactate, the sulfate reducer Desulfovibrio 
vulgaris produces metabolites that are used by Methanococcus maripaludis, and that when 

NH3 is replaced by alanine, M. maripaludis produces metabolites that can be used by D. 
vulgaris as well. A model that did not take into account the nutrient environment would not 

have been able to predict these interactions. Furthermore, Chiu et al. [24] have shown that 

emergent biosynthetic capacity is common by using dFBA to predict instances among a 

large collection of two-species communities (30% of 1,400 pairings resulted in at least one 

emergent metabolite). Intriguingly, they found emergent biosynthesis was most common 

when two community members were neither too similar nor too different functionally and 

phylogenetically. Given this array of important findings, constraint-based models represent a 

significant advance in our ability to model the gut microbiome.

Recently, researchers have begun to make these models even more realistic by considering 

the role of the host in microbial community dynamics. For example, Ines Thiele and 

colleagues have combined metabolic models of the gut microbe B. thetaiotaomicron and the 

mouse to simulate growth of the bacterium in the host lumen under five different diets [58]. 

This approach generated testable predictions about the metabolites exchanged between 

microbe and host, the ability of B. thetaiotaomicron to rescue certain lethal enzymopathies 

in the host, and the ability of the host to do the same for the bacterium. In a more complex 

study, the same research group modeled pairwise interactions between 11 representative gut 

microbes in conjunction with human small intestinal enterocytes, under three different diets 

[70]. They found that the anoxic conditions of the large intestine appear to drive mutualistic 

crossfeeding, resulting in a more complex ecosystem than is present in the less anoxic small 

intestine. In addition, this model suggests that nutrients produced by enterocytes induce 

competition among the microbes. Together, this work establishes the feasibility and promise 

of using such models to learn about the gut microbiome.

Many constraint-based metabolic modeling tools are available[71], including the COBRA 

Toolbox [72,73] and COBRApy [74]. In addition, researchers have created hybrid 

constraint-based modeling tools, including Netlogo, which allow users to create agent-based 

models that reflect individual GEMs [75,76], and DyMMM to create kinetic-based models 

that simulate metabolite concentrations through time [77]. Finally, the technical advances 

packaged in tools such as DFBAlab now permit us to run dFBA faster [78], a prerequisite for 

analyzing complex communities such as the human gut.

Historically, the drawback of this type of model is that it is time intensive. As mentioned, in 

the not-so-distant past, a single GEM could take half a year to construct. Fortunately, recent 

advances have reduced the time and effort involved in this type of modeling. Heinken and 

Thiele [79] have demonstrated that existing manually curated metabolic models can be 

combined to systematically predict health-relevant human-microbial co-metabolism, 

allowing researchers a means of simulating the effects of scenarios such as pathogen 

introduction and probiotic administration. Manually curating comprehensive metabolic 

models is a painstaking effort, however, and only a limited number of such models are 

available. Fortunately, novel computational tools such as MMinte [80] provide users with an 
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automated method to assess pairwise microbial metabolic interactions on a large scale under 

a variety of metabolic environments for their community of interest. Thus, armed only with 

genome sequences, researchers can analyze interactions to explore how various conditions 

might affect community features such as stability and resilience. Unfortunately, even with 

these methodological advances, metabolic models are not suitable for analyzing large, 

complex microbial communities such as the gut. Consider what would happen if we wanted 

to use this type of model to determine the effects of a diet with increased levels of starch on 

the gut microbiome. The molecular cascade of reactions arising from the breakdown of 

starch would have to be evaluated across hundreds of thousands to millions of reactions in 

the gut community. When considered alongside the fact that the vast majority of the 

reactions are repeated across multiple species, this not only seems computationally 

challenging, but incredibly inefficient.

FUTURE DIRECTIONS: COMMUNITY METABOLIC MODELS, NON-

METABOLIC FACTORS THAT AFFECT INTERACTION, AND MORE 

SOPHISTICATED VALIDATION METHODS

Above, we discussed the pros and cons of two types of models for predicting gut microbial 

dynamics: ecological and metabolic. Here, we would like to propose combining the two to 

create a multiscale community metabolic model that can effectively predict microbial 

dynamics while giving users the practical, mechanistic data needed to determine the effects 

of a given intervention (Figure 3). Briefly, this type of modeling starts with metabolic 

models for each organism within a community. These models are used to generate an 

interaction matrix that contains a single net term for each pairwise microbe-microbe and 

microbe-host interaction. This matrix is then used to parameterize an ecological model. 

When this type of model is combined with novel automated methods of assessing pairwise 

metabolic interactions, such as MMinte [80], the result should be tractable and easily 

interpretable calculations that accurately predict community dynamics on the basis of high-

throughput microbiome sequencing data.

To return to our starch example, using a community metabolic model we could take 

sequence data obtained from the gut microbiome, translate this data into a matrix of pairwise 

metabolic interactions using an automated tool such as MMinte, and plug these interaction 

data into an ecological model that predicts how altering the level of starch-related flux 

affects interactions and thus community dynamics. The beauty of this approach is that we 

would not need novel empirical data to determine the interaction parameters, as metabolic 

modeling would provide that information. In addition, the species interaction–based 

approach reduces the computational challenge of a 101 element stoichiometric matrix into a 

relatively tractable 104 element interaction matrix by focusing on species instead of 

biochemical reactions.

Moreover, community models would allow us to integrate important predictions from 

ecological and metabolic models. Recall from above: Heinken and Theile’s [70] metabolic 

models predict that host-derived metabolites from enterocytes induce competition within the 

microbiome. Meanwhile, Coyte et al.’s [31] ecological model indicates that increased levels 

Mendes-Soares and Chia Page 9

Free Radic Biol Med. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of competition help stabilize the microbiome. Put together, these findings suggest that 

increasing levels of host-derived metabolites, such as mucin, could represent one avenue 

toward increasing gut microbiome stability. By building a community model to simulate this 

scenario from start to finish, we could better determine whether this is the case. This ability 

to generate predictions that begin with basic metabolism and end with essential information 

about community-wide properties is the major advance this type of model can deliver.

Microbe-microbe and microbe-host interactions are composed of more than just metabolism, 

of course. Although metabolism is a major determinant of cross-feeding interactions, other 

factors also influence the nature and magnitude of interactions. For example, the gut is full 

of pockets of distinct microbial communities that constrain the ability of a given microbe to 

interact with other microbes, and factors such as diet influence patterns of spatial clustering 

[81]. Even in simple communities with little complex spatial structure, simulations reveal 

that where a particular microbe resides within a community matters [82]. Harcombe et al. 

[83] have used constraint-based models to make the surprising prediction that when two 

collaborative, cross-feeding colonies of the gut microbes E. coli and S. enterica are separated 

by a competitor colony of S. enterica, growth of the original S. enterica colony increases, 

and they have confirmed these results experimentally. Although the spatial structure present 

within the gut is much more complex, this example shows the potential benefits of studying 

the effects of spatial structure on patterns of microbial growth, and our ability to model the 

spatial structure of the gut will no doubt improve in the future. Other factors we expect to 

play a similarly important role in shaping interactions within the microbiome are host 

immunology and intercellular signaling. Community metabolic models can be expanded to 

include all of these factors.

We now know that pathogens exploit the oxygen gradient to gain dominance within the 

gut[19], a fact that underscores the need for models that consider oxygen levels. For some 

time, researchers have hypothesized that the host inflammatory response in conditions such 

as inflammatory bowel disease may increase the level of oxygen present in the gut, resulting 

in overgrowth of aerotolerant organisms and undergrowth of health-promoting, butyrate-

producing anaerobic microbes[21]. Recently, a number of studies have provided data that 

support the general idea that the inflammatory response can benefit pathogens while 

harming beneficial bacteria. For example, S. typhimurium infection spurs an immune 

response in mice that reduces levels of butyrate-producing Clostridia; the resulting decrease 

in butyrate levels increases oxygen levels in the colonocytes lining the intestine, allowing the 

further expansion of the facultative anaerobe S. typhimurium within the gut[84]. However, 

not all data support this model. In mice the enteric pathogen Citrobacter rodentium increases 

oxygenation of the mucosal surface of the intestine, allowing the aerobic C. rodentium to 

proliferate in the colon, as we might predict—but despite higher levels of oxygen, Clostridia 
species increase in abundance[85]. Community metabolic models that incorporate the 

oxygen gradient are needed to help us better understand these perplexing findings.

Finally, all modeling efforts require some form of experimental validation in order to be 

applicable to reality. The development of experimental platforms for testing community 

model predictions holds much promise. Bioreactors allow researchers to analyze the 

dynamics of complex communities growing in physiologically relevant conditions. For 
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example, the Simulator of the Human Intestinal Microbial Ecosystem [86], which comprises 

five sequentially connected bioreactors to simulate the different gastrointestinal 

compartments, can be used to understand the dynamics of the communities in each 

compartment. Community model predictions can also be tested using murine model systems. 

These are particularly important when researchers want to understand the role of the host in 

determining community dynamics [70]. As models of murine metabolism improve, it will 

become easier to confirm or reject predictions using this experimental system. Ultimately, 

the goal is to generate predictions using community metabolic models that can be tested 

with data collected before and after interventions, such as the administration of prebiotics or 

probiotics.

CONCLUSIONS

Here, we have argued that merging ecological and metabolic models to create a novel 

community metabolic model will allow us to predict community dynamics within the gut 

in response to specific interventions that target metabolic interactions between microbes and 

between microbes and host cells. Recent developments have given us the tools to simulate 

the flux of nutrients within the gut, and we are beginning to explore how factors such as 

spatial structure determine community dynamics as well. In the near future, we expect to see 

metabolic models increasingly used as scaffolds for additional layers of complexity, such as 

gene regulation, intercellular signaling, and the immune system; the groundwork is already 

being laid [38,87]. Finally, as we develop high-throughput, culture-based experiments, we 

will be able to test model predictions on a new scale. The past decade has witnessed a 

remarkable increase in data on the gut microbiome; we hope that the next decade will 

witness a similar increase in meaningful understanding of these data. Although 

mechanistically designing interventions such as prebiotics and probiotics based on our 

understanding of the human gut microbiome appears a daunting task, we hope to have 

convinced the reader that community metabolic models have the potential to translate 

sequence data into testable hypotheses, practical knowledge, and novel clinical 

interventions.
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HIGHLIGHTS

• A framework is needed to translate microbiome sequence data into practical 

knowledge

• Ecological models can predict microbiome dynamics but lack mechanistic 

detail

• Metabolic models provide mechanistic detail but are computationally intense

• Community metabolic models combine the strengths of ecological and 

metabolic models
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Figure 1. The gut microbiome consists of a tangled web of interdependent microbial species
Host epithelial cells produce mucin (top), which is metabolized by mucin-degrading 

microbes into molecules that other species can use, such as the short-chain fatty acid acetate. 

Other microbes produce molecules such as butyrate, formate, lactate, and methane, all of 

which are essential to the metabolism of certain species. Many species are both dependent 

on other species for their metabolic needs and depended on by other species; for instance, 

acetogens (bottom, middle) depend on butyric acid producers for lactate, and produce 

acetate used by methanogens.
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Figure 2. Creating a genome-scale model (GEM) of metabolism involves four sequential steps
First, an annotated genome is used to produce a preliminary reconstruction of an organism’s 

metabolism. Typically, a large number of genes in the genome will not be included in this 

reconstruction, as their function is unknown. To solve this problem, probabilistic annotation, 

or gap filling, is performed. In this process, gene products are added to an organism’s 

metabolic network on the basis of a homology-based likelihood maximization algorithm. 

This results in a final, optimized GEM. The process shown here is based on the 

ProbModelSEED pipeline [51], but the same essential process is used to create all GEMs.
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Figure 3. We argue that community metabolic models, which combine features of metabolic and 
ecological models, are needed to understand the mechanisms underlying community dynamics in 
the gut microbiome
This type of modeling starts with a metabolic model for each organism within the 

community (left). These models are the used to generate an interaction matrix that contains a 

single net term for each pairwise microbe-microbe and microbe-host interaction (depiction 
of pairwise interactions between microbes, middle; green represents cooperative 
interactions, red represents competitive interactions). This matrix is then used to 

parameterize an ecological model, which can be used to predict how manipulating specific 

aspects of the microbiome—with probiotics, prebiotics, or nutritional interventions, for 

example—will affect properties such as stability and resilience.
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