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Abstract

Background—Data-driven approaches can capture behavioral and biological variation currently 

unaccounted for by contemporary diagnostic categories, thereby enhancing the ability of 

neurobiological studies to characterize brain-behavior relationships.

Methods—A community-ascertained sample of individuals (N=347, ages 18–59) completed a 

battery of behavioral measures, psychiatric assessment, and resting state functional magnetic 

resonance imaging (R-fMRI) in a cross-sectional design. Bootstrap-based exploratory factor 

analysis was applied to 49 phenotypic subscales from 10 measures. Hybrid Hierarchical Clustering 

was applied to resultant factor scores to identify nested groups. Adjacent groups were compared 

via independent samples t-tests and chi-square tests of factor scores, syndrome scores, and 

psychiatric prevalence. Multivariate Distance Matrix Regression examined functional connectome 

differences between adjacent groups.
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Results—Reduction yielded six factors, which explained 77.8% and 65.4% of the variance in 

exploratory and constrained exploratory models, respectively. Hybrid Hierarchical Clustering of 

these 6 factors identified 2, 4, and 8 nested groups (i.e., phenotypic communities). At the highest 

clustering level, the algorithm differentiated functionally adaptive and maladaptive groups. At the 

middle clustering level, groups were separated by problem type (maladaptive groups; internalizing 

vs. externalizing problems) and behavioral type (adaptive groups; sensation-seeking vs. 

extraverted/emotionally stable). Unique phenotypic profiles were also evident at the lowest 

clustering level. Group comparisons exhibited significant differences in intrinsic functional 

connectivity at the highest clustering level in somatomotor, thalamic, basal ganglia, and limbic 

networks.

Conclusions—Data-driven approaches for identifying homogenous subgroups, spanning typical 

function to dysfunction not only yielded clinically meaningful groups, but captured behavioral and 

neurobiological variation among healthy individuals as well.
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Introduction

The limitations of categorical definitions of psychiatric illness for clinical practice (1) and 

psychiatric research (2) are increasingly apparent. While diagnostic labels defined in 

nosological systems such as the Diagnostic and Statistical Manual of Mental Disorders 

(DSM (3)) are needed for clinical practice, these systems impede the search for 

pathophysiological markers using epidemiologic, genetic, and neuroimaging approaches (4). 

Given growing recognition of these limitations, the Research Domain Criteria (RDoC) 

Project has called for the development of a new nosology (5). In response, empirical data are 

being used to identify target phenotypic domains and constructs to characterize 

psychopathology and guide psychological and neurobiological investigations.

Not surprisingly, how to best delineate phenotypic domains/constructs to guide a non-

syndromal research framework is uncertain (6). Inherent to this pursuit is the varying utility 

of categorical and dimensional frameworks. While dimensional models of psychopathology 

are widely supported (7–9), fully dimensional perspectives have limitations with respect to 

clinical decision-making (10, 11). Further, it is unclear whether it is more expedient to 

derive phenotypic targets from existing models (based on existing data and theory), data-

driven analytic approaches (12, 13), or some combination. Psychiatric classification systems 

have variable derivations spanning clinical/research observations (e.g., DSM) to empirical 

assessment (e.g., Achenbach System), with other entities exhibiting a combination (e.g., 

RDoC). Consensus-driven methods (e.g., DSM; also arguably RDoC – see (14)) can 

certainly provide valuable insights; however, data-driven approaches may be crucial for 

identifying more behaviorally refined biological phenotypes (15) to address the profound 

heterogeneity evident in health and illness (16, 17). Fair, Nigg, and colleagues recently 

demonstrated the potential value of delineating groups by similarity/dissimilarity of 

individual phenotypic profiles (e.g., neuropsychological profiles, temperament profiles). 
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Adopting community detection methodologies from graph theory, they successfully 

identified: i) six distinct neuropsychological profiles that capture normal variation and are 

modified by Attention-Deficit/Hyperactivity Disorder (18) and ii) three temperamental 

phenotypes that showed intriguing biological differences as well as differential clinical 

outcomes (19).

Here, we used the Nathan Kline Institute Rockland Sample (NKI-RS)(20), a deeply 

phenotyped, community-ascertained multimodal imaging sample. Using data from adult 

participants (ages 18–59) in the NKI-RS, we aimed to identify data-driven phenotypes, 

based on core behavioral features representing several domains of function (including 

personality/temperament, symptom features, interpersonal functioning, and behavioral 

tendencies). Our first aim is to identify phenotypic dimensions that accurately represent 

meaningful variation across multiple domains of behavior. Accordingly, we conducted a 

bootstrap-based exploratory factor analysis on 49 subscales derived from 10 measures 

obtained for 347 participants. The second aim is to identify a nested hierarchy of 

homogenous participant groups via hybrid hierarchical clustering of participants, based on 

the factor profiles that we previously identified. To provide a phenotypic characterization of 

the participant groupings identified, we used DSM-IV labels and Achenbach’s Adult Self-

Report (ASR (21)) – neither of which were included in the factor analysis. The third aim is 

to examine multivariate intrinsic brain functional connectivity differences among adjacent 

clusters/groups (derived from the first two aims).

Materials and Methods

Participants

Participants were recruited as part of the NKI-RS (20), a community-based sample of 

approximately 1,000 participants, ages 6–85 years. To ascertain a cohort approximating a 

representative sample, exclusion criteria were minimal. Notably, comorbid medical 

conditions and medications (including psychotropics) were permitted. Written informed 

consent was obtained from all participants in accordance with local Institutional Review 

Board oversight. The following inclusion criteria were applied: (i) ages 18–59; (ii) absence 

of serious head injury and/or major neurological disorder; (iii) negative history of bipolar 

disorder or psychosis; (iv) negative drug test for commonly used illicit drugs with no 

therapeutic analogs/applications; (v) at least 95% completion of each self-report measure 

examined.

Subject Phenotyping

All participants completed the Structured Clinical Interview for the DSM (SCID (22)), and 

the Edinburgh Handedness Inventory (EHI (23)), in addition to measures reflecting clinical 

symptom domains, personality/temperament, and broad behavioral characteristics (see Table 

S1; also (20)). We selected subscales rather than individual items or full-scale scores to 

balance depth of assessment and amount of data per subject.
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MRI Acquisition

Imaging data were collected on a 3T Siemens TIM Trio system equipped with 32-channel 

head coil. Both structural and resting state functional magnetic imaging (R-fMRI) data were 

acquired. The structural image was a T1-weighted magnetization prepared gradient echo 

sequence (MPRAGE): TR=1900 ms, TE=2.52 ms, flip angle=9°, 176 slices, 1 mm3 isotropic 

voxels. The R-fMRI data were acquired via multiband echo-planar imaging (MB-EPI(24)) 

with the following parameters: volumes=900, TR=645 ms, TE=30 ms, flip angle=60°, 3mm3 

isotropic voxels.

Phenotypic Analysis

Data Screening—All self-report data were checked for univariate and multivariate 

outliers. We also tested the assumption of missingness at random (MAR(25)). Missing data 

were imputed using an expectation-maximization algorithm (26).

Dimension Reduction—For each participant, we created a multidimensional phenotypic 

profile using 49 subscale scores obtained from 10 questionnaires. Given modest 

intercorrelations among the questionnaires, we next performed an exploratory factor analysis 

to obtain a reduced set of dimensions. Analyses were done on age- and gender-regressed 

residuals of the 49 subscale scores to minimize the impact of these demographic variables on 

clustering (27). Parallel analysis (28) of 10,000 permutations of the raw data (29), was used 

to determine number of factors, comparing eigenvalues for each factor from the raw data to 

the 95th percentile of eigenvalues from the permutations. Maximum likelihood factor 

estimation with varimax rotation was used to estimate six factor loadings for each subscale 

score. Confidence intervals for factor loadings were estimated from 10,000 bootstrapped re-

samplings (30). To minimize factor intercorrelations, factor loadings overlapping zero (95% 

CI) and/or exhibiting values < |0.25| were set to 0 in a restricted model. Factor scores (i.e., 

equivalent of latent value per factor) were computed using regression estimation (31).

Clustering Analysis—Categorical approaches (e.g., DSM) confer the ability to delineate 

unique combinations of above-threshold impairments in subsets of individuals. Building on 

this strength, a central goal of the present work is to identify phenotypically distinct 

groupings of participants among the larger sample (akin to categories), based on their 

dimensional 6-factor phenotypic profiles. Specifically, we implemented hybrid hierarchical 

clustering (HHC)(32) using tree-structured vector quantization (33) to identify nested 

participant groups based on Euclidean distances between participant factor score profiles. 

HHC combines agglomerative and divisive clustering by (i) identifying mutual clusters (i.e., 

groups of data that are exceptionally close to one another and as a group, distant from all 

others) via agglomerative clustering, (ii) implementing constrained divisive clustering 

(retaining mutual clusters), and (iii) applying additional divisive clustering, which explores 

the division of mutual clusters. In combination with visual examination of the dendrogram, 

we used the Calinski-Harabasz criterion (CHC)(34) at each cluster number to inform cut 

decisions (i.e., where to divide into subgroups).

Cluster comparisons—Pair-wise comparisons were made among adjacent clusters at 

each level using EFA, ASR (21), and SCID profiles. EFA scores were fully dimensional, 
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while the ASR and SCID diagnoses were categorical. A categorical version of ASR scores 

was achieved by mimicking common clinical strategies for its use, which apply cut-scores to 

identify meaningful psychopathology. For each grouping of participants identified via 

cluster analysis, we calculated the percentage of individuals exhibiting standardized scores 

(T-scores) ≥ 60 within each ASR domain. The cutoff of 60 was chosen to increase 

sensitivity to subthreshold symptoms of potential relevance. EFA scores were compared 

using independent sample t-tests, while ASR proportions and Psychiatric Diagnoses were 

compared using chi-square tests. We also conducted t-tests on continuous ASR scores, 

reported in Supplemental Information.

MRI Data Processing

R-fMRI Preprocessing—Data were preprocessed using the Configurable Pipeline for 

Analysis of Connectomes (C-PAC; http://fcp-indi.github.io), which combines tools from 

AFNI (http://afni.nimh.nih.gov/afni), FSL (http://www.fmrib.ox.ac.uk), and Advanced 

Normalization Tools (ANTs; http://stnava.github.io/ANTs), using Nipype (35). 

Preprocessing included: (i) motion correction, (ii) mean-based intensity normalization, (iii) 

nuisance signal regression, (iv) temporal band-pass filtering (0.01–0.1 Hz), (v) co-

registration of functional to structural images using boundary-based registration (36) using 

FSL’s FLIRT (37), (vi) normalization of functional to MNI152 template (38) by applying a 

nonlinear transform from ANTs, and (vii) smoothing with a full-width-at-half-maximum 

6mm Gaussian kernel. Nuisance regression removed linear and quadratic trends to account 

for scanner drift, 24 motion parameters, and 5 “nuisance” signals, identified via the 

component correction approach (CompCor (39)).

Multivariate Distance Matrix Regression (MDMR)—At each level of the hierarchy 

identified via HHC, we used MDMR to compare voxel-wise functional connectivity profiles 

between adjacent phenotypic groups (e.g., C1 vs. C2, C1a vs. C1b, C2a vs. C2b).

MDMR was performed on a voxel-by-voxel basis. At each voxel, the following three steps 

were carried out: (i) for each participant, Pearson’s correlations were computed between the 

target voxel and all other voxels within a specified brain mask; this step generated, for each 

participant, a whole-brain functional connectivity for the target voxel; (ii) a between-

participant distance matrix was computed, in which each entry is the distance between the 

connectivity maps obtained for the target voxel in two different participants. Distance is 

defined as √(2 * (1 – r)), where r is the spatial correlation of the connectivity maps obtained 

at the target voxel in two different individuals; the range of this distance metric is 0 

(perfectly correlated) to 2 (perfectly negatively correlated), where 1 reflects no correlation. 

Importantly, these distances are calculated independent of any phenotypic relationships; (iii) 

a pseudo-F statistic was computed to provide mathematical evaluation of the relationship 

between the variability in the distance matrix (40) computed in step ii and the variable of 

interest (i.e., group membership). Thus the pseudo-F value at each voxel tells us whether the 

functional connectivity profiles for that voxel varied among individuals as a function of the 

phenotypic group membership (e.g., C1 vs. C2, C1a vs. C1b, C2a vs. C2b).

Van Dam et al. Page 5

Biol Psychiatry. Author manuscript; available in PMC 2018 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://fcp-indi.github.io
http://afni.nimh.nih.gov/afni
http://www.fmrib.ox.ac.uk
http://stnava.github.io/ANTs


MDMR was applied using the ‘Connectir’ package in R (http://czarrar.github.io/connectir) 

on resampled, 4mm3 isotropic voxels. Computations were constrained to a study-specific 

group mask, including only voxels present across all participants and contained in a 25% 

probability gray-matter MNI mask. The MDMR model (at each level of the dendrogram) 

specified cluster membership (categorical) and age, sex, hand laterality, and mean framewise 

displacement (FD) as covariates.

Consistent with prior work, voxel-wise significance of the pseudo-F statistic was determined 

via estimation of the null distribution with random permutation (n=10,000) for each cluster/

community comparison (40). Recent work has raised concerns about potentially inflated 

type I error rates with Random Field Theory (RFT) cluster thresholding approaches (cf. (41, 

42)). These concerns are primarily applicable to parametric tests; non-parametric approaches 

are likely less prone to such inflations. However, we have chosen a more conservative 

thresholding approach than those used in prior studies implementing MDMR. Specifically, 

we corrected for multiple comparisons using cluster-based permutation (n=5000) with a 

height threshold of Z ≥ 2.33 (p < 0.01) and cluster extent probability of p < 0.05.

Given that lower levels of the hierarchy had few participants per group, statistical power in 

these comparisons would be expected to be notably lower. For illustrative purposes, we 

repeated analyses using less stringent criteria (voxel-wise p < 0.05; RFT-corrected p < 0.05) 

and included these results in the Supplementary Information.

Results

Demographic and diagnostic information is provided in Table 1. Details about data 

screening are provided in the Supplementary Information.

Dimension Reduction

Parallel analysis suggested 7 factors (see Figure S1), though the 7th factor exhibited factor 

loadings whose bootstrap-based 95% confidence intervals overlapped 0. Thus a 6-factor 

solution was estimated with maximum likelihood-based exploratory factor analysis, 

accounting for 77.8% of the variance. The constrained model (eliminating low-loading 

items) accounted for 65.4% of the total variance; standardized factor loadings are presented 

in Table S3. Correlations between latent factor scores and regression estimates are displayed 

in Table S4. Primary factor loadings and example items for each subscale are provided in 

Figure 1. The 6 retained factors were interpreted as follows (see Figure 1): (i) General 

Distress & Impairment, (ii) Conscientiousness, (iii) Sensation & Risk Seeking, (iv) 

Frustration Intolerance, (v) Contextual Sensitivity, and (vi) Neuroticism & Negative Affect. 

Details about each of the factors are provided in Supplementary Information.

Cluster Analysis

Visual inspection of the dendrogram suggested three clear cut-points, yielding 2, 4, and 8 

groups, respectively. The largest CHC value was observed at k=2 and stable subgroups 

(operationalized as values of k wherein CHC did not change appreciably from the prior 

solution (i.e., local minima)) at k=4 and k=8. Visual examination of participant-by-
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participant squared Euclidean distance matrices supported the face validity of these cut-

points (see Figure 2).

Phenotypic Cluster Differences

At all 3 levels of the dendrogram (i.e., 2-, 4- and 8- cluster solutions), the participant groups 

differed from one another with respect to their phenotypic profiles. Due to space limitations, 

we limit reported findings beyond the first level (C1 vs. C2) to those along the C2 arm 

(which exhibited more psychopathology-like patterns). Phenotypic results along the C1 arm, 

as well as for both groups together are provided in Supplementary Information.

Level 1—Results at level 1 were robust, reflecting broad-reaching group differences that 

spanned nearly all domains. More specifically, cluster 1 (C1) participants exhibited higher 

levels of adaptive functionality and cluster 2 (C2) higher levels of maladaptive functionality; 

significant differences were noted in nearly all measures included in the three phenotypic 

profiles examined (Exploratory Factor Analysis [EFA], Achenbach Adult Self-Report 

[ASR], Psychiatric Diagnosis [SCID]) (see Figures 3, S2). To facilitate comparison, we also 

depicted phenotypic findings as heatmaps (and using a continuous score on the ASR) in 

Figure S3.

Level 2—The second level (k=4) subdivided C1 (C1a and C1b) and C2 (C2a and C2b). C2 

(functionally maladaptive group) was further divided into internalizing (C2a) and 

externalizing (C2b) problem characteristics. C2a had significantly higher ASR scores across 

all internalizing domains (see Fig S3). C2a also exhibited significantly higher rates of any 

lifetime psychiatric diagnosis and lifetime depression. C2b exhibited significantly higher 

levels of Sensation and Risk Seeking on the EFA Factor Profile and significantly higher 

levels of ASR externalizing problems (see Figure 3).

Level 3—The third level (k=8) divided the 4 clusters from level 2 into 8 total sub-clusters 

(two clusters at level 3 for each cluster at level 2). Significant pairwise differences in ASR 

domains were largely a difference of magnitude (see Figures 3, S2, S3). Overall there were 

few significant pairwise differences between sub-clusters in DSM diagnoses, though notably 

C2a2 exhibited more current psychopathology than C2a1.

Multivariate Intrinsic Connectivity Differences Among Clusters

With permutation-based cluster correction, only MDMR findings from the first level (C1 vs. 

C2) survived multiple comparison correction (see Figure 4; see Table S8 for functional 

peaks). This is not surprising given the larger number of participants in each group at the 

first level (C1-functionally adaptive: n = 165; C2-functionally maladaptive: n =115), 

compared to the lower levels, which subdivided the sample into 4 and 8 groups, respectively.

Three clusters were identified for the first level comparison of C1 vs. C2. The largest cluster 

(k=133,248mm3, p=.0005) included the bilateral primary and secondary somatosensory 

cortices, as well as premotor, motor, and supplementary motor regions and was 

approximately centered on the midline near the supplementary motor area (X=0, Y=−20, 

Z=54); it also extended bilaterally to the lateral temporal lobes. These regions have been 
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implicated in bodily self-awareness (43) and interoception (44), and identified as comprising 

a major hub (45) and critical network (46) of the functional brain. Additionally, emerging 

evidence suggests an important role for the somatosensory/somatomotor hub in high 

prevalence psychopathology (e.g., (47, 48)).

The second largest cluster (k=27,323mm3, p=.0061) was approximately centered on the left 

thalamus (X=−16, Y=−20, Z=14). In addition to a large thalamic contribution, the cluster 

included limbic regions (e.g., hippocampus, amygdala), decision-making regions (e.g., 

caudate, putamen), and various language (e.g., lingual gyrus) and vision regions (e.g., 

fusiform gyrus). It also extended from the left to right thalamus into the right caudate and 

putamen. The cluster comprised thalamic and basal ganglia regions commonly implicated in 

models of mental illness that emphasize thalamocortical and frontostriatal contributions 

(e.g., (48, 49))

Finally, the third cluster (k=14,528mm3, p=.0167) was approximately centered on the right 

hippocampus (X=32, Y=−24, Z=−18) and was largely comprised of right limbic regions 

(e.g., hippocampus and amygdala), as well as the caudate/putamen, fusiform gyrus, and 

middle and posterior insula. The regions implicated in this cluster, especially the right 

hippocampus and amygdala, are commonly associated with automated emotional processing 

(e.g., (50)), particularly of the kind related to high prevalence psychopathological alterations 

(e.g., (51)). Regions herein have also been identified as part of the medial temporal lobe 

subsystem of the default mode network (DMN)(52).

See supplementary materials for MDMR findings obtained at the 2nd and 3rd level of the 

dendrogram using a more liberal thresholding strategy.

Discussion

Traditional psychiatric nosology comprises heterogeneous categories with few meaningful 

neurobiological correlates. The present findings illustrate the utility of data-driven 

approaches to: (i) derive relevant phenotypic dimensions from diverse measures, (ii) identify 

interpretable groups from hierarchical clustering of dimensional variables, and (iii) use 

nested groups to examine potential neurobiological differences.

Our findings suggest that inclusion of instruments with normal distributions (i.e., not 

truncated due to an assessment floor, such as an absence of symptoms; e.g., the NEO-FFI, 

ATQ) can be critical to defining relevant groups in population-based classification and 

among high-prevalence conditions (e.g., anxiety, depression, substance use). While most 

individuals in the functionally adaptive group had truncated scores on syndrome-focused or 

problem-focused measures, our inclusion of bipolar scales allowed us to delineate further 

subgroups. The present work also highlights the value of including assessment tools that 

capture positive or protective factors rather focusing solely on syndrome characteristics or 

problems. For example, conscientiousness, a personality characteristic associated with health 

and well-being (53), was a large contributor to differentiating groups at the highest and 

lowest levels of the nested hierarchical classification. Protective factors are rarely assessed in 
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syndrome- or problem-focused assessments, though they can have important implications for 

presentation and prognosis among neuropsychiatric conditions (54).

Within the limitations of the current sample size, the present work demonstrated the value of 

pursuing nested subgroups within both the functionally maladaptive (C2) and functionally 

adaptive (C1) participant groupings. Of concern, it is possible that the groups merely 

recapitulated the theories on which some of the measures were predicated. It is important to 

note, however, that no single scale had its sub-scores distributed in a manner that could 

explain all components derived from the factor analysis (arguably, the NEO-FFI came the 

closest). We observed novel combinations of subscales in the factors derived, reflecting a 

range of psychiatric symptoms, personality features, and protective/risk factors.

The present data also show the value of using broad behavioral characteristics to identify 

groups to examine potential neurobiological differences. Multivariate comparisons of 

intrinsic connectivity were implemented at three different clustering levels, though the 

findings only passed stringent multiple comparisons correction at the first level, where 

power was the largest. The connectome differences observed between the functionally 

maladaptive and adaptive groups (C1 vs. C2) at the first level were evident within (i) the 

somatomotor network, (ii) thalamic and basal ganglia regions, and (iii) the amygdala and 

extended hippocampal complex.

The somatomotor network is a somewhat novel functional target in the context of identifying 

potential imaging biomarkers of the tendency towards psychiatric illness. While known as a 

key hub (45, 46) of the functional brain, the potential role in psychopathology of the 

somatomotor network is only beginning to be recognized (47, 48). The somato-sensory/

motor network is intimately involved in bodily self-consciousness and interoception (43, 

44), processes that are increasingly implicated in predictive outcome models (55), especially 

for neuropsychiatric illness (56). At a coarse level of group differentiation (e.g., functionally 

maladaptive vs. functionally adaptive), these results underscore the potential importance of 

subjective valuation and bodily states in making interactional predictions that may be 

fundamentally altered as part of the pathophysiology of psychiatric illness.

Somewhat less novel, connectomic alterations in the thalamus and basal ganglia, as well as 

the amygdala and extended hippocampal complex, underscore the importance of basic 

cognitive functions (e.g., attention, working memory), as well as reward and emotion/

saliency in delineating adaptive from maladaptive function. This latter finding lends support 

to the RDoC-style approach to examining domains rather than syndromes or diseases. On 

the whole, the intrinsic connectivity findings indicated potential new targets associated with 

adaptive and maladaptive function, while affirming existing targets, which suggests 

neurobiological validity of our data-driven group assignments.

Limitations

A number of steps were taken to protect against over- or under-fitting the number of factors 

and provide robust estimates of which subscales loaded on which dimension. Factor number 

was determined via parallel analysis, factor structure was based on bootstrapping the raw 

data, and bootstrap-based confidence intervals were computed for estimates of standardized 
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factor loadings. Despite all this, a separate confirmatory sample will be necessary to validate 

the replicability of the factor structure and the groups identified.

The different response formats of the questionnaires could potentially have lead to clustering 

of items by comparable response format and hence, recapitulation of the original scale factor 

structure. There was little evidence of such a result, though. To overcome clustering as a 

function of similar response formats, all questions would have to be administered with the 

same response format. However, such an approach would require extremely large samples 

and known psychometric properties of the scales would be forfeited.

Significant connectome-wide differences decreased dramatically beyond the first level of 

hierarchical classification. Results at lower levels were only significant with less stringent, 

RFT multiple comparisons correction (see Supplementary Information). There are at least 

three plausible reasons for this decrease in significant findings: sample size, group 

homogeneity, and demographic differences. Average sample size was halved for each 

incremental level of the hierarchy. Thus, one contributor may merely be decreased power. 

Another potential factor is increasing subgroup homogeneity: group factor profiles became 

progressively more similar to one another at lower levels of the hierarchy. Demographic 

differences may also contribute to smaller connectome-wide differences at more refined 

levels of subgroup detection; groups may become more demographically similar as they 

become more behaviorally homogenous. However, cluster analyses were conducted on age 

and gender regression-residuals, mitigating some concerns regarding the influence of these 

demographic variables.

While biomarker differences may diminish as subgroups become more similar, it is exactly 

these kinds of comparisons that will ultimately permit differential classification based on 

differences in neurobiology (57). Larger samples within specific diagnostic categories and/or 

problem domains will likely provide more power to detect differences among more similar 

groups (e.g., (18, 19, 58)) and can also remedy some of the problems that arise in 

exploratory analyses requiring complex multiple comparisons correction. By combining 

population-based, data-driven categorization and diagnostically focused pattern assessments, 

we can begin to compare the value of different classification methods. Currently, diagnostic 

heterogeneity is so marked that only extremely large samples (58) or time-consuming 

separation into individual diagnostic criteria permit head-to-head comparison of both 

methods (59).

Finally, while the present work focused on phenotypic information alone for group 

classification/detection, alternative approaches might permit classification based entirely on 

neurobiology or on a combination of neurobiology and behavioral features. We opted to 

avoid classification purely on neurobiology as such approaches are complex (60), and 

interpretation of behavioral characteristics can be tricky when groups are clustered entirely 

on neurobiology. A potentially valuable alternative is analytic approaches that 

simultaneously consider phenotypic and neurobiological information (61).
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Conclusions

Psychiatry is limited by a lack of validated biobehavioral tests and extensive heterogeneity 

within diagnostic categories. In addition to consensus-based approaches to reframing the 

current nosology (e.g., RDoC), data-driven approaches to delineating homogenous 

subgroups, spanning adaptive to maladaptive function can yield clinically meaningful groups 

with potentially important neurobiological differences. In doing so, it will be important to 

consider not just symptoms of psychiatric illness (i.e., deficits or problems), but also features 

of psychiatric health (i.e., strengths or protective factors). Examination of a broad array of 

phenotypic characteristics, in combination with neurobiological differences may improve 

our understanding of the pathophysiology of mental illness and provide new preventative 

and treatment strategies. While these analyses will require large samples and advanced 

analytic approaches, the present study is evidence that such efforts can yield new 

hypotheses, as well as support existing theories, helping to focus biological psychiatry on 

those areas that may yield the highest return on investment.
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Figure 1. Factors identified by bootstrap-based maximum likelihood exploratory factor analysis
Factors and their corresponding subscales (along with example items) identified by 

exploratory analysis with 10,000 bootstrap resamplings. Subscale names are provided in the 

middle column. Sample items for each subscale are provided in the far right column. Color 

bar on the left provides an index to the shading of each subscale relative to its standardized 

loading on the factor. ATQ = Adult Temperament Questionnaire; BDI = Beck Depression 

Inventory, 2nd Edition; CAARS = Conners’ Adult ADHD Rating Scale; DOSP = Domain-

Specific Risk-Taking Scale; NEO = NEO - Five Factor Inventory; ICU = Inventory of 

Callous and Unemotional Traits; IRI = Interpersonal Reactivity Index; STAI = Spielberger 

State Trait Anxiety Inventory; TSC40 = Trauma Symptom Checklist; UPPS = Impulsive 

Behavior Scale. Notes: (R) = reverse-scored item in scale. aThese sample items were 

selected from the response option corresponding to 2 on a 0–3 scale.
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Figure 2. Results of hierarchical clustering
Panels in this figure depict the decision-criteria used to ascertain clustering levels and 

resultant groups, as well as the similarity and dissimilarity of the groups as a function of 

correlation and squared Euclidean distance between factor scores (subject-by-subject). Panel 
A shows the dendrogram resulting from Hybrid Hierarchical Clustering. It also shows the 

various levels at which the dendrogram was cut and the resultant groups. Panel B shows the 

Calinski-Harabasz Criterion (CHC; black line), used as a decision aid for dendrogram 

cutting, as a function of cluster number. The red line depicts percent change in the CHC 

value from one cluster to the next. Since CHC did not exhibit a typical pattern (i.e., elevation 

at some cluster level), we defined stability (i.e., minimal change from one cluster number to 

the next) as our goal in deciding where to cut the dendrogram. Panel C again depicts the 

dendrogram, but relative to the squared Euclidean distance matrix. Groups and subgroups 

are outlined with dashed lines to help visualize group membership and increased similarity/

decreased dissimilarity.
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Fig. 3. Factor, clinical symptom, and lifetime psychiatric profiles visualized as radar plots by 
cluster/group at three levels of hierarchical clustering, showing expansion within C2
All panels in this figure represent different measures pertaining to the same clusters (i.e., C2 

is the same group of individuals, showing variation in factor profiles – Panel A; ASR clinical 

symptom profiles – Panel B; and lifetime psychiatric diagnosis – Panel C). Panel A 
represents mean values by cluster for each of the 6 factors from the exploratory factor 

analysis. Plots represent a standard loading of −1.5 at the origin and 1.5 at the maximum for 

each of the 6 factors. Panel B represents percent of individuals within a cluster exhibiting T-
scores ≥ 60 (1 standard deviation above the mean; approaching clinical importance) for 8 

domains from the Achenbach Adult Self-Report. Plots represent 0 at the center and 25% at 

the periphery (unless otherwise denoted) for each of the 8 domains. Panel C represents 
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percent of individuals within a cluster exhibiting a lifetime (i.e., past or current) psychiatric 

diagnosis (ANY = any diagnosis; DEPR = depressive disorder; ANX = anxiety disorder, 

excluding OCD and PTSD; SUD = substance use disorder; ADHD = attention-deficit/

hyperactivity disorder). Where significant differences in current psychiatric diagnosis were 

observed, group percentages and significance is represented next to the diagnosis in italics. 

Plots represent 0 at the center and 60% at the periphery (unless otherwise denoted) for each 

of the 5 diagnostic categories. Note that diagnoses are not mutually exclusive. Significant 

group differences are represented by asterisks; * p < .05, ** p < .01, ***p < .001.
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Figure 4. Results from multivariate distance matrix analysis of the functional connectome 
between C1 and C2
Adjacent groups at the highest level of hierarchical clustering (level 1: nC1=165, nC2=115) 

are displayed. Rendered brains and axial slices reflect multivariate distance matrix 

regression comparing intrinsic connectivity between groups; findings represent conversion 

of pseudo-F test results to Z values via permutation testing (10,000 resamplings of data) and 

permutation-based cluster correction (5,000 resamplings of data) with cluster formation set 

at p < .01 and extent threshold set at p < .05. Note that images are presented in neurological 

convention (L=R, R=L). The bottom row of axial slices represents significant findings at 

MNI axis Z values of −30, −20, −10, 0, and 10. From left to right, top to bottom, the top 2/3 

of the figure depicts the lateral and medial surface of the right hemisphere, the dorsal and 

ventral surface of the right, then left, hemisphere, and finally, the dorsal and medial surface 

of the left hemisphere. Only Level 1 results survived cluster permutation testing correction 

for multiple comparisons.
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Table 1

Demographic and Diagnostic Characteristics

Full Sample (n = 347)

Mean Age (SD) 37.5 (13.6)

% Female (n) 66.0 (229)

% Right handed (n) 91.9 (319)

Ethnicity

 % Hispanic/Latino (n) 13.8 (47)

Racial Background

 % White/Caucasian (n) 67.6 (230)

 % Black/African American (n) 20.3 (69)

 % Asian (n) 7.6 (26)

 % Native American/Pacific Islander (n) 1.2 (4)

 % “Other” (n) 3.2 (11)

Lifetime Psychiatric Historya

 % Any Disorder (n) 49.1 (167)

 % Depression (n) 21.2 (72)

 % Anxietyb(n) 9.4 (32)

 % Substance Use Disorder (n) 26.2 (89)

 % ADHD (n) 1.8 (6)

Current Psychiatric Historya

 % Any Disorder (n) 10.9 (37)

 % Depression (n) 2.6 (9)

 % Anxietyb(n) 4.7 (16)

 % Substance Use Disorder (n) 4.1 (14)

 % ADHD (n) 0.9 (3)

Number of Lifetime Psychiatry Diagnoses

 % 0 (n) 52.3 (178)

 % 1 (n) 25.3 (86)

 % 2 (n) 12.4 (42)

 % 3 or more (n) 10.0 (34)

a
Total N = 340; diagnostic information missing for 7

b
Excluding Obsessive Compulsive Disorder and Post Traumatic Stress Disorder

ADHD: Attention-Deficit/Hyperactivity Disorder
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