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AIM
Canagliflozin is an SGLT2 inhibitor approved for the treatment of type-2 diabetes. A dynamic population pharmacokinetic–
pharmacodynamic (PK/PD) model relating 24-h canagliflozin exposure profiles to effects on glycosylated haemoglobin was de-
veloped to compare the efficacy of once-daily and twice-daily dosing.

METHODS
Data from two clinical studies, one with once-daily, and the other with twice-daily dosing of canagliflozin as add-on to metformin
were used (n = 1347). An established population PK model was used to predict full 24-h profiles from measured trough concen-
trations and/or baseline covariates. The dynamic PK/PD model incorporated an Emax relationship between 24-h canagliflozin
exposure and HbA1c-lowering with baseline HbA1c affecting the efficacy.

RESULTS
Internal and external model validation demonstrated that the model adequately predicted HbA1c-lowering for canagliflozin
once-daily and twice-daily dosing regimens. The differences in HbA1c reduction between the twice-daily and daily mean profiles
were minimal (at most 0.023% for 100 mg total daily dose [TDD] and 0.011% for 300 mg TDD, up to week 26, increasing with
time and decreasing with TDD) and not considered clinically meaningful.

CONCLUSIONS
Simulations using this model demonstrated the absence of clinically meaningful between-regimen differences in efficacy, sup-
ported the regulatory approval of a canagliflozin-metformin immediate release fixed-dose combination tablet and alleviated the
need for an additional clinical study.
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WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT
• A fixed-dose combination tablet of metformin immediate release and canagliflozin may improve patient convenience
and compliance to antihypertensive agent therapy. Because metformin immediate release is typically administered twice-
daily for patients with type-2 diabetes mellitus, the canagliflozin component was divided to 50-mg and 150-mg twice-
daily to provide the same currently approved daily dose (100-mg and 300-mg).

WHAT THIS STUDY ADDS
• This population pharmacokinetic–pharmacodynamic exposure-response analysis establishes a quantitative relationship
between canagliflozin exposure and glycosylated haemoglobin response, and demonstrates that differences in
canagliflozin dosing regimens would have little to no impact on the HbA1c response.

Tables of Links

TARGETS

SGLT2

LIGANDS

Canagliflozin

Metformin

These Tables list key protein targets and ligands in this article that are hyperlinked to corresponding entries in http://www.guidetopharmacology.
org, the common portal for data from the IUPHAR/BPS Guide to PHARMACOLOGY [1], and are permanently archived in the Concise Guide to
PHARMACOLOGY 2015/16 [2].

Introduction
Diabetes is gaining a pandemic status, with a global preva-
lence in adults of approximately 9% and affecting approxi-
mately 415 million people [3, 4]. Metformin, an oral
biguanide that reduces hepatic glucose production, [5, 6] is
typically the first line of therapy for glycaemic control.
Disease progression often necessitates use of combination
therapy with other antihyperglycaemic agents (AHA) that
can complement the primary treatment for management of
hyperglycaemia [7]. Canagliflozin, a selective oral inhibitor
of sodium-glucose transporter-2 (SGLT2), has a different
mechanism of action than metformin. Canagliflozin is
approved in the USA and numerous other countries for the
treatment of adult patients with type-2 diabetes mellitus
(T2DM). The recommended canagliflozin dose is 100 or
300mg once-daily (QD), and is indicated as an adjunct to diet
and exercise to improve glycaemic control [8–10].
Canagliflozin reduces plasma glucose (PG) in individuals
with hyperglycaemia by lowering the renal threshold for
glucose excretion (RTG), thus causing increased urinary glu-
cose excretion [11–13].

The canagliflozin concentration resulting in half maximal
reduction (EC50) in RTG was estimated to be 32 ng ml–1 (95%
confidence interval [CI]: 19; 45) corresponding to a 90% ef-
fective concentration (EC90) of 289 ng ml–1 and maximal de-
crease in RTG of approximately 64%.9 In a phase 3 study in
patients with T2DM, monotherapy with canagliflozin 100
and 300 mg compared with placebo demonstrated a signifi-
cant reduction of glycosylated haemoglobin (HbA1c) from
baseline (8.0% HbA1c) to week 26 (–0.77%, –1.03% and
0.14%, respectively) [13]. With both canagliflozin doses,
reductions in both fasting and postprandial PG levels were
observed that were consistent with the observed reductions
in HbA1c. The increased efficacy observed with 300 mg
canagliflozin was expected, as it provided more sustained

maximal decrease in RTG than 100 mg canagliflozin and also
provided an additional, nonrenal effect to lower postprandial
PG [14]. Because the pharmacodynamic (PD) effects of
canagliflozin-related increases in urinary glucose excretion
are dependent on estimated glomerular filtration rate (eGFR),
efficacy was reduced in patients with renal impairment due to
reduced filtered glucose load [15, 16].

For patients requiring combined treatment with metfor-
min and canagliflozin, the use of a fixed-dose combination
(FDC) tablet (comprised of metformin immediate release
[IR] and canagliflozin), may improve patient convenience
and compliance to AHA therapy. Becausemetformin IR is typ-
ically administered twice a day for patients with T2DM,5 the
FDC was developed to be dosed twice-daily (BID), with the
canagliflozin component divided to provide the same 100
and 300 mg total daily dose (TDD) as currently approved for
QD dosing (i.e., 50 mg and 150 mg BID) [17]. Comparison
of steady-state pharmacokinetics (PK)/PD of canagliflozin ad-
ministered either QD or BID at the same TDD of 100 and
300 mg in a study in healthy subjects showed that
canagliflozin plasma area under the concentration-time
curves (AUC0-24h,ss) for the QD vs. BID dosing regimens were
equivalent. Although, as expected, the steady-state
maximum plasma concentration (Cmax,ss) of QD dosing was
higher than the corresponding morning Cmax,ss of the BID
regimen in this study; the 24-h mean RTG for QD and BID
regimens at both 100 and 300 mg TDDs were similar [18].

While the short-term PK/PD data suggested similarity be-
tween QD and BID regimens given at the same TDD, no long-
term study was performed that directly compared the efficacy
of different regimens. Three late-stage studies were performed
with canagliflozin treatment added on to metformin; two of
these studies (12-week study, NCT00642278 [Study1] [19],
and 26-week study, NCT01106677 [Study 2] [20] contained
QD dosing of 100 and 300 mg vs. placebo, whereas a third
study (18 weeks, NCT01340664 [Study 3] [21]) contained
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50 mg and 150 mg BID doses vs. placebo. The placebo-
subtracted least square mean reductions in baseline HbA1c
seen with 100 mg and 300 mg QD doses in the first two stud-
ies (–0.76 and –0.62% for 100 mg QD; –0.92 and –0.77% for
300 mg QD, respectively) were somewhat greater than the
corresponding reductions seen with 50 and 150mg BID doses
in the third study (–0.44% and –0.60%, respectively) [19–21].
However, there were differences in other factors between the
studies that limited the utility of such cross-study
comparisons (most notably baseline HbA1c was lower in the
BID study than in the QD studies; Table S1). Therefore, the
aim of the current analysis was to develop a robust model-
based solution that could account for differences in study
populations and, in the absence of directly comparable
long-term study results, could assess whether there are differ-
ences in the efficacy between QD and BID regimens of
canagliflozin at the same TDD. This solution included
developing and validating a dynamic population PK/PD
model using pooled data from all three studies to characterize
the exposure–response relationship of canagliflozin as
add-on to metformin on HbA1c-lowering, and performing
simulations to compare the effect of QD and BID
canagliflozin dosing regimens on HbA1c-lowering using
model-based simulations.

Methods

Study populations and data
As this population PK/PD modelling analysis was performed
to support the use of an FDC tablet of canagliflozin and met-
formin, only long-term studies having comparable patient
populations with metformin monotherapy as sole back-
ground AHA medication and including a placebo dosing
arm were used. Studies meeting these criteria were the QD
dosing canagliflozin studies (Study 1 [19] and Study 2 [20])
and the BID canagliflozin study (Study 3 [21]) for which pa-
tients received canagliflozin or placebo as add-on therapy to
metformin monotherapy at randomization. In total, 5764
PD (HbA1c) observations were available for 1347 patients
with T2DM, which included 352 patients from Study 1, 717
patients from Study 2 and 278 patients from Study 3.

In Study 1, patients with T2DM received 50, 100, 200 or
300 mg QD, or 300 mg BID canagliflozin, sitagliptin 100 mg
QD, or placebo as add-on to metformin for 12 weeks [19].
Blood samples for PD were taken at baseline and at weeks 6,
9 and 12, while PK was sampled predose at baseline and at
weeks 3, 6 and 12. In Study 2, patients with T2DM received
100 mg QD or 300 mg QD canagliflozin or sitagliptin
(52 weeks), or placebo (26 weeks) as add-on to metformin
[20], with PD samples taken at baseline and at weeks 6, 12,
18 and 26. Study 3 included T2DM patients who received
50 mg BID and 150 mg BID canagliflozin or placebo as add-
on to metformin for 18 weeks [21], and sampling for PD was
done at baseline and at weeks 6, 12 and 18. In all three stud-
ies, HbA1c estimation was carried out in the Diabetes
Diagnostic Laboratory, University of Missouri School of
Medicine using the boronate affinity chromatography
method. The studies were conducted according to the
Declaration of Helsinki, Good Clinical Practice guidelines,

and other applicable regulatory requirements. The study pro-
tocol and amendments for all three studies included in this
modelling were reviewed by an Independent Ethics Commit-
tee or Institutional Review Board, as appropriate, for each
site. Written informed consent was obtained from all patients
before enrolment.

A population PK model for canagliflozin was developed
previously on pooled exposure data comprising a total of
9061 PK samples from 1616 patients, including 5715 PK sam-
ples from 245 richly sampled patients and 3346 trough sam-
ples from 1371 sparsely sampled patients including those
from Study 1 [22]. Because this model was developed primar-
ily on QD dosing data, it was externally validated to ade-
quately predict the 24-h BID dosing profiles in observed in a
separate study (Supplementary Figure S1). The individual em-
pirical Bayes estimates for PK parameters obtained from the
population PK model for canagliflozin [22] were used to pre-
dict individual 24-h canagliflozin exposure profiles in this
study. As no canagliflozin PK samples were collected for Study
2 or Study 3, individual 24-h canagliflozin plasma exposure
profiles were predicted for patients in those two studies using
their baseline covariates and the canagliflozin population PK
model [22].

Model development was performed on an internal dataset
that pooled the QD dosing exposure–response data from
Studies 1 and 2 with baseline characteristics from all treat-
ment arms in Study 3, as well as postrandomization data from
the placebo arm in Study 3. The final model developed on the
internal dataset was validated on an external dataset
consisting of postrandomization exposure–response data
from the BID dosing canagliflozin arms of Study 3. The final
parameter estimates used for all simulation-based analyses
were obtained on the pooled internal and external datasets.
The baseline demographics for the pooled internal/external
dataset are listed in Table 1.

Population PK/PD model development
A dynamic population PK/PD model was developed by
linking the complete 24-h time profile of drug concentrations
to the time-profiles for HbA1c. The PK component consisted
of a two-compartment population PK model for canagliflozin
described earlier [22]. The PD component was based on a
well-established turnover model for HbA1c dynamics over
time, with a zero-order rate constant (kin) for HbA1c produc-
tion through haemoglobin glycation (a nonenzymatic and ir-
reversible reaction between haemoglobin and glucose), and a
first-order rate constant (kout) for elimination of HbA1c
through erythrocyte cell-death [23]. The individual empirical
Bayes PK parameter estimates from the population PK model
were used to predict individual 24-h plasma exposure
profiles, which were linked to the PD component using an
Emax model.

The population PK/PD analysis was performed using non-
linear mixed effects modelling as implemented in NONMEM
7.2.0 using the FOCE INTERACTION and ADVAN13 algo-
rithms [24]. An efficient method (method of averaging) was
developed to solve numerically the ordinary differential
equations of the population PK/PDmodel. This method is de-
scribed by Dunne et al., [25] and was used throughout the
analysis. Data set exploration and visualization, as well as
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statistical and graphical analyses and diagnostics were per-
formed using R for Windows (Version 3.0.1.).

Physiological considerations, graphical diagnostics and
comparison of competing models using the objective func-
tion values (OFV) in a likelihood ratio test guided the model
development, where a >10.83 points reduction of the OFV
(α = 0.001) for one additional parameter in nested models
was deemed significant. This significance level was chosen
to account for repeated model testing during development.
Different implementations of the various model components
were tested, such as the implementation of the treatment ef-
fects of canagliflozin and placebo (including the effects of
diet and exercise counseling) and their dependence on
HbA1c at baseline.

Interindividual variability in parameters was regarded as
random and was modelled using eta (η) variables (commonly
referred to as random effects). The individual η-values were as-
sumed to be normally distributed with a mean of zero and an
estimated variance (ω2). The distribution of the individual pa-
rameters around the typical population value was assumed to
be log-normal for parameters representing physiological
properties that can only take positive values to bemeaningful,
such asHbA1c at baseline, and normal for parameters that can
potentially attain negative values, such as the placebo effect.
Correlations between random effects were evaluated by
means of graphical assessment and tested by inclusion of co-
variance terms between Interindividual variability parame-
ters in the model. Residual variability was assumed to be

random and normally distributed. An additive error model
was used to describe the error on log-transformed data.

Covariate effects for age, body weight, body mass index,
sex, race and eGFR (calculated according to the MDRD for-
mula) were explored graphically on the empirical Bayes esti-
mates of the η-values in the final structural model, provided
shrinkage was sufficiently low (<25%). Thus determined in-
fluential covariates were evaluated at α = 0.001 level by a for-
ward inclusion and backward deletion procedure. In order to
evaluate the impact of delayed glucose absorption on HbA1c
lowering with 300 mg canagliflozin dose only, an additional
PD effect for the 300 mg canagliflozin dose strength was also
tested.

Model evaluation
The final population PK/PD model was evaluated using both
internal and external validation procedures. A visual predic-
tive check (VPC) was performed for internal validation to as-
sess the ability of the model to predict the observed data of
Dataset 1 adequately [26]. The final population PK/PD model
was externally validated by using it to predict the post-
treatment HbA1c observations of BID dosing from Study 3 in-
cluded in Dataset 2. Prediction of the external HbA1c obser-
vations was performed and a VPC was used to assess the
quality of the external predictions. Percent prediction errors
were calculated as PE% = 100 × (exp (DV)-exp(IPRED) / exp
(IPRED), where DV represents the log-transformed observed

Table 1
Baseline demographics (identical for both the internal and the pooled internal/external datasets)

Placebo 50 mg QD 50 mg BID 100 mg QD 200 mg QD 150 mg BID 300 mg QD 300 mg BID Total
n = 301 n = 60 n = 93 n = 346 n = 55 n = 93 n = 339 n = 60 n = 1347

Sex, n (%)

Men 146 (48.5) 31 (51.7) 40 (43) 171 (49.4) 29 (52.7) 44 (47.3) 158 (46.6) 26 (43.3) 645 (47.9)

Women 155 (51.5) 29 (48.3) 53 (57) 175 (50.6) 26 (47.3) 49 (52.7) 181 (53.4) 34 (56.7) 702 (52.1)

Age (years)

Median 57.0 53.5 58.0 54.0 55.0 58.0 55.0 56.5 56.0

Range (26.0–80.0) (33.0–65.0) (33.0–80.0) (27.0–78.0) (31.0–65.0) (29.0–79.0) (21.0–77.0) (32.0–65.0) (21.0–80.0)

Weight (kg)

Median 85.0 86.0 87.0 86.0 84.0 89.6 83.0 81.9 85.0

Range (45.3–164) (53.0–123) (55.2–163) (40.0–188) (54.0–133) (51.0–139) (47.0–168) (50.8–140) (40.0–188)

Body mass index (kg m–2)

Median 30.6 31.0 31.1 31.7 30.1 30.7 30.5 30.6 30.9

Range (19.7–46.6) (24.9–41.8) (21.6–55.4) (19.3–55.3) (24.9–44.4) (20.4–53.4) (18.1–73.0) (24.2–43.7) (18.1–73.0)

eGFR (ml min–1 1.73 m–2)

Median 86.0 92.0 85.0 90.0 88.0 86.0 89.0 100 89.0

Range (49.0–176) (57.0–150) (54.0–135) (45.0–165) (50.0–143) (50.0–138) (55.0–171) (35.0–150) (35.0–176)

HbA1c (%)

Median 7.6 8.0 7.5 7.7 7.4 7.4 7.8 7.5 7.6

Range (6.0–10.3) (6.5–10.0) (6.2–10.1) (5.5–10.5) (6.0–9.0) (5.6–9.8) (5.6–11.0) (6.0–9.8) (5.5–11.0)

BID, Twice-daily; eGFR, estimated glomerular filtration rate; QD, once-daily.
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values and IPRED represents the log-transformed individual
model predictions. Absolute percent prediction errors (|PE|
%) were computed to evaluate bias and precision of the
model predictions [27]. The compatibility of data and model
were assessed by comparing the values of PE% and |PE|% with
the 5th and/or 95th percentiles of their posterior predictive
distributions (PPD) under the model [28]. The PPD were esti-
mated by repeated simulation and re-estimation/prediction
(300 repetitions).

Model-based QD to BID bridging
Potential differences in HbA1c lowering effect between QD
and BID canagliflozin dosing regimens were evaluated using
the population PK model and final validated dynamic popu-
lation PK/PD model, respectively, to simulate subject-specific
concentration andHbA1c vs. time profiles. Simulated subject-
specific HbA1c change from baseline profiles were derived
from the latter and were used to evaluate the difference in
effect between QD and BID canagliflozin dosing regimens
for TDD of 100 and 300 mg. The population PK model [22]
was used to simulate 24-h steady-state subject-specific PK
concentration–time profiles using baseline covariate values
from the pooled internal/external dataset (100 simulations
per individual subject, for each dose regimen) and by simulat-
ing random effects from their estimated distribution (be-
tween-subject variation) without incorporating within-
subject variability. In this way, for each of the 1347 subjects
in the pooled internal/external dataset, 200 different 24-h
steady-state concentration–time profiles were simulated,
100 for QD dosing and 100 for BID dosing. The simulated
concentration-time profiles were then used in the final dy-
namic population PK/PDmodel (i.e. using the final estimated
parameter values from Table 2) to produce simulated subject-
specific HbA1c profiles. These were simulated using as input,
in addition to the simulated concentration–time profiles,
subject-specific baseline HbA1c values from the pooled
internal/external dataset, and incorporated both between-
and within-subject variability, with random effects and
within-subject errors simulated from the respective estimated
distributions. Moreover, to account for parameter estimation
uncertainty in the population PK/PDmodel, an additional layer
of randomness was added by generating for each subject-
specific simulated HbA1c profile, a set of model coefficients
(fixed effects, only), from the corresponding asymptotic distri-
bution of parameter estimates in the population PK/PDmodel.
This can be regarded as a parametric bootstrap approach to ac-
count for parameter estimation uncertainty in simulations.
We used only the fixed effects from the population PK/PD
model in the parametric bootstrap, asmodel sensitivity analysis
results suggested that the HbA1c predictions were relatively
insensitive to variation in the population PK parameters.

The simulated subject-specific HbA1c change from base-
line profiles were summarized per dose regimen and time by
their respective means and standard deviations. Graphical
analyses were used to evaluate the impact of dosing regimen
on the mean and variability of the model-derived HbA1c
change from baseline. A potential impact of baseline HbA1c
on dosing regimen effect differences was evaluated by group-
ing simulated HbA1c change from baseline profiles according
to simulated baseline value intervals.

Results

Dynamic population PK/PD model
Of all the models tested during model development, the dy-
namic population PK/PD model described below provided
best fit for the observed HbA1c data of the internal dataset
used for model development (see methods section). This
model integrated a turnover model for HbA1c [23] with
an Emax model relating the HbA1c-lowering effect of
canagliflozin to the canagliflozin plasma exposure at time
t using the following set of structural equations:

dH tð Þ
dt

¼ kin–Ef –kout H tð Þ (1)

Ef ¼ Ef c þ Ef p
� � H 0ð Þ–5

8–5
(2)

Ef c ¼ Emax
C tð Þ

C tð Þ þ EC50
(3)

Equation (1) describes the turnover model for HbA1c,
where H(t) is the HbA1c (%) at time t, kin and kout are rate
parameters related to haemoglobin glycation and red blood
cell turnover, respectively, and Ef describes the combined
HbA1c-lowering effects of canagliflozin and placebo

Table 2
Parameter estimates for the final population PK/PDmodel as fitted to
the pooled internal and external datasets

Parameter Estimate Std. Error

t½HbA1c (day) 28.2 2.24

Baseline HbA1c (%) 7.72 0.024

Variance of random effect on
baseline HbA1c

0.011 0.00044

Efp (%HbA1c @ steady-state, Study1) –0.483 0.062

Efp(%HbA1c @ steady-state, Study 2) –0.330 0.051

Efp (%HbA1c @ steady-state, Study 3) –0.137 0.057

Variance of random effect on Efp 0.369 0.026

Emax(%HbA1c @ steady-state) –0.738 0.070

Log(EC50) (Log(ng ml–1)) 4.12 0.54

Residual error variance 0.00182 0.00014

Study1: NCT00642278; Study 2: NCT01106677; Study 3:
NCT01340664; HbA1c: glycosylated haemoglobin
t½HbA1c = half-life of glycosylated haemoglobin turnover = log
(2)/kout
Efp = effect of placebo + diet and exercise on HbA1c at steady-state
for a typical patient (HbA1c at baseline 8.0%)
Emax = maximum placebo-corrected HbA1c-lowering effect of
canagliflozin at steady-state for a typical patient with HbA1c at
baseline of 8.0%
EC50 = exposure (C(t)) at which half-maximal effect is reached, the
estimate for log(EC50) corresponds to an estimate of 61.6 ng ml–1

on the normal scale.
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treatment. The rate parameter kout was estimated as a half-
life by scaling it over log(2) and the rate parameter kin
was estimated as the HbA1c (%) at time 0 (baseline) by
scaling it over kout (i.e. kin = H(0) / kout, see also Table 1).

The term Ef was derived in Equation (2), where Efc repre-
sents the exposure–response relationship of canagliflozin on
HbA1c (Equation (3)) and Efp represents the effect of placebo
treatment (including diet and exercise counselling) as a step
function activated for t > 0; these treatment effects were
found to be additive. Similar to kin, Efc and Efp were estimated
as scaled by kout in order to render their estimates in Table 1
more readily interpretable in terms of change in %HbA1c
from baseline at steady-state. Because baseline glycaemia is
known to affect the magnitude of glucose-lowering in re-
sponse to AHAs, [29] the combined effect parameter Ef was
scaled in Equation (2) by the estimated individual HbA1c at
baseline, H(0), normalized by a reference baseline HbA1c of
8.0%. In addition, because normoglycaemia is typically asso-
ciated with HbA1c values of ~5.0% and virtually no reduc-
tions in PG are observed in subjects with normoglycaemia
who are treated with canagliflozin, this term was corrected
for a lower boundary for HbA1c-lowering of 5.0%. This base-
line scaling of the treatment effects resulted in a highly signif-
icant reduction of the OFV by 305 points (135 points for
baseline scaling as such, plus 170 points for correction by a
lower HbA1c boundary of 5%).

Equation (3) describes the exposure–response relationship
between the HbA1c-lowering effect of canagliflozin, Efc, and
the canagliflozin plasma exposure at time t, C(t), where Emax

represented themaximal HbA1c-lowering effect of canagliflozin
at steady-state for a subject with a baseline HbA1c of 8.0%, and
EC50 was the canagliflozin plasma exposure at which the
half-maximal effect was reached. Estimating a Hill factor for this
Emax model did not result in an improvement of the model fit.
The final dynamic population PK/PD model as described above
by Equations (1)–(3) provided a satisfactory fit to the observed
HbA1c data of the internal dataset as per criteria listed under
Methods. Figure 1 shows that the dose groups were predicted
without significant evidence of bias, most notably 100 mg QD
and 300 mg QD doses.

Other than a highly significant effect of baseline HbA1c
on efficacy, no covariate effects could be identified on the in-
ternal dataset that satisfied the prespecified significance level
of P < 0.001 (see Methods). The strongest covariate effect
found was a power function of eGFR on canagliflozin efficacy
as described in Equation (4), yielding a drop of 5.6 points OFV
(P = 0.018) where Emax90 (representing the maximum
canagliflozin effect for a typical subject with an eGFR of
90 ml min–1 1.73 m–2) was estimated at –0.75% HbA1c and γ
was estimated at 0.46.

Emax ¼ Emax90 eGFR=90ð Þγ (4)

Because this term did not meet the prespecified significance
level, it was not retained in the model.

Model validation
The final population PK/PD model (Equations (1)–(3)) was
validated on the internal dataset by a VPC. The VPC plot in
Figure 2 shows no major systemic deviation between simu-
lated and observed data, and demonstrated that the model

adequately described in variability in the observed HbA1c
data. The model was externally validated by using it to
predict the post-randomization the HbA1c observations of
the 18-week BID dosing study in the external dataset (see
Methods). Figure 3 shows that themodel accurately predicted
the trends in the external dataset for both 50 mg and 150 mg
BID dose levels. The percent prediction errors (PE%) obtained
for external validation of the final population PK/PD model
remained well within the 5th and 95th percentiles of their
corresponding PPD [28] and the absolute percent prediction
errors (|PE|%) remained well below the 95th percentile of their
corresponding PPD (Table 2).

It follows that the canagliflozin BID dosing HbA1c obser-
vations from the external dataset could be predicted with
negligible bias and acceptable precision by the model as esti-
mated on the mostly QD dosing data from the internal
dataset. Therefore, the dynamic population PK/PD model de-
scribed by Equations (1)–(3) was retained for all subsequent
analyses and model-based simulations. Table 3 lists the final
parameter estimates for this model as fitted to the pooled in-
ternal and external datasets (comprised of all available obser-
vations from studies 1, 2, and 3).

Model-based QD to BID bridging
Based on the HbA1c change from baseline data simulated
from the population PK and population PK/PD models (un-
der similar baseline covariate values, including HbA1c, and
same study effect), BID and QD dosing at the same TDD were
found to be similar in terms of mean HbA1c lowering effect
(Figure 4). The differences in HbA1c reduction between BID
and QD mean profiles were minimal (at most 0.023% for
100 mg TDD and 0.011% for 300 mg TDD, up to week 26, in-
creasing with time and decreasing with TDD) and not

Figure 1
Box plots of the distributions of the random effect on Efp per dose
group for the fit of the dynamic population PK/PD model on the
internal dataset. BID, twice-daily; Efp, effect of placebo + diet and
exercise on HbA1c at steady-state for a typical patient (HbA1c at
baseline 8.0%); HbA1c, glycosylated haemoglobin; PK, pharmacoki-
netics; PD, pharmacodynamics; QD, once-daily
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considered clinically meaningful. Similar results were ob-
tained after conditioning on baseline HbA1c.

Discussion
The purpose of this study was to establish a robust relation-
ship between canagliflozin exposure and HbA1c response to
compare the effect of BID vs. QD canagliflozin dosing regi-
mens in support of the registration of the canagliflozin-
metformin IR FDC tablet [30]. To this end, a robust dynamic
model was developed by integrating a turnover model for
HbA1c [23] with an Emax model relating the HbA1c-lowering
effect of canagliflozin to its plasma exposure at time t. This
dynamic model was used to compare the predicted HbA1c
response time-courses between QD and BID canagliflozin
dosing regimens, and demonstrated that HbA1c change from
baseline was similar between QD and BID canagliflozin
dosing.

For model development, QD dosing HbA1c data were ob-
tained for the patient population that was comparable to the
patient population from Study 3 (18-week BID dosing study)
[21]. This dataset included patients from Study 1 (12-week
QD dosing study) [19] and Study 2 (26-week QD dosing
study) [20] with metformin monotherapy as sole background
AHA medication at screening, as well as baseline data from
Study 3 (internal dataset). Themodel was externally validated
on postbaseline BID dosing observations from Study 3 (exter-
nal dataset). Full 24-h plasma PK concentration–time profiles
were simulated per patient using a separately developed and

Figure 2
Visual predictive check of the final population PK/PDmodel on the internal dataset. BID, twice-daily; HbA1c, glycosylated haemoglobin; PD, phar-
macodynamics; PI, predicted interval; PK, pharmacokinetics; QD, once-daily

Figure 3
Visual predictive check of the final population PK/PD model on the
50mg BID and 150mg BID canagliflozin dosage arms of the external
dataset. BID, twice-daily; HbA1c, glycosylated haemoglobin; PD,
pharmacodynamics; PI, predicted interval; PK, pharmacokinetics;
QD, once-daily
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validated population PK model for canagliflozin [22] based
on its baseline covariates and, where available, observed
plasma trough concentrations (only for Study 1). The final
parameter estimates used for simulations were obtained on
the pooled internal and external datasets. Table S1 shows ad-
equate consistency between the observed and model-
predicted placebo-subtracted least square mean changes from
baseline in HbA1c at study visits (last observation carried
forward), which is the standard method for comparing study
results in diabetes drug development.

The placebo response in diabetes trials is known to be
highly variable, including variability within subjects over
time, variability between subjects within the same study pop-
ulation, and variability between study populations. Because
the mean change in HbA1c in placebo groups is usually small
relative to the placebo-subtracted differences in the active
treatment arms, it is generally accepted that the placebo-
subtracted efficacy is the best measure to use for assessing
the efficacy of AHAs. In this model-based analysis we have
conformed to this accepted practice by assuming an additive
relationship between the placebo effect and the canagliflozin
effect in Equation (2).

The HbA1c-lowering efficacy of canagliflozin and placebo
treatment was found to be highly dependent on the pre-
dicted HbA1c levels at baseline. This is consistent with the
finding that patients with higher baseline HbA1c had larger
reductions in HbA1c with canagliflozin 100 and 300 mg than
those with lower baseline HbA1c [26]. Indeed, it has been
demonstrated that, irrespective of drug class, the baseline
glycaemic status of patients who have been recruited into
clinical trials strongly influence the fasting PG and HbA1c
reductions following pharmacological intervention [29].
Other than this highly significant effect of baseline HbA1c
on efficacy, no significant covariate effects could be identi-
fied on the internal dataset.

Although a covariate effect of renal function (eGFR) on
canagliflozin efficacy was expected, [15, 16] it failed to reach
statistical significance at the prespecified level (α = 0.001),
possibly reflecting the patients with moderately impaired re-
nal function in the internal dataset. Given that patients with
moderate renal impairment were excluded from the patient
population for which the canagliflozin/metformin FDC is
indicated, and that the differences in eGFR between the
corresponding QD and BID dosing groups were small
(Table 1), this was not considered to be a relevant limitation
for this study.

In the external validation of the population PK/PDmodel,
the model-predicted that HbA1c profiles agreed well with the
observed profiles from the 50 mg and 150 mg BID dosing
arms of the external dataset (Study 3). Together with the pre-
vious internal model validation, this external validation con-
firmed the ability of the developed dynamic population
PK/PD model to accurately predict HbA1c-lowering for QD
as well as BID canagliflozin dosing regimens. A final fit of
the dynamic population PK/PDmodel on the pooled internal
and external datasets was performed to obtain parameter esti-
mates that could be used for simulations to compare the pre-
dicted efficacy of QD vs. BID canagliflozin dosing regimens.

Based on HbA1c change from baseline data simulated
from the population PK and PK/PDmodels, negligible greater
than average HbA1c-lowering was predicted for BID over QD
dosing regimens (at most 0.023% for 100 mg TDD and
0.011% for 300 mg TDD after 26 weeks of treatment). Such
small predicted differences in HbA1c-lowering between QD
and BID canagliflozin dosing regimens were not clinically
meaningful.

Table 3
PE% and |PE|% for the external validation of the final population pharmacokinetics/pharmacodynamics model on the post-randomization glyco-
sylated haemoglobin observations from the 50 mg and 150 mg BID dosing arms of Study 3(NCT01340664) and the 5th and/or 95th percentiles
of their posterior predictive distributions

Regimen Median 5th percentile of PPD 95th percentile of PPD

PE% 50 mg BID –1.1 –2.0 2.1

150 mg BID 0.0 –2.2 2.2

|PE|% 50 mg BID 4.2 – 6.6

150 mg BID 4.5 – 6.4

BID, twice-daily; PPD, posterior predictive distributions; PE, prediction error.
Percent prediction errors calculated as PE% = 100 × (exp(DV)-exp(IPRED)) / exp(IPRED), where DV = dependent variable and IPRED = individual
prediction; Absolute percent prediction errors (|PE|%) was computed as the absolute value of %PE.

Figure 4
Mean HbA1c change from baseline profiles per regimen and total
daily dose derived by averaging out the simulated subject-specific
HbA1c change from baseline profiles simulated from the population
PK and population PK/PD models. BID, twice-daily; HbA1c, glycosyl-
ated haemoglobin; PD, pharmacodynamics; PI, predicted interval;
PK, pharmacokinetics; QD, once-daily; TDD, total daily doses
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In conclusion, the dynamic population PK/PD model
adequately predicted the HbA1c profiles observed in the
18-week canagliflozin BID dosing study (NCT01340664),
[21] and showed good agreement between model-predicted
and observed reductions in HbA1c for 100 and 300 mg TDDs
given as QD and BID dosing regimens. Model-based simula-
tions predicted no clinically meaningful differences in effi-
cacy between QD or BID canagliflozin dosing regimens at
either 100 or 300 mg TDD. Therefore, patients on a stable
background medication of metformin who switch from
canagliflozin taken QD as individual tablets to a single FDC
tablet containing metformin and canagliflozin taken as BID
should experience similar glycaemic control. The results of
this modelling and simulation analysis supported the regula-
tory approval of the canagliflozin-metformin IR FDC tablet
and alleviated the need for an additional clinical trial to di-
rectly compare the efficacy of BID vs. QD dosing [30].
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Figure S1 Visual predictive check for the external validation
of the canagliflozin population PK model on the twice-daily
dosing study stratified per dose and per dose regimen. The
population PK model for canagliflozin as described in [22]
was used to simulate 200 databases using the study design
and covariate distributions of the external twice-daily dosing
study population. Dark grey solid line: median of
simulations; light grey solid lines: percentiles of 90% predic-
tion interval; white symbols: observed canagliflozin concen-
trations. Plasma concentrations are presented on the log scale
Table S1 Comparison of observed and model-predicted pla-
cebo-subtracted least square mean changes from baseline in
glycosylated haemoglobin at study visits (last observation
carried forward)
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