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Disease risk is a potential cost of group living. Although modu-
lar organization is thought to reduce this cost in animal societies,
empirical evidence toward this hypothesis has been conflicting.
We analyzed empirical social networks from 43 animal species to
motivate our study of the epidemiological consequences of mod-
ular structure in animal societies. From these empirical studies, we
identified the features of interaction patterns associated with net-
work modularity and developed a theoretical network model to
investigate when and how subdivisions in social networks influ-
ence disease dynamics. Contrary to prior work, we found that
disease risk is largely unaffected by modular structure, although
social networks beyond a modular threshold experience smaller
disease burden and longer disease duration. Our results illustrate
that the lowering of disease burden in highly modular social net-
works is driven by two mechanisms of modular organization: net-
work fragmentation and subgroup cohesion. Highly fragmented
social networks with cohesive subgroups are able to structurally
trap infections within a few subgroups and also cause a struc-
tural delay to the spread of disease outbreaks. Finally, we show
that network models incorporating modular structure are neces-
sary only when prior knowledge suggests that interactions within
the population are highly subdivided. Otherwise, null networks
based on basic knowledge about group size and local contact
heterogeneity may be sufficient when data-limited estimates of
epidemic consequences are necessary. Overall, our work does not
support the hypothesis that modular structure universally miti-
gates the disease impact of group living.
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ocial behavior is ubiquitous in vertebrates and arthropods.
An evolutionary product of sociality in animal populations is
group living. Group-living societies benefit from improved suc-
cess in intergroup competition, protection from predation, mat-
ing opportunities, cooperative care of young, foraging success,
and group defense. Conversely, group living is also associated
with the costs of elevated disease burden due to a higher fre-
quency of contact between hosts (1). Recently, it has been sug-
gested that modular subdivisions in social interactions alleviate
the association between group size and disease burden (2, 3).
Modular organization emerges in animal groups when sub-
sets of conspecifics consistently interact with each other more
often than they do with other individuals in the group, forming
subgroups. Such modular structure is widespread across social
networks in wildlife species, including relatively solitary species
(4, 5), and can emerge from a combination of social behavior,
demography, environmental, and landscape factors. However,
theoretical investigations of the impact of modularity on spread-
ing processes have produced mixed results in the past. Although
some studies have suggested that modular subdivisions reduce
transmission by creating structural bottlenecks (6-8), a few have
found modular structure to increase outbreak size due to higher
connectivity within subgroups (9, 10). This discrepancy in past
research implies the need to consider realistic ranges of modular-
ity (because not all animal social networks exhibit the high levels
of modular subdivision typically investigated in past studies) and
the need to mechanistically understand how modular structure
in social networks affects the dynamics of disease spread.
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Thus, we propose an empirically driven investigation of the
structural features of interaction patterns that are associated
with modular subdivisions in animal groups, including the ones
that change the degree of network fragmentation (i.e., the num-
ber of subgroups), promote subgroup cohesion (i.e., individual
preferences to interact with subgroup members), and drive vari-
ation in subgroup size (Fig. 1).

We have three objectives: (i) identify features of animal inter-
action patterns that increase the strength of modular organiza-
tion in their social networks; (if) explore the conditions under
which modular organization influences the dynamics of disease
spread and explain the mechanisms behind observed effects; and
(zif) investigate whether knowledge of modular organization in
animal social networks is necessary (and sufficient) to build accu-
rate contact network models of disease spread. Overall, our study
provides mechanistic insights on the context in which modular
structure influences infectious disease spread in animal popu-
lations. We further suggest the use of appropriate null models
when data-limited estimates of epidemic consequences in animal
groups are necessary.

Results and Discussion

Modular Organization and Disease in Animal Social Networks. We
obtained published (and publicly available) social networks for
69 groups across 43 animal species where edges can serve as
realistic routes of infection spread. Newman modularity, @, is
a commonly used measure to estimate the strength of subdi-
vision in networks (11). When @ =0, the density of interac-
tions within subgroups is equivalent to the density of interactions
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Fig. 1. Schematic representation of a homogeneous social network with
no modular subdivision (4) and highly modular social networks with high
cohesion within subgroups (B), high network fragmentation (C), and high
subgroup size variation (D). Each network has 60 nodes. Orange edges
indicate interactions within a subgroup, and purple edges are between-
subgroup interactions. Q is Newman modularity (11) and Q, is relative
modularity.

between subgroups. Higher values of Newman modularity indi-
cate stronger subdivisions of social networks. However, using
Newman modularity to compare modular subdivision across net-
works is problematic because the measure is inherently cor-
related to the size and number of links in the network (12).

This is because, in principle, we expect the maximum modu-
larity Qma. of all networks to be equal to one. However, for
smaller networks, Qmq. tends to be a much smaller value (Fig.
24). We therefore estimated relative modularity (obtained by
normalizing @ by Qmas) to facilitate comparison of modular
subdivision strength across different animal groups. Animal
social networks in our database ranged from homogeneous
(Qret =0) to highly subdivided structure (Fig. 24). Animal
interactions are dynamic in nature, and therefore social net-
works of the same set of individuals can also fluctuate between
being relatively homogeneous to highly modular over time
(Fig. 2B).

To gain intuition about how modular organization in ani-
mal social networks influences epidemiological outcomes, we
first generated homogeneous null networks for each empirical
animal social network in our database. In homogeneous null
networks, higher-order organization in social networks (such
as modular structure, clustering coefficient, cliquishness, and
degree homophily) are randomized, weakening relative modu-
larity (SI Appendix, Fig. S1), but individual contact heterogene-
ity (degree distribution) of the empirical network is preserved.
We next performed susceptible—infected-recovered (SIR) dis-
ease simulations of a moderately transmissible infectious disease
(basic reproduction number, Ro=1.2) through these empir-
ical networks and their homogeneous null network counter-
parts. Based on previous work suggesting a protective effect
of modular structure on disease risk (3, 6), we expected a
lower disease burden (measured as the proportion of popu-
lation infected) in empirical networks than in homogeneous
null networks. Reduced disease burden, however, was apparent
only in social networks with Q.. > 0.6 for moderately spread-
ing infectious disease (Fig. 2C and SI Appendix, Fig. S2). Addi-
tionally, none of the empirical networks demonstrated a major
reduction in disease burden for a highly transmissible infec-
tious disease (Ro =4.8, SI Appendix, Fig. S3). This implies that
the protective effect of modular subdivisions is realized only
at high values of relative modularity, but the presence of a
threshold depends on pathogen transmissibility (SI Appendix,
Fig. S3).
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Fig. 2. Animal social networks with modular subdivisions. (A) Values of Newman modularity, Q, and maximum possible modularity given the network

configuration, Qmax, across all animal groups in the database. Point color represents the relative modularity estimated as the ratio of Q over Qmax. The dashed
line represents Q = Qmax and the maximum value of Q.. = 1. (B) Relative modularity values of dynamic interactions in ants (Camponotus fellah), raccoons
(Procyon lotor), and field voles (Microtus agrestis), where time points represent consecutive days, weeks, and trapping sessions, respectively. (C) Comparisons
between real (filled points) and their homogeneous null networks (tips of arrows) with respect to the percentage of infected individuals (outbreak size)
due to an outbreak with basic reproduction number, Ry = 1.2. Point color corresponds to the taxonomic class of the animal group. Social networks with
nonsignificant modular subdivision (as indicated by t test analysis) have been excluded in C. The generated homogeneous null networks preserve only the
local heterogeneity of contacts among individuals; the arrows therefore indicate the change in direction and magnitude of outbreak size under the scenario
in which all higher-order structural complexities (including modular subdivisions) are removed from animal social networks. The shaded area represents the
region where empirical networks tend to experience reduced outbreak size (at Q. > 0.6; SI Appendix, Fig. S2). The networks that experienced lower
disease burden included social networks of raccoons (P. lotor), elephant seals (Mirounga angustirostris), ants (Camponotus pennsylvanicus), bottlenose
dolphins (Tursiops truncatus), and Australian sleepy lizards (Tiliqua rugosa). In A and C, we used a randomly selected network snapshot for groups with
temporal interaction data.
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Determinants of Modular Organization in Animal Social Networks.
Fig. 2C suggests that the epidemiological consequences of mod-
ular structure are context-dependent, depending on the strength
of relative modularity, and only above a certain threshold. Addi-
tionally, the extent of outbreak size reduction above the mod-
ularity threshold was fairly inconsistent across networks. This
could be due to varying features of interaction patterns driv-
ing modular subdivision in animal social networks. We there-
fore first turned our attention to some of these network fea-
tures, including the number of individuals present in the social
network (network size); (log of the) number of subgroups in the
social network (network fragmentation); preferential association
with own subgroup (subgroup cohesion, measured as the propor-
tion of total contacts that occur within subgroups); variation in
subgroup cohesion across the network; average and variation in
subgroup sizes; average and variation in number of individual
contacts (degree); and variation in contacts among subgroups
(subgroup degree variation). For groups that had multiple tem-
poral snapshots of a social network, we randomly selected one
snapshot network for the analysis to avoid intragroup correla-
tion in network metrics (and we analyze these temporal networks
separately below).

The mixed-effects beta-regression model identified three net-
work features driving modular organization in animal social net-
works: subgroup cohesion, network fragmentation, and subgroup
size variation (Table 1). Of the three factors, subgroup cohe-
siveness and network fragmentation had strong positive effects
on modular organization. Cohesiveness can be a direct result of
strong social bonds due to similar nutrient requirements [e.g., in
spotted hyenas (13)], time spent foraging together, or matrilineal
descent [e.g., in African elephants (14)]. High network fragmen-
tation, conversely, can be caused by constraints on resource den-
sity, resource distribution, or high intragroup competition [e.g.,
in brown spider monkeys (15)]. In contrast to network fragmen-
tation and subgroup cohesion, we found variation in subgroup
sizes to have a weak negative effect on network modularity.
Fluid subgroup sizes are common in many social species (e.g., in
spotted hyenas, elks, chimpanzees, bottlenose dolphins, and
African lions) and can be brought about by changes in resource
availability, intragroup aggression, demographic factors (such as
sex ratio), dominance hierarchy, and female reproductive state
(13, 15, 16).

Thus, far, we have considered only a single snapshot of interac-
tions for each animal group in our database for consistent com-
parison across species with unequal sampling efforts. However,
dynamic interactions between group members in fission—fusion
species, species with nomadic individuals, or species with season-
ally driven social interactions can change the level of network

Table 1. Multivariable analysis on determinants of modular orga-
nization (Q,,s) across groups of different species

Explanatory variable Effect size  95% confidence intervals
Intercept —0.42 —0.59 to —0.25
Network size —0.07 —0.17 t0 0.03
Network fragmentation* 0.66 0.51 to 0.82
Subgroup cohesion* 1.14 1.03 to 1.25
Subgroup cohesion variation —0.03 —0.14 10 0.08
Subgroup size average — —
Subgroup size variation* —0.13 —0.26 to —0.01
Individual degree average — —
Individual degree variation 0.07 0.04t0 0.18
Subgroup degree variation 0.01 —0.08 to 0.10
Random effects Variance estimate (o2)
Taxonomic order 0.066

Sociality <0.001

Asterisks and bold text indicate significance. Explanatory variables with
VIF > 5 were dropped from the model, and therefore their effect sizes were
not estimated.
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modularity over time (Fig. 2B). We therefore repeated the anal-
ysis by considering dynamic interactions for a few animal groups
for which such data are available. Consistent with our previous
analysis of aggregated interactions, we found that animals groups
become increasingly modular with higher subgroup cohesion or
network fragmentation (S Appendix, Table S1). In addition, vari-
ation in subgroup size and variation in contacts among subgroups
had a weak negative correlation on relative modularity within
animal groups.

The Impact of Modularity on Dynamics of Disease Spread. We have
shown that network fragmentation and cohesion within sub-
groups are associated with modular structure in animal social
networks. Do the two factors also determine the disease con-
sequences of modular subdivisions in animal social networks?
To answer this question, we used synthetic modular networks
generated using our model proposed in ref. 17. The model gen-
erates networks with a tunable strength of modularity, while
keeping other higher-order network features (such as degree
homophily, clustering coefficient, and path length) close to the
configuration realized in homogeneous networks (17). Because
several structural features of networks can influence disease
spread, this approach is appropriate to isolate the epidemiolog-
ical consequences of modular organization in social networks.
Performing SIR disease simulations on synthetic modular net-
works, we found that the magnitude of outbreak size experi-
enced by low modular networks (Qr.; < 0.6) was similar to that
of homogeneous networks ( Qr.; = 0). Outbreak size was reduced
only in extremely modular networks for moderately transmissi-
ble pathogens (Fig. 3 A and B). We corroborated our finding
that highly (but not low) modular networks inhibit global parasite
transmission by using empirical data to investigate the spread of
protozoan parasites Babesia in the social networks of field voles
(18) (SI Appendix, Fig. S11). In addition, we found no empiri-
cal evidence of structural trapping of a gastrointestinal parasitic
infection in the low modular social network of brown spider mon-
keys (19) (SI Appendix, Fig. S12).

We next quantified the robustness of modular social networks
toward disease spread in two ways. First, we estimated the min-
imum level of pathogen contagiousness below which there is
no risk of a large outbreak (epidemic threshold; solid line in
Fig. 34). We found networks with Q,.; > 0.6 to have a higher
epidemic threshold compared with homogeneous and low modu-
lar networks, implying that highly modular networks alleviate the
risk of large disease outbreaks for low contagious pathogens. Sec-
ond, for pathogen transmissibility beyond the epidemic thresh-
old, we calculated the minimum level of relative modularity in
which networks experience at least a 10% reduction in outbreak
size compared with homogeneous (Q; =0) networks (modu-
larity threshold; solid line in Fig. 3B). We found that networks
with @, > 0.5 mitigated disease spread for moderately con-
tagious (transmissibility = 0.08-0.16) but not highly contagious
pathogens (transmissibility > 0.16). Highly modular networks
(Qret >0.8) had a striking impact on disease transmission—
outbreak sizes of moderately transmissible pathogens were
reduced up to 58% compared with homogeneous networks.
Such highly modular networks, although rare, do occur in
some host interaction networks. In our database, three ani-
mal species demonstrated Q.; values of >0.8—raccoons (P.
lotor), field voles (M. agrestis), and northern elephant seals
(M. angustirostris).

The question then is why do not all levels of modularity
reduce disease burden in animal social networks? The relation-
ship between disease burden and modularity depends on the
tradeoff between local disease transmission within subgroups
and global disease spread (Fig. 3C). Compared with homoge-
neous networks (with Q,.; =0), modular networks experience
higher local transmission due to a high density of contacts within
subgroups; conversely, low intersubgroup contacts in these net-
works reduce global disease transmission (Fig. 3C). This tradeoff
balances the overall disease spread, and thus modular structure,
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Fig. 3. Overall disease implications of modular subdivisions in synthetic
modular networks. (A) Average outbreak size, measured as the percent-
age of infected individuals, over increasing subdivided social networks and
pathogen transmissibility. Outbreak size values have been normalized to the
maximum observed outbreak. The solid line indicates epidemic threshold—
namely, the threshold value of pathogen contagiousness below which there
is no risk of a large outbreak (> 10% outbreak size; Materials and Methods).
(B) Epidemic robustness of networks with increasing value of relative mod-
ularity, measured as the percentage reduction in outbreak size compared
with outbreak size experienced by homogeneous (Q,e = 0) networks. The
solid line indicates the modularity threshold, where networks experience at
least a 10% reduction in outbreak size. (C) Infection transmission events,
expressed as the percentage of total outbreak size, within subgroups (local)
and between subgroups (global); pathogen transmissibility = 0.18. (D) Dis-
ease implications of modular subdivisions as a function of subgroup cohe-
sion and network fragmentation (measured as the log-number of subgroups
present in the network).

under most conditions, does not lower disease burden. The con-
ditions under which modularity does reduce disease burden of
social networks is largely determined by the two factors underly-
ing network modularity—network fragmentation and subgroup
cohesion (Table 1). Synthetic networks that possess both high
subgroup cohesion and high network fragmentation experience
lower outbreak size compared with homogeneous and low mod-
ular social networks (Fig. 3C and SI Appendix, Fig. S6). In addi-
tion, high variation in subgroup sizes along with high subgroup
cohesion and fragmentation further reduce outbreak size and
increase outbreak duration in social networks (SI Appendix, Fig.
S7). Disease consequences in real animal social networks, how-
ever, tend to be driven by subgroup cohesion because they typi-
cally exhibit a much lower range of fragmentation and subgroup
size variation compared with subgroup cohesion (SI Appendix,
Figs. S4 and S9).

Mechanisms That Drive the Impact of High Modular Structure on
Disease Spread: Structural Delay and Trapping. We next examined
the mechanisms by which highly fragmented social networks
with cohesive subgroups experience reduced disease burden. The
presence of only a few interactions between highly cohesive sub-
groups increased the amount of time it took for an infection
to spread from one subgroup to another (the structural delay
effect; Fig. 44), causing longer disease outbreaks. When net-
works were fragmented into highly cohesive subgroups, the struc-
tural delay imposed by cohesion caused infection to be local-
ized to a small proportion of subgroups before dying out (Fig.
4B). Popularly known as structural trapping (20), this effect also
reduces the overall likelihood of a major outbreak by a novel
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infection in modular social networks. The structural trapping
effect (albeit weak) has been observed in a field study of pneu-
monia transmission in highly subdivided networks of bighorn
lambs (S Appendix, Fig. S13) (21) and others (SI Appendix, Table
S2). We also found empirical evidence of structural delay in the
spread of mycoplasma in the low-modular network, but highly
cohesive subgroups, of house finches described in ref. 22 (SI
Appendix, Fig. S14). A high probability of extinction associated
with the structural trapping effect has been reported in theoret-
ical studies of disease spread in spatially structured metapopu-
lation models (7, 8). We note that the magnitude of structural
trapping and delay depends on the contagiousness of the
infection—moderately transmissible pathogens spread slowly
through populations and are therefore able to perceive modular
structures present in networks. For rapidly spreading pathogens,
highly fragmented and cohesive networks do not contain, but
delay, the spread of disease to other subgroups, creating only a
structural delay effect.

Is Knowledge of Modular Structure Necessary (and Sufficient) to
Predict Disease Outcomes? Our investigations of disease conse-
quences on synthetic networks suggest that only modular sub-
division beyond a certain threshold can reduce disease burden of
moderately transmissible pathogens. Other topological features
of the network—and, in particular, heterogeneity in host con-
tact (23)—are, however, bound to confound the effect of mod-
ularity on infectious disease spread. Our work thus far assumes
high variation in contacts among individuals (24), although fac-
tors including sociality (25) and nonpersistent space use (26) are
known to reduce variation in individual contact rate. Does indi-
vidual contact heterogeneity then affect the way modular organi-
zation influences disease spread? We found that for social net-
works with low contact heterogeneity, high modularity brings
about a greater reduction in disease burden compared with net-
works with high contact heterogeneity (SI Appendix, Fig. S8).
These results imply that the local contact patterns should also
be considered when estimating the reduction of disease burden
in extremely subdivided social networks.

Although modular subdivision is a common feature observed in
many animal groups, it is often correlated with other higher-order
network structures, such as clustering coefficient and degree
homophily (27). In empirical networks, it is therefore impor-
tant to ask whether modular organization has any epidemio-
logical consequence above and beyond these network proper-
ties, after accounting for contact heterogeneity. To answer this
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Fig. 4. Mechanisms behind the effect of modular organization on disease
spread of a moderately transmissible pathogen (=0.1). (A) Structural delay
effect in a moderately fragmented network (fragmentation =2.30): We con-
sidered the time to disease invasion for a subgroup as the number of time
steps it takes for at least 2% of individuals to acquire infection. Subgroups
at the x axis are sorted according to the increasing disease invasion time.
(B) Structural trapping effect in a highly fragmented network (fragmenta-
tion =4.83): High fragmentation and subgroup cohesion localize infection to
a small proportion of subgroups in the social network. Structural trapping
also increases the likelihood of stochastic extinction of disease outbreaks.
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question, we performed disease simulations through 19 animal
social networks in our database and their modular null networks.
Modular null networks preserve the modularity level and degree
distribution of their empirical network counterparts, but ran-
domize all other network structure. We expected a high error
rate in outbreak size prediction from modular null networks if
other structural features mask the effect of modular subdivisions.
We also compared the performance of modular null networks
with that of homogeneous null networks, where all network struc-
ture, except degree distribution, was randomized (similar to the
networks used in Fig. 2C). We found low (but not zero) percent-
age error in outbreak size predictions from modular null networks
(Fig. 5 and SI Appendix, Fig. S9). Homogeneous null networks,
however, performed equally well in predicting disease outcome
for most animal social networks, except when relative modular-
ity of empirical networks was high (Qre; > 0.6). We note that this
Qre; value is similar to the threshold identified above (Fig. 2C
and SI Appendix, Fig. S2). For moderately transmissible infec-
tions, animal social networks experience low outbreak size at this
level of modular structure due to the structural trapping effect.
Homogeneous null networks do not preserve the modular struc-
ture of the empirical networks and, therefore, overestimate the
true disease burden. In contrast to moderately spreading infec-
tious diseases, slowly (Ro < 1) and rapidly spreading infections
are unaffected by higher-order complexities of the networks,
and therefore outbreak size estimates of homogeneous and
modular null networks are similar across all levels of relative
modularity (SI Appendix, Fig. S10). To empirically confirm the
results of our disease simulations, we compared the performance
of modular and homogenous null networks to predict outbreak
size of two Salmonella enterica strains in the Australian sleepy
lizards, T. rugosa, using data described in ref. 28 (SI Appendix,
Fig. S15). Congruent to the theoretical predictions, homogeneous
and modular networks produced identical and accurate outbreak
size predictions for the low-transmissibility strain. For the moder-
ately transmissible strain, conversely, modular null networks per-
formed better in estimating the true disease burden.

Conclusions

While modular social organization has been postulated to allevi-
ate the disease burden of group-living species, past evidence sup-
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Fig. 5. Percentage error in outbreak size predictions using modular

and homogeneous null networks for 19 animal social networks due to
an outbreak with Ry = 1.2. Percentage error is calculated as (Semp — Spun)/
Semp % 100, where S = outbreak size, emp = empirical network, and null are
modular or homogeneous null networks of the empirical network. The social
networks are ordered according to the increasing value of relative modularity
(red solid curve, secondary y axis). The shaded region indicates the range of
percentage error values <15%. BA, Brachyteles arachnoides; BB, Bison bison;
CC, Cercopithecus campbelli; CCR, Crocuta crocuta; CF, C. fellah; CP, C. penn-
sylvanicus; DC, dairy cattle; DR, Desmodus rotundus; HM, Haemorhous mexi-
canus; MA, M. angustirostris; MF, Macaca fuscata; MM, Macaca mulatta; MT,
Macaca tonkeana; PC, Papio cynocephalus; TR, T. rugosa; TT, T. truncates.
Numbers denote separate groups of the same species.
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porting this hypothesis has been equivocal. More importantly, the
features of interaction patterns that cause animal social networks
to be subdivided have not been identified before. In this study, we
resolved the ambiguity of past research on disease consequences
of network modularity in three ways. First, we introduced a nor-
malized version of Newman modularity called relative modular-
ity (Qre1) to allow comparison across networks of different sizes
and identified two distinct mechanisms that can lead to modu-
lar structure. Second, we systematically studied the epidemio-
logical consequences of modular organization by using a model
(17) that allows for the mechanistic generation of synthetic mod-
ular networks and null networks (of empirical animal social net-
works), while minimizing the presence of higher-order network
properties. Third, we combined published social networks across
43 animal species with this theoretical network model and bio-
logically realistic disease simulation to derive insights into disease
consequences of mechanisms of modular organization in animal
societies.

It has been hypothesized that subgroups in animal social net-
works reduce the disease costs of group living (2, 3). Contrary to
this hypothesis, our study shows that disease burden is largely
unaffected by modular subdivisions in animal groups, except
when social networks are extremely fragmented and have high
cohesion within subgroups. High subgroup cohesion and frag-
mentation in networks structurally trap moderately transmissible
infections to a few subgroups and therefore reduce the overall
disease burden. We note that, although overall disease burden
is unaffected at most levels of modularity, the design of control
strategy will vary for different levels of network modularity. An
effective intervention should aim to minimize global spread of
infection for low network modularity, but reduce local transmis-
sion at high network modularity. Because our analysis is based on
a systematic investigation of contagion spread in synthetic mod-
ular networks, the results of this study are potentially applicable
across a wide range of systems, including spreading processes at
higher ecological scales (SI Appendix, Table S2), infectious dis-
ease spread in human interaction networks and transportation
networks, and perturbation spread in metabolic and ecological
networks, as well as spread of information through communica-
tion networks.

Because this study involved meta-analysis of social networks
across a broad range of taxonomic groups, we made a num-
ber of simplifying assumptions that should be considered before
extending the results to a specific system. First, we filtered the
weights assigned to social interactions between individuals to
construct unweighted networks. This was because the impact of
weights (whether they represent frequency, duration, or inten-
sity of contact) on transmission potential is generally unclear
and usually context-dependent. We advise leveraging transmis-
sion studies in captive populations or historical disease spread
data, where available, to identify the appropriate weighting cri-
terion of contact networks. Second, we assume that the aggre-
gated static networks and temporal “snapshots” of dynamic net-
works in our database coincide with the temporal scale relevant
to infection spread in our disease simulations. Consideration of
the relevant time interval of animal interactions relative to the
transmission mode and infectious period of the pathogen, how-
ever, is crucial to developing accurate network models of disease
spread (7, 29). Because many animal interactions can be infre-
quent or intermittent, particularly between subgroups, aggre-
gating interactions over a small time window may ignore these
fleeting contacts and overestimate the modularity of social net-
works. Conversely, pooling interactions over large time windows
may amplify the role of temporary contact, and, consequently,
the social subgroups might appear more connected. In addition,
chronic infections with a long infectious period will be relatively
unaffected by high network modularity if the time scale of net-
work fluctuations is shorter than the average infectious period.
Acute infections with short infectious periods, however, will be
highly sensitive to the state of network modularity at the time of
disease outbreaks.
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This study suggests the presence of a high modularity thresh-
old, above which social networks experience reduced outbreak
size. However, we caution against the use of a single mod-
ularity threshold that is applicable to all systems. Multiple
behavioral, ecological, and epidemiological factors—including
pathogen infectiousness (Fig. 3B), infectious period, local con-
tact heterogeneity, seasonality of contacts, and transmission,
coupled with recruitment of susceptible through births—can
influence the Q,; threshold and the extent to which network
fragmentation and subgroup cohesiveness structurally trap and
delay infection spread. Therefore, to assess the disease implica-
tions of modular structure observed in specific social groups, we
recommend the use of null networks, as presented in this study.
Comparison of disease consequences on empirical network data
with those on a hierarchy of null networks clarifies whether mod-
ular structure is important. If natural history and limited obser-
vations suggest a species’ network will be highly modular, then
models that incorporate modularity should be used; otherwise,
homogeneous null models (based on basic knowledge about net-
work size and local heterogeneity) may be sufficient when data-
limited estimates of epidemic consequences are necessary.

Materials and Methods
Extended methods are provided in S/ Appendix, S| Text.

Measuring Modularity. We used modularity (Q) proposed by Newman (11)
to measure the strength of modular organization in networks. Modularity

w 2
can be definedas Q = >°F_, [L% - (LTk) }), where L is the total number

of edges in a subgroup k, of which Ly are the edges within the subgroup,
and L is the number of total edges in the network. Community structure, or
the number and composition of subgroups, for each animal social network
was estimated by using the Louvain method (30). The highest possible mod-
ularity in a network (Qmax) is achieved when all individuals in a subgroup k
only interact with each other and no edges are present between subgroups
(i.e., subgroups are disjointed). In other words, Qmax of a network is when
LY =Ly, and can be written as Qmax = Zf:1 LT" ( — LTk) We measured

the relative modularity of networks as Q¢ = W(\’ax

Mechanisms of Modular Organization. To examine the relative contribution
of factors such as network size, network fragmentation, average subgroup
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3.2.3). We treated the species nested within the taxonomic order of the ani-
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