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Designing effective and accurate tools for identifying the functional and structural elements in a genome remains at
the frontier of genome annotation owing to incompleteness and inaccuracy of the data, limitations in the
computational models, and shifting paradigms in genomics, such as alternative splicing. We present a methodology
for the automated annotation of genes and their alternatively spliced mRNA transcripts based on existing cDNA and
protein sequence evidence from the same species or projected from a related species using syntenic mapping
information. At the core of the method is the splice graph, a compact representation of a gene, its exons, introns,
and alternatively spliced isoforms. The putative transcripts are enumerated from the graph and assigned confidence
scores based on the strength of sequence evidence, and a subset of the high-scoring candidates are selected and
promoted into the annotation. The method is highly selective, eliminating the unlikely candidates while retaining
98% of the high-quality mRNA evidence in well-formed transcripts, and produces annotation that is measurably
more accurate than some evidence-based gene sets. The process is fast, accurate, and fully automated, and combines
the traditionally distinct gene annotation and alternative splicing detection processes in a comprehensive and
systematic way, thus considerably aiding in the ensuing manual curation efforts.

[Supplemental material is available online at www.genome.org and https://panther.appliedbiosystems.com/publications.jsp.]

With the genome sequences of human and several other mam-
malian organisms now available (Lander et al. 2001; Venter et al.
2001; Kirkness et al. 2003; Mural et al. 2002; Waterston et al.
2002), identifying the elements they encode has become a task of
immediate and utmost importance. Interpreting the raw se-
quence data into useful biological information, also known as
genome annotation, is a complex process that requires the effi-
cient integration of computational analyses, auxiliary biological
data, and biological expertise. In particular, determining the lo-
cation, structure, and function of protein-coding genes is an es-
sential first step in any annotation project, as it holds the key to
understanding the structures and functions of the proteins they
encode, and can help focus the search for other functional ele-
ments such as SNPs and regulatory modules to specific regions of
the genome. It is the structural component of gene annotation,
or the identification of the exon–intron structure of genes and
their alternatively spliced isoforms on the genome, that is the
focus of this paper.

Large-scale gene annotation processes at the major genom-
ics centers (Ensembl, Hubbard et al. 2002, Birney et al. 2004;
UCSC Genome Browser database, Karolchik et al. 2003; Celera
Genome Browser and Otto annotation system, Venter et al. 2001;
NCBI Human Genome Resources, online documentation at
http://www.ncbi.nlm.nih.gov/genome/guide/human/) typically
combine the results from a variety of prediction and alignment

programs in an automatic fashion, and in some cases the results
are manually curated by expert annotators to detect and correct
errors in the predicted gene structure and to identify alternative
splicing events. The massive undertakings of manual curation in
annotation projects such as NCBI’s collection of reference se-
quences (RefSeq; http://www.ncbi.nlm.nih.gov/RefSeq/), the in-
ternational Vertebrate Genome Annotation database (VEGA;
http://vega.sanger.ac.uk/), and Celera’s annotation jamborees
(Adams et al. 2000; Rubin et al. 2000) and ongoing processes to
improve the quality of the predicted genes (Venter et al. 2001;
Mural et al. 2002) have involved hundreds of expert annotators.
The more accurate the automated portion of the annotation pro-
cess and the stronger the correlation between predictions and the
underlying sequence evidence, the more effectively the ensuing
manual curation and validation efforts will construct and vali-
date gene models. Besides accuracy, an additional challenge that
such pipelines have to withstand is the ever growing amount of
new data (Karolchik et al. 2003). Therefore, there is an outstand-
ing demand for annotation processes and related visualization,
data mining, and storage resources that are fast, highly accurate,
and flexible enough to allow the seamless incorporation of new
sequence evidence as it becomes available in the databases.

Despite the large body of work in the area of gene finding
(Claverie 1997; Rogic et al. 2001; Zhang 2002; and references
therein) and the recent convergence in the estimates for the
number of human genes (Lander et al. 2001; Venter et al. 2001;
Pennisi 2003), gene finding is still an area under active develop-
ment. Biases in each method, incomplete and inaccurate se-
quence data, and limitations of the computational gene model in
capturing data-driven artifacts and biological phenomena such
as overlapping genes and alternative splicing are only a few

4Present address: Department of Computer Science, George Wash-
ington University, Washington, DC 20052, USA.
5Corresponding author.
E-mail florea@gwu.edu; fax (240) 453-3324.
Article and publication are at http://www.genome.org/cgi/doi/10.1101/
gr.2889405.

Methods

54 Genome Research
www.genome.org

15:54–66 ©2005 by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/05; www.genome.org



of the challenges that continue to face current methods. Ab initio
prediction programs such as GenScan (Burge and Karlin 1997),
FGenesH (Salamov and Solovyev 2000), Genie (Kulp et al. 1996),
and GeneMark (Lukashin and Borodovski 1998) have reached
high accuracy at predicting coding exons but are intrinsically
ineffective at predicting exons in the 5� and 3� untranslated re-
gions (UTRs), are confounded by overlapping genes, and produce
a large number of false positives (Dunham et al. 1999; Rogic et al.
2001). Comparative methods based on alignments of protein and
cDNA (EST, mRNA) sequences with genomic sequences (Pro-
crustes, Gelfand et al. 1996; EstGenome, Mott 1997; sim4, Florea
et al. 1998; GeneWise, Birney and Durbin 2000; Spidey, Wheelan
et al. 2001) depend critically on the completeness and quality of
sequences used. More recently, programs that inherently com-
bine predictive and comparative clues (GenomeScan, Yeh et al.
2001; TwinScan, Korf et al. 2001) have been used with some
success to improve the prediction accuracy but still suffer from
some of the deficiencies of both approaches, such as the diffi-
culty in identifying the 5� and 3� UTRs of a gene and the occa-
sional merging of adjoining or overlapping genes. For accuracy
reasons, or because of the restricted ability to cope with the tre-
mendous amount of data generated by the sequencing projects,
no single program is able to handle the complexity of the task of
annotating the genome, and therefore annotation projects typi-
cally combine the results from a variety of computational tools
within a weighting or integration process to create a complete
perspective and overview of the gene content in the entire ge-
nome (Murakami and Tagaki 1998; Venter et al. 2001; Hubbard
et al. 2002; Pavlovic et al. 2002; Birney et al. 2004). In addition,
all of the individual approaches emerged in the context of pre-
dicting the correct sequence of exons in single-transcript genes
and are not by themselves equipped to handle the prediction of
mRNA transcripts for genes that exhibit alternative splicing.
Thus, splice variation is typically added to the automatic anno-
tation by human curators, many times as short, incomplete
cDNA, which makes it difficult to incorporate and consolidate
new evidence into the existing annotation. More than 50% of
the genes of recently sequenced eukaryotic genomes (Mironov et
al. 1999; Kan et al. 2001; Modrek et al. 2001; Zavolan et al. 2002)
are now believed to undergo alternative splicing to generate dif-
ferent transcript and protein isoforms under different develop-
mental, tissue-specific, and disease conditions, thus bringing a
new set of challenges to gene prediction programs and the en-
compassing annotation processes.

To address the alternative splicing challenge, we designed a
new computational process, called AIR (Annotation Integrated
Resource), for predicting genes and their alternatively spliced
mRNA transcripts based on genomic alignments of expressed
DNA (EST, mRNA) and protein sequences, herein collectively
called “evidence.” AIR was developed to support the Celera an-
notation of the rat genome Release R1, but it can be applied to
any genome where sufficient cDNA sequences from that species,
and/or gene annotations on a closely related species, exist. AIR
introduces two new paradigms in gene annotation. First, it con-
solidates mRNA, EST, and protein sequence alignments on the
genome into a collection of directed acyclic graphs called “splice
graphs,” each representing a gene together with its exons (verti-
ces), introns (arcs), and splice variants (paths). Candidate tran-
scripts are systematically enumerated from the graph and as-
signed confidence scores based on the strength of the supporting
evidence. The splice graph thus provides a mechanism to system-
atically enumerate all possible splice variants of a gene given the

existing evidence, and then select the ones that are the most
likely to exist in vivo, according to the support by the evidence.
Since alternative splicing has become an integral part of charac-
terizing the transcriptome, the splice graph has emerged as a
candidate model for representing genes and their transcripts
(Kan et al. 2001; Heber et al. 2002; Haas et al. 2003; Sugnet et al.
2004; Xing et al. 2004), but the combinatorial nature of the set of
transcripts encoded in the graph has long been a deterrent to
using it in annotation systems. The method we propose tackles
this problem by scoring, evaluating, and selecting candidate
transcripts based on their support by the evidence. The second
novel feature in AIR is the use of precomputed whole-genome
alignments to map the coordinates of exons and transcripts from
a related species to the genome being annotated. This approach
is generally faster, once the genome-to-genome alignment is
computed, and exhibited higher accuracy than direct cross-
species alignments in testing.

In the Methods section we describe in detail the two main
components of AIR, namely the construction and selection of
transcripts based on the splice graph model augmented with a
scoring scheme, and the tracking of features between two related
genomes guided by their whole-genome alignments. We then
give a brief overview of the process and evaluate the intermediate
results and the end annotation when AIR is applied to annotat-
ing the rat genome assembly Release 3.1 (Gibbs et al. 2004), in
the Results. Further, we present considerations related to the ap-
plicability of the method to other model organisms.

The AIR model for gene annotation

AIR is an integrated methodology and software system for the
annotation of genes and transcripts that combines a suite of evi-
dence-collection and gene prediction tools. To predict genes and
mRNA transcripts in eukaryotic genomes, the transcript building
component of AIR consolidates genomic alignments of cDNA
and protein sequences from the same species, and/or projections
of annotated features from the genome of a closely related spe-
cies, into a unified gene model. The underlying gene model is the
“splice graph,” a directed acyclic graph that represents the gene’s
exons as vertices and its introns as arcs (Fig. 1). Splice variants can
be read from the graph as end-to-end paths from a vertex with no
incoming arcs (source) to a vertex with no outgoing arcs (sink).
The splice graph may generate an artificially large number of
candidate transcripts, many of them biologically improbable. To
surmount the combinatorial nature of the candidate transcript
set, a scoring scheme augments the model assigning each tran-
script a confidence score that is used as a primary filter to decide
its suitability for annotation. A second heuristic filter is then
applied to select a subset of the high-scoring transcripts with
strong sequence evidence to be included into the annotation.

The evidence collection component of AIR is used to gener-
ate alignments of cDNA sequences on the reference genome and
to project gene features from a related genome, to serve as evi-
dence for annotation. Same-species EST and full-length mRNA
sequences are aligned to the target genome using a software tool
called ESTmapper (L. Florea and B. Walenz, in prep.; referenced
in Istrail et al. 2004). It uses an efficient genome-wide search to
restrict the alignment area to a limited number of candidate ge-
nomic regions and then aligns the query cDNA to each of the
candidate genomic regions with a local version of the sim4 algo-
rithm (Florea et al. 1998). For each sequence AIR retains the
single best alignment covering at least half of the cDNA sequence
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at 95% or more sequence identity. In addition, unspliced EST
alignments are removed. To produce cross-species evidence, AIR
projects annotated gene features from a closely related species
onto the genome of reference using the one-to-one mapping and
alignment of the two genomes precomputed with the
A2Amapper tool (referenced in Istrail et al. 2004, Lippert et al.
2004) (Fig. 2). During the refinement stage
following the initial projection, the pro-
jected exons and transcripts are verified to
pass heuristic consistency rules and then
endorsed or rejected accordingly, and some
noncanonical exon boundaries are further
adjusted to neighboring sites that have bet-
ter consensus splice signal scores (Burge
and Karlin 1997) or that harbor exon end-
points of same-species cDNA sequences.

To evaluate the overall performance of
the AIR process we focused on two primary
components. The first is the integrity of
exon and transcript projections from a re-
lated genome to the genome being anno-
tated using the genome-to-genome align-
ment. The second is the ability to produce a
comprehensive and accurate annotation, or
equivalently, a set of correctly formed
genes and transcripts that are strongly sup-
ported by the evidence, using the splice
graph model augmented with the scoring
and selection scheme.

Results

Projection of orthologous gene features
via synteny maps

To evaluate the accuracy and completeness
of our exon and transcript projection pro-
cess between the mouse and rat species, and
thus the suitability of using the projected
mouse evidence to annotate the rat ge-
nome, we focused on a set of mouse–rat

mRNA sequence pairs identified as homolo-
gous based on NCBI’s homoloGene anno-
tation (Wheeler et al. 2004). While ho-
mologous pairs are not ideal to assess the
preservation of exon features, since they
may represent misclassified paralogs or dif-
ferent gene isoforms, this is the closest set
one could find to true orthologs that is of
significant magnitude. Besides paralogy
and alternative splicing, other biological or
computational factors can contribute to
discrepancies between the projected mouse
gene structure and the native alignment of
its rat homolog that are not attributable to
the projection method: deletion and inser-
tion events between the lineages, incom-
pleteness of the spliced alignments due to
gaps in the assembled genome, and exon
and transcript boundary artifacts intro-
duced by the mRNA–genomic alignment
program.

To eliminate such extrinsic factors, we constructed a bench-
mark set of exons conserved between mouse and rat as described
in Methods, and measured the efficacy of our projection tools at
exon, splice site, and base-pair resolution by comparing the pro-
jected mouse features against the native alignments of their rat
orthologs. The multi-layered mRNA–mRNA, mRNA–genomic,

Figure 1. Splice graph construction from genomic alignments of cDNA and/or protein se-
quences. A set of representative exon endpoints on the genome (tickmarks) is chosen by reconciling
5� or 3� exon endpoints in evidence alignments (EA1–EA5) within 20-bp windows. Exons in the
graph (a–i) are produced by enumerating and merging all compatible combinations of evidence
exons (1–18), i.e., in which one exon’s spliced end is not contained within another exon. (For
instance, exons 12 and 17 are incompatible.) Introns are added consistently with the evidence. The
graph is refined into connected components (“gene 1” and “gene 2”), representing potentially
different overlapping genes. Splice variants can be read from the graph as paths from a node with
no incoming edges (source; a, c,h) to a node with no outgoing edges (sink; b, g).

Figure 2. Projection (middle) and refinement (bottom) of exons and transcripts from a closely
related species (B) to a reference species (A) using genome-to-genome alignments (top). Following
the initial projection (middle), exon endpoints may be adjusted to a better consensus splice site
using a set of heuristics (bottom, left to right) that take into account the length of the unprojected
end (trim), the distance to the next match (bound), the local profile of GenScan splice site scores,
and existing same-species evidence.
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and genomic–genomic mapping process to identify unambigu-
ously orthologous features is illustrated in Supplemental Figure
C2-F3.

The results of the comparison, summarized in Table 1, show
that our method was able to project mouse exons end-to-end
onto their rat orthologs 96% of the time exactly, and 97% when
a 5-bp margin at the exon boundaries is allowed, while over 97%
of their bases were correctly assigned, for a class of high-
confidence transcript pairs. These values are slightly higher,
about 97% and 98%, when only nonempty projections are con-
sidered (data not shown). Spliced exon ends are more accurately
identified than marginal ones, at 0.97–0.98 sensitivity and 0.99–
1.00 specificity, perhaps explained by transcript trimming arti-
facts when constructing our benchmark of orthologous exon
pairs. Specificity values are consistently in the highest percentile,
between 0.99–1.00 for all categories tested and with perfect 1.00
base-pair specificity in particular. These indicate that there is vir-
tually no mouse sequence that is incorrectly located, and that the
slightly lower exon and splice site specificity values are due to
local inaccuracies at the exon boundaries. A second set of near-
exact transcript pairs, whose exons paired via the mRNA–mRNA
alignment differed by a margin of up to 10 bp, served as a con-
sistency test. As expected, their statistics were slightly lower.
Overall, the high sensitivity and specificity values observed pro-
vide confidence in our alignment and projection methods to
produce a reliable evidence set that can be used as a supplement
in annotating the rat genome.

Annotating the rat genome

To test the ability of the AIR method to produce an accurate and
complete set of gene and transcript predictions, we applied it to
the task of annotating the rat genome assembly Release 3.1
(Gibbs et al. 2004; http://www.genome.ucsc.edu). At the time of
the writing of this paper, the public databases contained 4619 rat
full-length mRNA sequences in the RefSeq repository (Pruitt and
Maglott 2001), an additional 10,592 sequences in the GenBank
mRNA database (Benson et al. 2004), and 537,596 rat EST se-
quences from NCBI’s dbEST data set (Boguski et al. 1993), repre-
senting roughly one tenth of the amount of similar resources
available for annotating the human and mouse genomes. The
mouse genome has been sequenced and annotated previously
(Mural et al. 2002; Waterston et al. 2002) and is at a sufficiently
close evolutionary distance (Makalowski and Boguski 1998) to
allow mRNA alignments and gene annotations as additional cross-
species resources for annotating genes and splice variants in rat.

Following mapping and initial quality-based filtering, AIR
retained 95.8% (4427/4619) of rat RefSeq, 92.3% (9781/10,592)

of rat GenBank mRNA, and 35.2% (189,366/537,596) of rat EST
sequences, and 89.6% (14,737/16,455) projected mouse RefSeq
and 80.6% (88,229/109,517) mouse GenBank mRNA transcripts.
Unspliced EST alignments accounted for 82.5% (287,366) of the
ESTs removed, while the other 17.5% (60,864) ESTs left unused
could not be mapped at the established alignment criteria. Of
these sets, 248 mouse RefSeq and 1682 mouse GenBank mRNA
projections that covered <20% of the original sequence were fur-
ther eliminated. An additional 318 rat and 363 mouse mRNA
sequences that had intra-exon alignment gaps inconsistent with
other evidence were excluded from the transcript building pro-
cess. These cases may represent sequence polymorphisms that
need to be manually reviewed by annotators.

Table 2 shows the retention rates for mouse exons and tran-
scripts during the synteny-based projection and refinement
stages. Overall, roughly 90% of the exons and 86% of the mouse
transcripts mapped to the mouse genome were projected onto
the rat genome as complete or partial features, with 8.3% of the
exons being eliminated during the projection and 2.0% in the
refinement stage. These numbers are largely consistent with
those published in the literature (Gibbs et al. 2004). We conjec-
ture that the most important factor in projection loss is the sen-
sitivity of the genome-to-genome alignment as a result of algo-
rithmic limitations. However, errors and gaps in the assembled
genome sequence, causing exon loss and matches that are out of
order or orientation with the rest of the transcript, as well as exon
deletion and high mutation rates as a result of evolutionary
change, play a part as well. The main cause for exon rejection at
the refinement stage is the discrepancy between the original and
projected exon sizes. For the set of 102,966 transcripts endorsed
during the exon refinement step, only 3.3% (23,603) of the exons
had the projection boundaries altered to produce a canonical
splice site, and 2.0% (14,289) of the exons were noncanonical yet
unchanged because the program failed to detect a more plausible
splice junction. Another 4.6% (33,305) were rejected in either of
the two stages, as a combined effect of evolutionary deletions
and deficiencies in our processes. To estimate the extent of exon
loss due to computational artifacts as opposed to evolutionary
changes in the transcript structure, we performed an indepen-
dent BLASTN (E = 2.0, default parameters) search of the 33,305
rejected exons on the genomic interval between the endorsed
exons enclosing the gap, in the case of internal exons, or the
50-kb genomic interval starting at the projected end of the tran-
script, for marginal exons, requiring that the match orientation
be consistent with that of the transcript. Only matches longer
than 50% of the exon length or 50 bp were retained. This re-
vealed 13,333 exons potentially missed. Based on this finding, we

estimate the sensitivity of the com-
bined exon projection and refine-
ment in the endorsed transcripts to
be 98.1%, corresponding to
683,039 successfully projected ex-
ons out of 696,372 exons endorsed
or identified by BLASTN and thus
estimated to be conserved. This
value is consistent with the sensi-
tivity observed in the analysis of
mRNA orthologs earlier. Moreover,
of the 13,333 missed exons only
half (6549) are internal and thus
generate an internal gap in the
transcript structure, and some of

Table 1. Evaluation of synteny-based feature tracking between pairs of orthologous mouse and
rat sequences

Orthologs class mRNA pairs/exons
Exon

W = 0/5/10 bp
Splice site

W = 0/5/10 bp Base-pair

Exact 1,842/14,460 Sn: 0.96/0.97/0.97 Sn: 0.97/0.98/0.98 Sn: 0.97
Sp: 0.98/0.99/0.99 Sp: 0.99/1.00/1.00 Sp: 1.00

Near-exact 282/1,872 Sn: 0.91/0.93/0.93 Sn: 0.92/0.92/0.93 Sn: 0.92
Sp: 0.93/0.95/0.96 Sp: 0.94/0.95/0.96 Sp: 0.95

Sensitivity (Sn) and specificity (Sp) values at exon, splice site, and base-pair levels were measured as de-
scribed in Burset and Guigo (1996). Exon and splice site statistics were computed allowing for a variable
window of W = 0, 5, and 10 bp. “Exact” orthologs have all orthologous exons exactly matching when
projected via the cDNA–cDNA alignment (see Methods). “Near-exact” pairs have orthologous mouse and
rat exon ends matching within 10 bp.
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them will be later regained in the splice graph from exons con-
tributed by rat cDNA or protein alignments.

The selected mouse and rat evidence was used to generate an
initial 45,040 genes (29,025 with multiple exons) and 126,440
candidate transcripts, of which 70,047 transcripts were retained
following the score-based selection (Fig. 3). A subset of 38,598
genes (23,263 multiexon) and 60,683 transcripts were further
selected and promoted into the final annotation following
the second selection stage, based on the evidence type. Of
these, 9700 (24.67%) genes had multiple splice variants re-
ported. This is likely an underestimate given the paucity of
rat-specific sequence data and the stringency of our selection
criteria.

The set of AIR transcripts predicted for chromosome 4 of the
rat genome Release 3.1 and the associated files are available as
Supplemental material A. The complete set of annotations can be
obtained from https://panther.appliedbiosystems.com/
publications.jsp.

Evaluation of AIR predictions

We evaluated the performance of the transcript building and
selection process at two levels: structural correctness—the ability
to produce transcripts with correct exon structure and strong
correlation with the sequence evidence, and selectivity—the abil-

ity to discriminate between high-
confidence transcripts and spurious
exon combinations (Table 3). For
the structural correctness assess-
ment, in a first test we measured the
extent of irregular splice junctions
in the AIR transcript set and com-
pared that against the Rat Genome
Database (RGD) curated gene set
(Table 3A). An irregular splice junc-
tion is one other than the generally
accepted GT–AG, GC–AG, and AT–
AC signals. The AIR transcripts at
both selection stages scored signifi-
cantly better than the RGD set. Of
the 60,683 AIR rat transcripts, only
4935 (10.9% of the multiexon sub-
set) had one or more irregular splice
junctions, and only 539 (1.2%) had
multiple irregular splice junctions,
in comparison with 22.9% and
6.6%, respectively, for the RGD set
of curated genes. The overall per-
centage of irregular splice junctions
was only 1.6% for AIR, compared
with 3.4% for RGD. These values
are consistent across chromosomes
and for the various stages in the
transcript selection process. In a
second test, we determined the por-
tion of the transcript supported by
alignments with exon–intron struc-
ture compatible with that of the
transcript (Table 3B). Over 98.2% of
the AIR transcripts had 50% or
more of their bases contained in
some evidence alignment, and
90.9% had over 95% coverage. Both

splice junction and coverage statistics marked a sharp improve-
ment after the score-based filter was applied, typically twofold
and up to sevenfold in some categories, and remained at similar
levels for the final data set (Table 3A,B), thus testifying for the
discriminative power of the scoring scheme. For the selectivity
assessment, we determined that while the overall rejection rate
for candidate transcripts was 52.0% (65,757 out of 126,440 total),
the rejection rates for rat mRNA and mouse transcript evidence
were only 1.6% and 1.9%, respectively: 227 out of 13,890 rat
RefSeq and GenBank mRNA sequences used to generate the splice
graphs, and similarly 1871 out of 100,673 mouse RefSeq and
GenBank mRNA transcripts were not included in the final tran-
script set (Table 3C). AIR was therefore able to retain essential
evidence while eliminating most of the spurious constructions
enumerated in a combinatorial fashion from the splice graph.

For a more in-depth evaluation of the correctness of AIR
gene structure predictions, we compared the AIR-predicted alter-
native transcripts against the 237 curated alignments of rat Ref-
Seq mRNA sequences on chromosome 4, obtained from the RGD
repository (see Methods, Table 4, and Supplemental material B).
The AIR set of predictions includes 298 RefSeq alignments that
we located on chromosome 4 and is, with a few exceptions, a
superset of the RGD genes. Three types of measurements were
performed. To assess the overall correctness of the AIR-predicted

Table 2. Projection rates of mouse RefSeq and GenBank mRNA transcripts and exons on the
rat genome

Mouse
exons Pct. (%)

Mouse
transcripts Pct. (%)

Original NA NA 125,972 NA
Aligned on mouse 761,241 100 119,280 100

Projection stage
Complete projections 659,360 86.6 68,805 57.7
Partial projections 38,612 5.1 38,666 32.4
Not projected 64,062 8.4 11,809 9.9

in unprojected transcripts 38,991 5.1
in projected transcripts 25,071 3.3

Total from complete and partial projections 697,972 91.7 107,471 90.1

Refinement stage
Endorsed unaltered 659,436 86.6 85,418 71.6

canonical 645,147 84.7
non-canonical 14,289 1.9

Endorsed altered 23,603 3.1 17,548 14.7
by 1–10 bp 19,145 2.5
by >10 bp 4,458 0.6

Projected, not endorsed 14,933 2.0 4,505 3.8
Rejecteda 40,004 5.3 4,505 3.8

in rejected transcripts 6,699 0.9
in endorsed transcripts 33,305 4.4

Missedb (found with BLASTN) 12,275 1.6 NA NA
Total endorsed projections 683,039 89.7 102,966 86.3

aIncludes the number of unprojected exons from partially projected transcripts.
bCounted from the number of rejected exons from endorsed transcripts.
NA = not applicable.
For the projection stage, “complete” exon projections are defined as having both ends of the exon con-
tained in matches; the exon projection is then the entire interval between the projected endpoints. “Com-
plete” transcript projections have all exons “complete”; “partial” transcripts have at least one complete or
partially projected exon. “Complete” and “partial” transcripts were submitted for refinement in stage two.
For the refinement stage, endorsed unaltered “canonical” projections had canonical splice signals and did
not necessitate alteration, whereas “non-canonical” ones failed extension to a nearby consensus splice site.
“Missed” projections were based on the BLASTN search (E = 2.0, default parameters) of all rejected exons
from endorsed transcripts against the genomic interval between their adjacent exons, for internal rejected
exons, or a 50,000-bp interval past the aligned end of the transcript, for marginal rejected exons, consis-
tently with the orientation of the transcript. A threshold of 50% length or minimum 50-bp coverage of the
exon was applied to the BLASTN results.
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exon–intron structures based on their compatibility with the
RGD reference alignments, a window of 10 bp was allowed when
comparing both internal and marginal exon edges. The internal
window was then set to 0 to determine the number of exactly
identified splice junctions. Lastly, to measure the effects of splice
junction and alignment inaccuracies on the open reading frame
(ORF) and on the resulting protein product, we compared the
two sets of ORFs and their protein translations. As shown in
Table 4, AIR produced a structurally equivalent or extended tran-
script for most of the RGD genes (188/237), and a structurally
compatible transcript that was included in the RGD alignment in
another five cases. Moreover, in most of the remaining 41 cases
in which there was a strong structural difference between the
predicted AIR transcripts and the RGD genes, the discrepancy
was caused by incorrect or incomplete mapping of the RGD
genes (29 with missing exons, 2 potentially chimeric, 1 not con-
firmed by independent alignment, and 2 paralogs of genes lo-
cated elsewhere). Of the remaining seven cases that can be at-
tributed entirely to errors in the AIR process, three (NM_024130,
NM_080394, NM_012822) were due to very short 3 and 4 bp long
exons that were missed by the sim4 alignment program, one
(NM_017111) was due to a chimeric construct between two con-
secutive matches on the chromosome, and other three
(NM_013080, NM_030838, NM_031799) resulted from inaccura-
cies in the AIR splice junction location due to evidence biases or
extension into a cDNA gap. The last three cases (NM_017206,
NM_31650, NM_013225) were due jointly to errors in both
methods, which missed different exons of the gene’s alignment.
At splice junction level, 97.5% of the RGD spliced junctions had
exact AIR matches and another 1.2% matched within 5 bp. The
reference set excluded the 38 spurious introns caused by missing
exons or exon segments in the RGD gene set. Although AIR does
not use ORF information in its prediction and relies entirely on
the accuracy of the alignment and splice signal models, our com-
parison revealed 188 identical RGD–AIR ORF pairs and another
five where the resulting protein had 1- to 2-amino-acid differ-
ences. In addition, in another 12 cases AIR ORFs and proteins
completed and/or extended their RGD correspondents, by pro-
viding a more complete alignment or extending the RGD gene
model using EST alignments and other evidence. In two cases
where AIR produced partial reconstructions of the RGD genes the
AIR proteins were truncated. The remaining 23 pairs exhibited

ORF differences that caused the proteins to differ at the N-
terminal or C-terminal end (21 pairs), or in two cases to be en-
tirely different. Of these, a majority of 13 cases appeared to be
due to frameshifts in the RGD sequence, six could be caused by
errors in either or both methods and thus ambiguous, and only
four could be attributed solely to frameshifts in the AIR sequence.
Overall, the comparative assessment of the two sets showed AIR
to have better splice junction statistics and fewer errors among
those that caused discrepancies between the two sets of se-
quences and between the sets of their protein products, and is
therefore measurably better than the RGD curated gene set in
terms of gene and protein structure integrity. A complete list of
the RGD genes and their corresponding AIR transcripts is in-
cluded in Supplement B, and a detailed listing of the ORF and
protein differences is given in Supplement C.

One desirable quality of gene annotation is the complete-
ness of the gene set. Although only 13,663 rat RefSeq and Gen-
Bank mRNA sequences were explicitly represented in the final
AIR annotation following the removal of 318 sequences during
quality checks and 221 during the transcript selection process, a
total of 13,836 mRNA sequences had significant BLASTN
matches of at least 100 bp at 97% or better sequence identity with
the AIR-predicted transcripts. The likely explanation is that the
additional sequences were partially reconstructed from other
types of evidence.

Effects of synteny-based feature transfer with varying
evolutionary distances

The strong conservation of both sequence and gene structure
between the mouse and rat genomes enabled us to use the mouse
gene information effectively to predict genes and alternative
splice forms in its relative. As the evolutionary distance between
the species increases, limitations in the alignment tools as well as
high mutation rates and exon deletion, insertion, shrinkage, and
expansion events that change the gene’s exon structure may
limit the applicability of certain methods and require prior ex-
ploration. This is particularly relevant when considering com-
parative annotation of newly sequenced organisms, for which
cDNA sequences are sparingly available.

To test the ability of our tools to correctly annotate a refer-
ence genome using gene information from another species, at
varying degrees of relatedness, we focused on the extended cystic
fibrosis transmembrane conductance regulator (CFTR) gene re-
gion, recently sequenced and comparatively analyzed in 13 spe-
cies (baboon, cat, chicken, chimp, cow, dog, Fugu, human,
mouse, pig, rat, tetraodon, zebrafish) (Thomas et al. 2003). This
collection of sequences, alignments, genes, and comparative an-
notations of a region across multiple genomes offers a unique
benchmark for comparative genomics methods and tools.

The human CFTR region (Thomas et al. 2003) extends over
1.8 Mb on chromosome 7 and contains 10 genes, one with two
alternative transcripts (ST7), of which only 9 have been analyzed
across the 12 genomes, with a total of 136 exons. The annota-
tion for mouse and human was produced by aligning reference
mRNA sequences from the NCBI RefSeq project to the genomic
assembly sequence. For the remaining species where cDNA
from that organism was not available, the RefSeq mRNA se-
quences for human and/or mouse were used, their coordinates
on the native genomic region being projected onto the target spe-
cies using BLASTZ alignments of the entire regions (Schwartz et al.
2003). This collection of genes was manually curated for struc-

Figure 3. Plots of AIR transcript scores at various levels of selection
during the annotation of the rat genome.
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tural integrity at the splice junction, exon structure, and pro-
tein translation levels and constitutes the gold standard for our
tests.

We aligned the human CFTR region with the sequence of
each of the other species using the method described by Istrail et
al. (2004), with parameters tuned for cross-species alignments
and for the length of the region, and we used the alignments to
guide the projection of the annotated human exons and genes
onto each of the remaining species. We then compared our re-
sults at exon and nucleotide level against the published mRNA
annotated features (Table 5 and Supplemental material C). We
further extended the analysis to two programs that illustrate a
different method for mapping cross-species evidence, by directly
aligning the cDNA sequences to the genome: sim4 (Florea et al.
1998), a specialized tool for aligning cDNA and genomic se-
quences, modified to better suit the needs of cross-species com-
parisons, and BLASTZ (Schwartz et al. 2003), one of the reference
local alignment programs. These three sets of analyses offered us
the opportunity to directly assess each method’s advantages and
limitations.

Table 5 shows the sensitivity and specificity of each method
when mapping the human annotated features to each of the
other species, measured at exon, splice junction, and base-pair
levels. AIR performs consistently better than each of the other
methods in each category for mammalian comparisons; how-

ever, its performance drops dramatically for comparisons with
different taxa. In contrast, BLASTZ achieves high sensitivity at
base-pair level by capturing similarities as distant as those be-
tween human and chicken or fishes, but the gene models it pro-
duces suffer from its lack of a splice model. Sim4 cross-species
alignments provide a consistent middle-view in terms of the ac-
curacy of the gene structure as measured by the full exons cat-
egory, which is a combined measure of splice junction and base-
pair performance, and are close contenders for splice junction
accuracy for many of the comparisons. Noticeably, its specificity
values are slightly lower than the sensitivity scores, owing to the
spurious introns caused by short insertion and deletion events
between the species or by areas of low sequence similarity, par-
ticularly in the 5� and 3� noncoding exons. Thus, by inspecting
the individual results it becomes apparent that a projection-
based method such as AIR, which incorporates prior knowledge
about the exon model in the original transcript, can better pre-
serve the integrity of the exons and transcripts, but its perfor-
mance depends critically on the sensitivity of the underlying
genome-to-genome alignment.

To answer the question of whether AIR can be successfully
applied to annotate other genomic systems, we note that our
method is able to capture exon sequences conserved between
human and any of the other mammalian species with very high
sensitivity and specificity, typically in the 0.98–0.99 range, but

Table 3. Accuracy evaluation for rat AIR predictions: splice junction (A) and coverage statistics (B), and selectivity and evidence
retention (C)

A

Transcript set Transcripts
Spliced

transcripts
≥1 irregular
splice jcts.

≥2 irregular
splice jcts.

Splice
junctions

Irregular
splice jcts.

No selection 126,440 110,425 24,756 (22.42%) 9,182 (8.32%) 1,629,754 36,096 (2.21%)
Score selection 70,047 54,032 5,373 (9.94%) 565 (1.05%) 354,936 6,047 (1.70%)
Final 60,683 45,348 4,935 (10.88%) 539 (1.19%) 339,302 5,579 (1.64%)
RGD, V = 12 3,642 2,452 837 (24.25%) 249 (7.21%) 33,028 1.228 (3.72%)
RGD, V = 30 3,642 3,444 788 (22.88%) 226 (6.56%) 32,880 1,124 (3.42%)

An irregular splice junction is one other than GT–AG, GC–AG, and AT–AC. For this analysis, results from evaluating the set of RGD genes were included
for comparison. Spurious introns less than V bp long were eliminated and their adjacent exons merged in the RGD genes.

B

Transcript set Transcripts
≥50%

coverage
≥80%

coverage
≥90%

coverage
≥95%

coverage
≥98%

coverage
100%

coverage

No selection 126,440 98,005 (77.5%) 74,148 (59.6%) 68,352 (54.1%) 65,043 (51.4%) 62,431 (49.4%) 59,670 (47.2%)
Score selection 70,047 67,485 (96.3%) 64,339 (91.9%) 62,554 (89.3%) 61,102 (87.2%) 59,710 (85.2%) 57,820 (82.5%)
Final 60,683 59,572 (98.2%) 57,606 (94.9%) 56,293 (92.8%) 55,153 (90.9%) 53,983 (89.0%) 52,468 (86.5%)

Coverage is measured as the number of transcript bases contained in some evidence alignment.

C

AIR
genes

AIR
transcripts

Rat RefSeq +
GBmRNA Lost

Mouse RefSeq
+ GBmRNA Lost

Total N/A N/A 15,019 N/A 125,972 N/A
Post mapping/tracking N/A N/A 14,208 811 101,036 24,936
Post alignment filtering 45,040 126,440 13,890 318 100,673 611
Post score-based selection 45,040 70,047 13,663 227 98,802 1871
Final 38,598 60,683 13,663 N/A 98,802 N/A

Retention rates for mRNA evidence in the resulting AIR predictions at various stages of transcript selection are shown. AIR selects and retains essential
evidence—13,663 of the 13,890 rat mRNA sequences (98.4%) and 98,802 of the 100,673 mouse mRNA transcripts (98.1%), whereas efficiently filtering
unlikely candidate transcripts—65,757 of the 126,440 combinations encoded in the splice graphs are eliminated. N/A = not applicable.
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its performance degrades considerably for chicken and the fish
species. No pairwise alignments were produced for any of the
three fish species, due to the lack of perfectly conserved 20-mers
to anchor the local alignment of sequences. Alignments with
mouse and rat were less sensitive than for the other mammalian
species despite the closer evolutionary distance, as a direct con-
sequence of the high deletion rate in the rodent branch. This
result is consistent with the observations of Thomas et al. (2003).
These indicate empirically that the range of applicability for our
alignment and projection tools extends to pairs of organisms that
exhibit divergence rates lower or similar to those of human and
mouse/rat, but may be limited beyond this range and likely does
not include comparisons between mammals and other verte-

brates. The active range can be increased in the future by using
different match detection and selection techniques, such as the
space seed introduced by PatternHunter (Ma et al. 2002) and
implemented in BLASTZ (Schwartz et al. 2003).

Discussion
Conventional gene finding methods and annotation systems
have traditionally used as their gene model a linear exon se-
quence (Claverie 1997; Rogic et al. 2001; Zhang 2002; and refer-
ences therein). It was not until the unprecedented accumulation
of genomic and cDNA sequences in the public databases, brought

Table 4. Structural comparison between the AIR predicted transcripts and the 237 RGD curated RefSeq genes on rat chromosome 4

(A) Transcript structure comparison

Categories Cases Comments

Compatible exon structures
Equivalent 35 Same exon–intron structure
Extended 153 Structure extended at 5� or 3� end in AIR transcripts
Containing 5 Contains an AIR transcript as a substructure. AIR Match is short or misses

marginal exons.
Strong structural differences

Incomplete RGD gene mapping 27 (+27/�0) Missing single exons, parts of exons or groups of exons.
Incomplete AIR mapping 3 (+0/�3) Missing single (short) exons. Missing the alignment for the gene.
Incomplete incompatible RGD and AIR mappings 3 (+3/�3) Different missing exons produced by the two methods.
Different AIR and RGD mappings 3 (+2/�1) Chimeras and paralogs. Multiple RGD mappings for a gene; only best mapping

selected by AIR.
AIR transcript building errors 2 (+0/�2) Evidence bias in splice junction detection. Extension into a cDNA gap.
No match 3 (+3/�0) Paralog; best match located elsewhere. Spurious RGD mapping, not confirmed.

Numbers in parentheses indicate the number of cases favoring (+) or disfavoring (�) AIR against RGD genes.

(B) Splice junction comparison

Window (W) Introns Exact Partial Weak No match

W = 0 2118 2064 27 13 14
W = 5 2118 2090 13 1 14
W = 10 2118 2094 10 0 14

Introns are “exact” if both exon ends agree between the AIR and RGD annotations, within a W-bp window; “partial” if only one exon end agrees; and
“weak” if the introns overlap strictly.

(C) ORF comparison

Categories Cases Comments

Compatible ORFs
Identity 188 Identical ORFs and protein products. AIR transcript may be equal to, extend, complete or be contained in

the RGD gene.
Near-identity 5 Minor (1-2 aa) differences in ORFs/proteins. AIR transcript misses short exon, or RGD and/or AIR choose

alternative splice junctions.
Extension 10 RGD ORF/protein extended at 5� (N-terminal) or 3� (C-terminal) end in AIR transcripts. AIR transcript ex-

tends or completes RGD gene.
Completion 2 AIR ORF/protein fills-in internal gaps in (and possibly extends) RGD ORF/protein. RGD transcript missed

(internal) exons.
Truncation 2 AIR protein is a portion of the RGD protein. AIR transcript was contained in the RGD gene.

Different ORFs
Partial match 4 (�4) Frameshifts in AIR, caused by inaccurate splice junctions and/or exon ends.

13 (+13) Frameshifts in RGD, caused by missing exons, and inaccurate splice junctions and/or exon ends.
4 (�4) Different RGD and AIR ends for exons flanking alignment gaps caused by gaps in the genome

No match 2 (�2) Non-overlapping ORFs likely caused by frameshifts in both RGD and AIR; different exon ends flanking
alignment gaps.

For each AIR and RGD sequence, the ORF is determined as the longest in-frame DNA stretch between a start (ATG) and a stop (TAA, TAG, or TGA) codon
or, if no stop codon is encountered, the end of the sequence. (+) The AIR ORF is believed to be correct; (�) the AIR ORF is believed incorrect, but the
RGD ORF is deemed correct; (�) either an ambiguous case, or both ORFs are likely to be erroneous.
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about by the sequencing of the human genome (Lander et al.
2001; Venter et al. 2001), that scientists gleaned into the true
extent of alternative splicing and the identification of alterna-
tively spliced forms became an integral part of the eukaryotic
genome annotation. With the abundance of putative splice vari-
ants that can be constructed from fragmentary EST and mRNA
evidence, identifying good candidates for annotation or in vivo
validation is a formidable task. Typically, splice variation is
added by curators in the aftermath of automatic annotation,
many times as short, incomplete cDNA. This partiality of splice
forms and the inconsistency of the process with the overall
annotation framework make it hard to incorporate and consoli-
date new evidence into the existing genes and transcripts. The
splice graph emerged as a natural representation of the alterna-
tive splicing events within a gene (Heber et al. 2002; Sugnet et al.
2004), but the combinatorial nature of the candidate splice vari-
ants it encodes has been a deterrent to using it as a medium for
annotation.

The method we propose, AIR, consolidates evidence around
a splice graph model and proposes a novel solution to tackle the
complexity of the candidate transcript pool. Splice variants enu-
merated from the graph receive confidence scores based on prop-
erties of the evidence such as alignment quality, coverage, and
fragmentation that human experts have identified as fundamen-
tal in their gene curation efforts. The scoring scheme is intuitive,
modular, and orthogonal, combining several score components
each measuring an independent set of features. It is relatively
easy to compute and flexible enough to allow the experts’ inter-
vention in the transcript selection process, either by filtering can-
didate transcripts by component scores or by modifying the score
weights according to their own perception of the scores’ relative
importance. It is also extensible and can serve as a template for
incorporating additional score components, such as intron scores
and penalties for putative unspliced introns. One possible exten-
sion would be to include the type and abundance of evidence in
the scoring scheme, rather than use it as a filter subsequent to the

Table 5. Performance of three methods for mapping cross-species evidence with varying evolutionary distances, exemplified at the CFTR
locus in human and 12 other species

Species Toola

Exon (full)

Exon (partial) Splice junctions BpV = 0 V = 10

Sn/Sp Sn/Sp Sn/Sp Sn/Sp Sn/Sp

Baboon AIR 0.985 0.971 0.993 0.978 1.000 0.985 1.000 0.984 1.000 0.996
BLASTZ 0.015 0.015 0.739 0.728 1.000 0.985 0.073 0.071 0.997 0.945
sim4 0.955 0.941 0.985 0.971 1.000 0.985 0.992 0.976 0.978 0.995

Cat AIR 0.963 0.970 0.963 0.970 1.000 1.000 0.976 0.984 0.999 0.985
BLASTZ 0.030 0.030 0.726 0.736 0.985 0.985 0.080 0.080 0.994 0.945
sim4 0.881 0.804 0.896 0.818 1.000 0.985 0.984 0.891 0.954 0.997

Chicken AIR 0.359 0.583 0.359 0.583 0.615 1.000 0.455 0.714 0.297 0.992
BLASTZ 0 0 0.590 0.622 0.949 1.000 0.030 0.032 0.744 0.662
sim4 0.359 0.368 0.436 0.447 0.769 0.857 0.545 0.562 0.420 0.964

Chimp AIR 0.991 0.974 0.991 0.974 1.000 0.982 1.000 0.981 1.000 0.981
BLASTZ 0.027 0.026 0.750 0.718 1.000 0.957 0.078 0.075 0.997 0.942
sim4 0.973 0.948 0.991 0.965 1.000 0.974 1.000 0.971 1.000 0.980

Cow AIR 0.924 0.924 0.955 0.955 1.000 1.000 0.959 0.959 0.996 0.994
BLASTZ 0.015 0.015 0.758 0.752 0.992 0.992 0.082 0.081 0.996 0.952
sim4 0.848 0.762 0.894 0.803 1.000 0.978 0.967 0.861 0.904 0.991

Dog AIR 0.922 0.905 0.942 0.924 1.000 0.981 0.958 0.938 0.996 0.892
BLASTZ 0.019 0.019 0.738 0.717 0.990 0.971 0.084 0.082 0.997 0.891
sim4 0.835 0.723 0.883 0.765 1.000 0.920 0.947 0.811 0.895 0.940

Fugu AIR 0 0 0 0 0 0 0 0 0 0
BLASTZ 0.030 0.050 0.396 0.662 0.612 1.000 0.081 0.143 0.663 0.939
sim4 0.073 0.129 0.173 0.306 0.473 0.929 0.230 0.418 0.203 0.977

Mouse AIR 0.838 0.838 0.875 0.875 0.993 0.993 0.944 0.944 0.943 0.957
BLASTZ 0.015 0.015 0.625 0.620 0.978 0.993 0.040 0.039 0.931 0.907
sim4 0.713 0.602 0.765 0.646 0.985 0.950 0.889 0.742 0.757 0.967

Pig AIR 0.942 0.942 0.951 0.951 1.000 1.000 0.968 0.968 0.997 0.998
BLASTZ 0.029 0.029 0.718 0.705 0.990 0.981 0.053 0.052 0.995 0.953
sim4 0.903 0.795 0.932 0.821 1.000 0.972 0.979 0.853 0.913 0.995

Rat AIR 0.824 0.830 0.853 0.859 0.985 0.993 0.913 0.920 0.927 0.952
BLASTZ 0.029 0.029 0.610 0.610 0.971 0.992 0.048 0.048 0.920 0.913
sim4 0.691 0.573 0.779 0.646 0.993 0.978 0.897 0.734 0.735 0.970

Tetraodon AIR 0 0 0 0 0 0 0 0 0 0
BLASTZ 0.060 0.099 0.448 0.741 0.604 0.976 0.097 0.167 0.664 0.957
sim4 0.105 0.186 0.177 0.314 0.403 0.833 0.219 0.403 0.208 0.957

Zfish AIR 0 0 0 0 0 0 0 0 0 0
BLASTZ 0 0 0.395 0.586 0.814 1.000 0.054 0.087 0.785 0.868
sim4 0.053 0.080 0.263 0.400 0.658 1.000 0.176 0.286 0.437 0.976

a(AIR) Synteny-based feature tracking; (BLASTZ) direct alignment of the cDNA sequence and the genomic region; (sim4) splice-sensitive cDNA-to-
genome alignment.
The evaluation was performed at exon, splice junction, and base-pair level. A full-exon match requires that both exon boundaries agree within V bp,
whereas a partial-exon match only requires that the exons overlap. Sensitivity is measured as Sn = TP/(TP + FN), specificity as Sp = TP/(TP + FP) (Burset
and Guigo 1996).
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scoring process. Lastly, such an annotation system lends itself
naturally to an incremental design. New evidence that changes
only the scores of existing transcripts and may promote new
splice forms, but does not reshape the splice graph entirely, can
be seamlessly incorporated into the existing annotation. All of
these properties are desirable of large-scale annotation systems
that are updated frequently and may require post-processing by
manual curation.

As a gene model, the splice graph can have expressive and
sometimes practical limitations. For instance, it cannot represent
certain isoforms with alternative 5� or 3� ends in which one form
is subsumed by the other. Post-processing of the gene’s tails
based on EST clone information to identify potential polyade-
nylation sites with programs such as PASS (Kan et al. 2001) could
partially overcome this problem. Its accuracy also depends
critically on the correctness and robustness of the underlying
data generation tools, such as the cDNA-genomic alignment
program and the synteny-based feature tracking, since effects
are amplified in a combinatorial fashion: Spurious exons or splice
junctions can double the number of candidate splice forms.

The synteny-based exon and transcript projection module
of AIR is instrumental for adding in cross-species evidence as a
supplement for annotating newly sequenced organisms or re-
gions for which there is limited same-species cDNA and protein
sequence available. Methods that align cDNA and genomic se-
quences to identify structurally correct exons and introns (sim4,
Florea et al. 1998; Spidey, Wheelan et al. 2001) perform increas-
ingly poorly as sequence similarity falls below that expected for
EST sequences, for which they were tuned, or at roughly 90%
sequence identity. Feature tracking via genome-to-genome align-
ments is intuitively more accurate than cross-species cDNA-
genomic alignments, as it is able to span over gaps or portions of
weaker similarity as long as it is strongly anchored in the adja-
cent portions of the exon and transcript. The splice junctions are
also more precisely identified, being mirrored by direct mapping
between the two genomes. In addition, the process can be sig-
nificantly faster than cross-species cDNA–genomic alignments
for mapping large data sets, once the genome-to-genome align-
ment is generated. The primary limitation to such alignment-
based feature tracking methods is the sensitivity of the align-
ment. Our tools appear suitable to align human with mammalian
species as divergent as mouse and rat, but their sensitivity drops
dramatically for outgroups such as birds or fishes. To comple-
ment the projection method in such cases, the direct alignment
of cDNA sequences to the genome, run either independently or
combined with the projection method, can help identify addi-
tional exons and transcripts.

One annotation feature that is missing from AIR but can be
incorporated as a post-processing step is the ability to identify
pseudogenes and paralogs for which there is no direct sequence
evidence. Indeed, the one-to-one mapping of the two genomes
forces every mouse transcript to the “true” location of its ortho-
log on the reference genome, and similarly, selecting the best
spliced alignment for every EST and mRNA sequence places that
sequence at its “true” genomic location (n.b., in a very small
number of cases, multiple spliced alignments indistinguishable
by the criteria of coverage, sequence identity, and number of
exons may be reported as “best matches”). One possible solution
to this problem is to search for matches of predicted AIR tran-
scripts in the rest of the rat genome.

From a computational perspective, AIR is a highly efficient
annotation system. The entire automated process for annotating

the rat genome, including the generation of genome-to-genome
mouse–rat alignment and evidence, took less than 150 CPU
hours on a 1.3 GHz IBM POWER4 processor: 80 h to generate the
rat–mouse genome map, 45 h to align rat and mouse cDNA se-
quences on their native genomes, 6 h to project and refine mouse
transcript models on the rat genome, and 6 h to build and select
rat transcripts.

AIR is a fully automated, fast, and accurate computational
annotation process that combines gene annotation and alternative
splicing detection by consolidating evidence in a novel and system-
atic way, thus considerably facilitating the subsequent efforts with
manual curation. As demonstrated in this study by annotating the
rat genome, AIR can be universally applied to any genome where
sufficient expressed DNA sequences and/or annotations on a
closely related species exist, and can prove a valuable resource for
the annotation of splice variants and genes in new sequences.

Methods

Sequence data
For the annotation of the rat genome, rat and mouse mRNA and
EST sequences were extracted from the NCBI repositories: RefSeq
(Pruitt and Maglott 2001), dbEST (Boguski et al. 1993), and Gen-
Bank mRNA (Benson et al. 2004). The rat genome assembly Re-
lease 3.1 (Gibbs et al. 2004; Feb. 2003) and mouse genome as-
sembly Build 30 (Waterston et al. 2002; Jun. 2003) were down-
loaded from the University of California Santa Cruz Web site
(http://www.genome.ucsc.edu). Genomic coordinates of curated
rat RefSeq genes on the rat genome were retrieved from the Rat
Genome Database (RGD) Web Site, at the Medical College of
Wisconsin, Milwaukee, Wisconsin (http://rgd.mcw.edu, April 1st
2004). Some gene records contained a number of very short spu-
rious introns that we found to be associated with alignment gaps.
Consequently, we merged consecutive exons separated by a small
number W of bases to create a data set that is compatible with our
exon-centered view of the annotation. Data sets constructed in
this way for W = 12, 20 were used to evaluate comparatively the
AIR and RGD splice junction correctness in the Results. For the
structural correctness evaluation of AIR transcripts against the
RGD genes, we used W = 12 after a preliminary manual inspec-
tion to verify the veracity of exon merges against independent
sim4 alignments.

Same-species alignments
EST and mRNA sequences are aligned to their native genome
using a high-performance alignment program called ESTmapper
(L. Florea and B. Walenz, in prep.; referenced in Istrail et al.
2004). It uses a hash-index of 20-mers in the genome to quickly
locate areas of the genome likely to contain the query, then in-
vokes the core of the sim4 algorithm (Florea et al. 1998) to pro-
duce a spliced alignment between the query and each genomic
region selected. Only alignments that contain 50% or more of
the cDNA sequence at 95% or more sequence identity are con-
sidered significant. To avoid contamination from paralogs, only
the single best genomic alignment for each sequence is chosen,
based on a measure combining sequence identity, length of the
alignment, and the number of exons. Further, remaining un-
spliced EST alignments are removed, as they are a potential
source for genomic contamination. When protein evidence is
used, GeneWise (Birney and Durbin 2000) protein–genomic
spliced alignments are filtered using the same coverage and se-
quence identity criteria as for mRNA sequences but allowing for
multiple matches per protein.
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Cross-species feature projections
Annotations of gene features on the related genome, such as
mRNA–genomic sequence alignments or predicted transcripts,
are projected onto the genome to be annotated (reference) in
three steps (Fig. 2). Step one generates a whole-genome align-
ment and one-to-one mapping between the two genomes, start-
ing from exact 20-mer matches that are unique in both se-
quences, selecting a reliable subset of these as anchors, and then
applying a more lenient local alignment program on the inter-
vals between anchors (referenced in Istrail et al. 2004; Lippert et
al. 2004). The result is a set of nonoverlapping runs of matches
consistent in order and orientation. Regions thus delimited by
the runs form conserved syntenic blocks between the two ge-
nomes. Step two projects the exon coordinates from the related
genome to the reference genome, using the precomputed set of
matches. When an exon boundary cannot be found in a match
but a portion of the exon can be used to anchor the projection,
the length of the unprojected end (“trim”) and distance to the
nearest match (“bound”) are reported and later used to adjust the
projection. The trim is 0 when the exon boundary can be
mapped. Step three seeks to refine the projected splice junctions
using a combination of methods, including GenScan exon and
splice junction predictions and scores (Burge and Karlin 1997)
and the proximity to same-species cDNA alignments on the ref-
erence genome, and then uses a set of selection criteria to endorse
features for use as evidence in the annotation. Partial exons are
left truncated at the last projected base if the trim exceeds the
bound, thus supporting a deletion in the exon in the reference
genome. Alternatively, some exon boundaries are relocated to
the best splice site within the vicinity of the estimated exon end
inferred by adding the trim to the end of projection (the vicinity
is defined as 12 bp + trim � 20% on each side of the estimated
end). In the end, exons shorter than 6 bp, or those that shrink or
grow by more than the maximum of 30 bp and 30% of their
original length, are rejected.

Filtering of alignment and projection data
cDNA and protein alignments and cross-species projections are
further inspected and filtered for quality before being incorpo-
rated into the transcript building module. Marginal exons and
exons surrounding an alignment gap that are shorter than 25 bp
or have less than 90% sequence identity are removed from the
alignments. Moreover, EST alignments with internal gaps or am-
biguous strand assignments, and projections or alignments
where internal exon gaps are contradicted by exons in some
other evidence, are eliminated from the set.

Transcript building
Starting from a set of nonredundant spliced cDNA and/or protein
sequence alignments on the genome, AIR builds a collection of
connected splice graphs, each representing a gene, in four steps
(Fig. 1). Step one clusters overlapping EST, mRNA, and protein
genomic alignments and projections located on the same strand.
Within each cluster, step two identifies a set of representative
exon boundaries by grouping all candidate splice junctions from
evidence alignments in intervals 20 bp or shorter using hierar-
chical clustering (Mirkin 1996), then choosing the best scoring
exon boundary position within that interval. As a consequence,
splice variation shorter than 20 bp at the 5� and 3� ends of exons
will not be apparent. For a given position, its splice score is a
weighted combination of the fraction of supporting alignments
among those for the entire interval and a consensus splice signal
score computed with the method described by Burge and Karlin
(1997). Step three generates the splice graph. All partial evidence

exons are artificially extended to the next exon boundary to re-
duce the computational task of exon assembly by manipulating
transcripts and exons at the resolution of exon blocks rather than
nucleotides. The exons (vertices) in the graph are assembled from
compatible combinations of overlapping or adjoining exons in
the evidence alignments. A compatible combination is one in
which an exon’s spliced end is not contained within another
exon. Introns (arcs) are added to connect the vertices, in a man-
ner consistent with the evidence, the type of arc indicating
whether it is a regular intron or a cDNA gap. Step four refines
some clusters into connected components representing overlap-
ping genes or disconnected gene fragments.

Transcript scoring
The splice graph model provides a framework to comprehen-
sively enumerate potential splice variants but may encode many
biologically improbable exon combinations. To prioritize those
that are more likely to exist in vivo given the existing data, we
assign each exon and candidate transcript a confidence score be-
tween 0 and 1 based on its support by evidence, as described below.

Exon scoring
Exon scores combine three independent components. The align-
ment quality (AQ) score reflects the overall quality of the evi-
dence alignments used to generate the exon. Each nucleotide in
the exon is assigned the maximum percent sequence identity
value over all alignments in which it is contained, and the AQ
score is the average of values over the aligned exon bases. The
internal gap (IG) score measures the exon’s coverage with evi-
dence alignments. Virtually extending partial evidence exons to
full exon blocks can produce some exons with internal evidence
gaps, or “hollow.” Because exons as large as 17 kb have been
annotated, we chose to penalize hollow exons in our scoring,
rather than split them. The score function IG(k) = e�k/270, cho-
sen to penalize an internal gap of size k, is the least mean square
error (LMSE) approximation with an exponential function of the
empirical probability that two exonic positions separated by k bp
belong to the same exon: P(exon(x1) = exon(x2) | isCoding(x1)
and isCoding(x2) and | x1�x2 | = k), approximated from the cu-
rated set of Celera human transcripts for the genome assembly
Release R26. This function is easy to compute and has the desir-
able property that it extends naturally to a series of gaps:
IG(k1+k2) = IG(k1) � IG(k2), thus mimicking the probability of
independent events. The last score component, the fragmenta-
tion (FG) score, favors exons that are obtained from full evidence
exons versus those assembled from multiple partial exons. It is
defined as the inverse of the minimum number of evidence
alignments necessary to cover the aligned portion of the exon.
The cumulative exon score is finally computed as: score(X) = sqrt
[AQ(x)2 + IG(X)2 + FG(X)2].

Splice variant (transcript) scoring
Splice variant scores combine five components, measuring inde-
pendent qualities of the evidence for the transcript. For an align-
ment to be considered evidence at this step, its exon–intron
structure must be entirely contained within and compatible with
that of the transcript. Gaps in cross-species projections are con-
sidered compatible with exons in the splice variant if the rest of
the exon-intron structures are consistent. The mapping quality
(MQ) score reflects the overall goodness of its exons, and is cal-
culated as the geometric average of the exon scores. The exon
coverage (EC) is the fraction of the splice variant’s exons that are
contained in some evidence alignment. If no (compatible) evi-
dence alignment exists, the coverage score is 0. The fragmenta-
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tion (FG) score is akin to that defined for exons, and is computed
as the inverse of the minimum number of evidence alignments
necessary to cover all exons inherited from compatible evidence.
The longest evidence (LE) score measures the continuity of evi-
dence, and is the fraction of the transcript’s exons contained in
the evidence alignment with the largest number of exons. Lastly,
the intron consistency (IC) score measures the overall agreement
among predicted intron orientations and is defined as the frac-
tion of introns that are consistent with the orientation predicted
for the transcript. The orientation of individual introns is deter-
mined by the number of nucleotides matching the consensus
splice signal GT–AG (CT–AC). The cumulative score of a splice
variant is then computed with the weighted formula:
Score(SV) = sqrt [�1 MQ(SV)2 + �2 EC(SV)2 + �3 FG(SV)2 + �4

LE(SV)2 + �5 IC(SV)2], with �i = 1,5�i = 1. The parameters �i

can be viewed as the relative importance attributed to the various
components by an expert curator. In our fully automated pro-
cess, they correspond to the scores’ discriminative power in a
test that separates known, high-confidence examples from low-
confidence ones, and they were trained on an independent set of
manually curated Celera human transcripts as described below.

Scoring scheme calibration
We calibrated the weights in the scoring scheme using as refer-
ence the set of 44,448 transcripts predicted for the Celera human
genome assembly Release R26 (R26). This set consists of tran-
scripts originally generated with an independent tool, Celera’s
Otto annotation system (Venter et al. 2001), and later curated
and augmented by expert annotators. We used AIR to annotate
another Celera human genome assembly, Release 27 (R27), using
genomic alignments of human cDNA sequences from NCBI’s
dbEST and RefSeq repositories. To generate a compatible refer-
ence set, the R26 reference transcripts were aligned uniquely to
the R27 genome and were assigned “proxies” from among the
AIR-predicted candidate splice variants. Proxies were compatible
extensions of the reference transcripts with the smallest number
of extraneous exons. We assigned 25,443 such proxies. To cali-
brate the scoring scheme, we varied the values of the �i param-
eters in 0.01 increments under the constraint �i = 1,5�i = 1 and
determined the set of parameters {�i

0}i = {�1(MQ) = 0.02,
�2(EC) = 0.42, �3(FG) = 0.38, �4(LE) = 0.16, �5(IC) = 0.02} and the
score threshold 0.748 that minimized the number of candidate
transcripts with scores �80% of the proxies. In general, once the
optimal set of parameters is selected, the score threshold can be
chosen dynamically given the set of scores generated for a par-
ticular application, depending on the level of stringency desired.
Throughout several applications of the method to different
model genomes we found that the threshold 0.8 was consistently
suitable for separating transcripts, marked by a sharp drop in
scores in its vicinity, and it was therefore applied to the annota-
tion in this paper (Fig. 3).

Transcript selection
AIR selects a set of high-scoring candidate transcripts and then
applies heuristic rules based on the type and abundance of evi-
dence to select a subset of transcripts from the high-scoring
group. Specifically, for each gene a small number of transcripts
scoring greater than or equal to the threshold 0.8 or, if no such
transcript exists, scoring in the top 0.05 score interval for that
gene (e.g., 0.75–0.8) are selected. Transcripts with fewer than
three ESTs and no other type of evidence are then eliminated if
their gene overlaps with another at that locus, or if they have a
noncanonical splice junction. The remaining transcripts are pro-
moted into the annotation.

Construction of the benchmark orthologous exon set
Starting from the set of 15,245 mouse–rat mRNA sequence pairs
identified as homologous in the homoloGene database (Wheeler
et al. 2004), we discarded those pairs where either component
was a computationally predicted RefSeq gene (12,008 pairs) or
did not map to the genome or had multiple genomic matches (56
pairs), or where the portion of the sequence in the spliced align-
ment was noncontiguous (574 pairs), thus retaining 2607
mouse–rat sequence pairs. For each pair we identified the “core”
conserved interval spanned by local alignments produced with
BLASTZ (Schwartz et al. 2003) and by sim4 alignments of both
mRNA sequences to their respective genomes. Analyzing the
cores only, we discarded 481 pairs whose exon structure as de-
termined by the spliced genomic alignments did not follow the
Smith-Waterman (Smith and Waterman 1981) mRNA–mRNA se-
quence alignment to within 10 bp of each exon boundary. Of
these, 76 appeared to be due to exon splitting and 39 to exon
skipping events. This process yielded 2124 mouse–rat ortholo-
gous pairs: In 1842 of the pairs the exon structures matched each
other exactly, and in 282 the match was within the 10-bp margin.
The resulting set consisted of 17,332 exon pairs, which we used to
assess the accuracy of our transcript and exon projection process.

Alignment data for the CFTR region analysis
Sequence and annotation data for the CFTR region in 13 species
(baboon, cat, chicken, chimp, cow, dog, Fugu, human, mouse,
pig, rat, tetraodon, zebrafish) were extracted from Thomas et al.
(2003). To generate projection and alignment data for compari-
sons, annotated human mRNA features were projected onto the
other 12 regions via the pairwise alignments between human and
each of the other species using the AIR tools. In parallel, se-
quences extracted according to these annotations were aligned to
the 12 genomic regions using the program BLASTZ (Schwartz et
al. 2003) with the parameters set as in Thomas et al. (2003) and
a version of the sim4 program (Florea et al. 1998) tuned for
higher sensitivity as required for cross-species alignments (mis-
match = �3, F = 1.0, P = 0.3). BLASTZ local alignments were split
at genomic gaps of 50 bp or longer, to create exon–intron gene
structures as needed for comparisons. When the cDNA matched
both strands of the genomic sequence, as for the gene CAV2, the
longer alignment was chosen. For sim4, marginal exons shorter
than 35 bp located at 100 Kb or more from the previous exon were
filtered as potentially spurious, and alignments shorter than 100 bp
after applying the marginal exon filter were similarly removed.

Availability
AIR-predicted transcripts for chromosome 4 of the rat genome
Release 3.1 and associated data files (Supplement A), as well as
materials supporting the comparison with the RGD gene set
(Supplement B) and other studies and results from the evaluation
(Supplement C) are submitted with this paper. Source code for
the tools described here and annotation for the entire rat genome
can be obtained from https://panther.appliedbiosystems.com/
publications.jsp.
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