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Abstract

Most genetic association signals for type 2 diabetes risk are located in non-coding regions of the 

genome, hindering translation into molecular mechanisms. Physiological studies have shown a 

majority of disease-associated variants to exert their effects through pancreatic islet dysfunction. 

Systematically characterizing the role of regional transcripts in β-cell function could identify the 

underlying disease-causing genes, but large-scale studies in human cellular models have 

previously been impractical. We developed a robust and scalable strategy based on arrayed gene 

silencing in the human β-cell line EndoC-βH1. In a screen of 300 positional candidates selected 

from 75 type 2 diabetes regions, each gene was assayed for effects on multiple disease-relevant 

phenotypes, including insulin secretion and cellular proliferation. We identified a total of 45 genes 

involved in β-cell function, pointing to possible causal mechanisms at 37 disease-associated loci. 

The results showed a strong enrichment for genes implicated in monogenic diabetes. Selected 

effects were validated in a follow-up study, including several genes (ARL15, ZMIZ1 and THADA) 
with previously unknown or poorly described roles in β-cell biology. We have demonstrated the 

feasibility of systematic functional screening in a human β-cell model, and successfully prioritized 

plausible disease-causing genes at more than half of the regions investigated.

Type 2 diabetes risk is determined by a complex interplay between environmental and 

genetic factors, with heritability estimates ranging from 20-80% (1). Over the past decade, 

genome-wide association studies (GWAS) of ever-increasing size have discovered more than 

a hundred regions of the genome (loci) associated with type 2 diabetes risk (2). Studies in 
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non-diabetic individuals have demonstrated that a large number of these association signals 

exert their effects on disease susceptibility through pancreatic islet dysfunction (3).

Despite these advances, progress in translating genetic findings into disease biology has 

been relatively slow. The majority of risk variants are located in non-coding regions of the 

genome, and pinpointing the underlying causal genes or “effector transcripts” has proved 

challenging (4). Recent efforts have focused on identifying structural or functional links 

between association signals and regional genes (5, 6). A complementary strategy uses 

candidate-gene biology to prioritize genes located near association signals. High-throughput 

screening (HTS) could facilitate the identification of genes implicated in β-cell function, and 

thereby highlight potential effector transcripts at type 2 diabetes GWAS loci. To date, such 

approaches have been limited by inadequacies of available human cellular models and the 

high cost of insulin immunoassays (~$2 per data point), the gold standard for measuring 

insulin. To circumvent these issues, previous studies have relied on rodent β-cell models and 

either used reporter assays as a proxy for insulin measurements, or focused on cellular 

proliferation (7–11).

Recently, the first glucose-responsive human β-cell line, EndoC-βH1, was generated (12, 

13). The line is derived from fetal pancreatic buds matured in vivo, and displays modest but 

robust induction of insulin secretion in response to glucose and secretagogous. Detailed 

characterizations have shown the cell line to be an authentic model system for studying 

stimulus-coupled secretion (14–16).

To accelerate the discovery of causal genes for type 2 diabetes, the present study performed 

and validated a genetic screen in the EndoC-βH1 cell line. We identified genes at half of the 

type 2 diabetes-associated loci studied (37/75) where siRNA-mediated silencing resulted in 

β-cell dysfunction. This demonstrates the feasibility of performing systematic screening for 

insulin secretion in a human β-cell model, with implications for both high-throughput 

genetic and chemical compound screening. Our results can be integrated with existing lines 

of evidence to prioritize effector transcripts at GWAS loci, and highlight potential roles for 

ARL15, ZMIZ1 and THADA in the regulation of insulin secretion.

Research Design and Methods

RNA-seq

The EndoC-βH1 cell line was cultured as previously described and grown to near 

confluency (12). RNA was then TRIzol-extracted, and sequenced at the Oxford Genomics 

Centre (Wellcome Trust Centre for Human Genetics, University of Oxford) (see Fig. S4 for 

details). The raw sequencing data have been deposited at the European Nucleotide Archive 

(ENA; http://www.ebi.ac.uk/ena) under accession number XXXXXXXXXXX.

Cellular assays

Cellular phenotypes were adapted for automated screening on a Perkin Elmer Janus liquid 

handling workstation based on previously described assays (Fig. S1A) (17). Briefly, 20,000 

cells/well were reverse transfected in 96-well format at final siRNA concentrations of 25 

nmol/L pre-incubated with 0.2 µL RNAiMAX in Opti-MEM. Custom libraries of siRNAs 
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(ON-TARGETplus SMARTpools [Dharmacon] for the primary screen and Silencer Select 

[Thermo Fisher Scientific] for follow-up validation) were designed based on criteria 

described in table S2. In each case, non-targeting sequences based on the same chemistries 

were used as negative controls. Three days after transfection, cells were starved overnight in 

complete media containing 2.8 mmol/L glucose followed by 1 h starvation in 0 mmol/L 

media. Static insulin secretion assays were then performed for 1 h in complete media under 

the indicated conditions, after which cells were counted as described below.

Sample analysis

Following secretion assays, supernatants were analyzed for insulin content using AlphaLISA 

Human Insulin Immunoassays (Perkin Elmer) on a PHERAstar FS plate-reader (BMG). 

Supernatants (50-250 nL) and beads pre-diluted in water (500 nL) were dispensed into 384-

shallow well microplates with an Echo 550 (Labcyte) acoustic liquid handler, before manual 

addition of immunoassay buffer to a final volume of 5 µL. Cell counts were measured using 

the CyQUANT Direct Cell Proliferation kit (Thermo Fisher) on an EnVision plate-reader 

(Perkin Elmer). All responses were normalized as indicated (see relevant figure legends), 

and expressed as a percentage of non-targeting (NT) control for each phenotype. Effect sizes 

are given as the percentage difference from NT (ResponseGene - ResponseNT), and the 

absolute values hereof (|ResponseGene - ResponseNT|).

Statistical analysis

Data analysis was performed using R 3.0.2. To identify significant responses, cell counts and 

normalized insulin secretion measurements for each gene were compared to NT control 

using Student’s two-sample t-test. The false-discovery rate (FDR) was controlled at 5% by 

applying the Benjamini-Hochberg procedure to produce adjusted p-values (q-values) for 

each phenotype. The Z-factor measuring the control response for each phenotype was 

calculated as 

Results

We first developed an automated assay for disease-relevant phenotypes in the human β-cell 

line EndoC-βH1 (Fig. S1A). Selected targets were silenced in a parallel format using RNA 

interference (RNAi). Cells were then assessed for effects on cell number and insulin 

secretion under four different conditions: low glucose (1 mM), high glucose (20 mM), and 

high glucose with the sulphonlyurea tolbutamide (100 µM) or with the phosphodiesterase 

inhibitor IBMX (100 µM). Low and high glucose conditions were included to provide 

information on the effect of gene silencing under conditions representing the fasted and fed 

states in vivo. Tolbutamide and IBMX act on the depolarizing and the potentiating pathways 

of insulin secretion, respectively, and were included to provide additional mechanistic 

insights through modulation (e.g. synergy or pharmacologic rescue) of any primary defects 

observed in low or high glucose.

To reduce the cost of sample analysis, we made use of acoustic liquid handling to 

miniaturize insulin immunoassays. This generalizable method enabled us to maintain high 
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sensitivity for insulin measurements (coefficient of variation [CV] < 3%; Fig. S2A-B), while 

obtaining a ten-fold reduction in the cost of sample analysis ($0.20 per data-point). Using 

the insulin gene (INS) as a positive control, we confirmed that we were able to robustly 

detect effects of gene silencing on the phenotypes of our assay (mean Z’ = 0.6 across 

conditions; Fig. S3).

Based on this combined analysis and assay pipeline, we designed a primary screen to assess 

the role of positional candidate genes for type 2 diabetes GWAS loci in β-cell function (Fig. 

S1B). For target selection, we considered all protein-coding genes located within 1 Mb of a 

type 2 diabetes association signal. To exclude genes not expressed in our cellular model, we 

performed whole-genome RNA sequencing of the EndoC-βH1. Our expression data strongly 

correlated with published sequencing data for enriched primary β-cells (ρ = 0.78; Fig. S4) 

and showed robust expression of key β-cell genes (12, 18) (Table S1). We included only 

genes expressed in both EndoC-βH1 and primary β-cells (Table S2), resulting in inclusion of 

300 positional candidates from 75 type 2 diabetes GWAS loci.

We next performed our primary screen in triplicate, and derived standardized scores for each 

phenotype. Knockdown was visibly confirmed using PLK1, an essential gene, which caused 

extensive cell death across all conditions. In a representative subset of 16 genes we assessed 

knockdown efficiency at the transcript level and found the median residual expression to be 

43% (Fig. S5), roughly equivalent to monoallelic loss-of-function. To account for 

differences in plating efficiency and proliferation, cell counts were used to normalize insulin 

secretion data on a per-well basis. Two criteria were then applied to identify robust effects 

(“hits”): (1) an FDR-adjusted q-value < 0.05; and (2) an absolute effect size among the top 

5% (Fig. S6). This identified a total of 67 hits (15 for cell count and 52 for insulin secretion 

phenotypes) between 45 genes at 37 loci (Table 1).

For cell numbers, effect sizes for each gene were estimated based on 12 independently 

plated replicates (four conditions in triplicate), and therefore likely represent true differences 

in cellular proliferation and/or viability rather than random plating effects. Aside from 

KIF11, a gene with a known role in cell division, the largest effect sizes compared with NT 

control (CV = 4% for cell numbers) were observed for ZMIZ1 (-15.2%; q = 6.5x10-5) and 

PRDX3 (+16.5%; q = 9.2x10-5).

For the insulin secretion data, we first performed an enrichment analysis for genes 

implicated in maturity-onset diabetes of the young (MODY). MODY describes a collection 

of monogenic subtypes of diabetes, characterized by insufficient release or production of 

insulin. As would be expected for a set of bona fide regulators of β-cell function, we 

observed a strong enrichment of MODY genes among the significant hits (Fisher’s exact 

test, p = 5.5x10-9). Aggregating absolute effect sizes for MODY and non-MODY genes 

revealed this enrichment to be driven by altered insulin secretion, and not through effects on 

cell numbers (Fig. 1).

Further validating our secretion data, we observed strong positive correlations between the 

normalized responses across conditions (p-values < 2.2x10-16; Fig. 2), and found 10 of 35 

genes to cause significant effects under two or more conditions. This included four known 
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MODY genes and ZMIZ1, which, independently of the effect on cell numbers, was one of 

the strongest hits for reduced insulin secretion (q < 0.01 for low and high glucose). 

Knockdown of the ABCC8 gene, which encodes a subunit of the ATP-sensitive potassium 

channel, was found to significantly increase insulin secretion under low glucose and IBMX 

stimulation. As expected, the depolarization caused by this was masked under high glucose 

(as cells are already partially depolarized), and fully rescued by tolbutamide (due to 

pharmacological depolarization of the cells). The pattern of modulation by secretion 

conditions can thus be used to pinpoint specific biological pathways affected by gene 

silencing. To explore the relationship between conditions in greater detail, we performed 

clustering analysis on Z-scores derived from the normalized secretion values. This revealed 

high glucose and tolbutamide to be most similar in terms of modulating knockdown effects, 

with low glucose and tolbutamide being most dissimilar (Fig. S7).

Finally, we assessed the contribution of off-target effects by performing a small-scale 

validation experiment using siRNAs designed with an alternate algorithm. The sequences 

were confirmed to be different from those of the primary screen, and could thus be used to 

establish the biological relevance of positive hits. We selected eight target genes, 

representing hits for both positive and negative defects across the four conditions, and 

confirmed that knockdown efficiency was satisfactory (median residual expression = 19.3 %; 

Fig. S8). Compared with insulin secretion results from the primary screen, we observed an 

excellent linear correlation (ρ = 0.85, p = 6.7x10-10, Fig. S9) and 88% directional 

consistency in normalized responses. The validated hits included several genes with limited 

prior evidence of a role in the regulation of β-cell function, including; ARL15 and ZMIZ1, 

which were found to significantly reduce insulin secretion across conditions (q-values < 

0.05; Fig. 3A-B), and THADA, which modestly elevated insulin secretion across three 

conditions, though the effect under low glucose was not observed in the primary screen (q = 

5.6x10-3; Fig. 3C). Interestingly, gene silencing of the known MODY gene HNF4A was 

confirmed to cause a paradoxical increase in insulin secretion across all four conditions 

tested (q-values < 0.001, Fig. 3D).

Discussion

High-throughput screens for β-cell dysfunction offer the opportunity to systematically 

characterize the role of genes in a disease-relevant tissue for type 2 diabetes. Previous efforts 

have focused on non-human model systems (7–10), reporter-based proxy measurements for 

insulin (7, 8), and/or phenotypes not directly related to insulin production and secretion (10, 

11). Here, we report a genetic screening strategy for the interrogation of multiple disease-

relevant phenotypes in the human β-cell line EndoC-βH1. In a primary screen of 300 

positional candidates, we successfully identified 15 genes regulating cell number 

(proliferation and/or viability), and 35 genes regulating insulin secretion. This is, to our 

knowledge, the first systematic, large-scale effort to identify genes involved in insulin 

secretion. Importantly, the identified hits can be used to prioritize novel effector transcripts 

for type 2 diabetes GWAS loci, and may shed further light on mechanisms underlying genes 

previously implicated in β-cell dysfunction.
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The known MODY gene HNF4A was unexpectedly observed to cause a consistent increase 

(> 40%) in insulin secretion across all conditions. HNF4A encodes the transcription factor 

Hepatocyte nuclear factor 4 alpha (HNF4α), and is mutated in about 10% of all MODY 

cases (19). HNF4A loss-of-function mutations that cause monogenic diabetes later in life 

have also been associated with increased birth-weight (indicative of increased fetal insulin 

secretion) and congenital hyperinsulinism in early infancy (20). The underlying reason for 

this switch from elevated to reduced insulin secretion is unknown, but it has been speculated 

that gradual β-cell exhaustion or, alternatively, a shift in the modulating co-factors of 

HNF4α may underlie this phenomenon (21, 22).

Among the hits with limited prior evidence of a role in β-cell function, we independently 

validated ZMIZ1, ARL15, and THADA. Overexpression and knockdown of ZMIZ1, 
encoding Zinc Finger, MIZ-Type Containing 1 (ZMIZ1), has recently been shown to 

negatively impact on insulin secretion in primary human islets (6). Moreover, a nearby type 

2 diabetes association signal overlaps a cis-eQTL for the gene, supporting its candidacy as 

the regional effector transcript (6). ARL15 encodes ADP-Ribosylation Factor-Like 15, a 

relatively uncharacterized member of the ARF-family of proteins involved in regulation of 

vesicle trafficking and biogenesis. The gene is highly expressed in β-cells and located 

downstream of an islet-active enhancer bound by key β-cell transcription factors (18, 23) 

(Fig. S10A). THADA encodes the protein Thyroid Adenoma-Associated (THADA), and 

contains a coding disease-association signal that has also been associated with reduced β-

cell function (24) (Fig. S10C). Consistent with the directionality of our findings, expression 

profiling has shown the gene to be more highly expressed in patients with type 2 diabetes 

compared with controls (25). All three genes thus emerge as strong candidates for future 

studies.

While successfully enabling unbiased functional characterization, our current screening 

strategy has a number of limitations. False negatives (i.e. true causal genes not identified as 

hits) could arise as a result of primary effects of the causal gene on non-beta cell tissues, or 

through effects on genes expressed at different developmental stages. Likewise, 

overexpression or greater knockdown efficiency may in some cases be required to expose a 

disease-relevant phenotype. Among the targets analyzed for silencing efficiency, a variable 

range of knockdown was observed (34% - 88%), and some genes might remain undetected 

due to insufficient silencing. Conversely, false-positive effects (i.e. non-beta cell regulators 

identified as hits) also cannot be excluded, and unexpected findings should be further 

functionally validated (e.g. SLC2A4 effect on IBMX-stimulated insulin secretion). Though 

the EndoC-βH1 cell line has been found to recapitulate many aspects of β-cell function, it 

remains a possibility that some findings would not translate directly into human physiology. 

Finally, a subset of the identified hits may represent true β-cell regulators that are 

independent of any disease risk variants and, though still of biological importance, not 

genuine effector transcripts for type 2 diabetes. In addition to the possibility of more than a 

single effector transcript per locus, this phenomenon likely also contributes to the relatively 

high proportion of multi-hit loci observed in the primary screen (8/37).

Despite these limitations, our screening strategy successfully replicated well-established 

biological mechanisms, and identified genes involved in β-cell function at half of the loci 
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investigated. This demonstrates, for the first time, the feasibility of performing scalable 

screens for insulin secretory defects in human pancreatic β-cells, and opens up the 

possibility, not only for large-scale genetic manipulations, but also for compound HTS to 

therapeutically manipulate human β-cells. Insights from this and subsequent functional 

screens can be integrated with complementary lines of evidence from exome-wide 

association studies, chromatin conformation capture and cis-eQTL studies to prioritize genes 

for follow-up studies. Ultimately, this could accelerate the translation of genetic association 

signals into molecular mechanisms for β-cell dysfunction, insulin insufficiency, and type 2 

diabetes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Comparing mean absolute effect sizes for MODY and non-MODY genes.
Boxplots of mean absolute effect sizes for MODY genes (white) and non-MODY genes 

(excluding controls, black) across the five phenotypes measured. Effect sizes were calculated 

as described for table 1, and the absolute values were then averaged for the two categories of 

genes. Among 14 identified MODY genes, eight fulfilled criteria for inclusion in the screen: 

HNF4A, GCK, HNF1A, HNF1B, PAX4, INS, ABCC8 and KCNJ11. Boxplots show median 

and interquartile ranges for groups of n = 8 and 292 data-points. ***q-value < 0.001 by 

Student’s t-test (FDR-adjusted). Tol = Tolbutamide.
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Figure 2. Comparison of insulin secretion data for high and low glucose.
Normalized insulin secretion responses under high glucose versus low glucose, with selected 

hits annotated. The blue circle indicates the 95 % confidence contour for NT control, and the 

orange circle indicates the 95 % confidence contour for insulin (INS) positive controls. All 

measurements were normalized on a per-well basis to cell-counts, and averages for each 

condition were then subsequently normalized to the mean of NT control. Data points are 

mean of n = 3 and shown as percentage of NT control.
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Figure 3. Insulin secretion data for selected genes in a follow-up validation experiment.
Insulin secretion for (A) ARL15, (B) ZMIZ1, (C) THADA, and (D) HNF4A (white) versus 

non-targeting (NT; black) negative control under the indicated conditions. Measurements 

were processed as described for Fig 2, and shown as percentage of NT control. Data points 

are the mean of n = 6 for NT and n = 3 for other genes, and error bars are SEM. +q-value < 

0.1, *q-value < 0.05, **q-value < 0.01, ***q-value < 0.001 by Student’s t-test (FDR-

adjusted). Tol = Tolbutamide.
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Table 1
Effects of significant hits identified in a primary screen for β-cell dysfunction.

The table lists effect sizes (% deviation from NT control) for each gene with a least one significant effect 

across the five phenotypes measured. All insulin secretion measurements were normalized on a per-well basis 

to cell-counts, and the mean percentage deviations from NT control were then calculated for each condition. 

For cell counts, values were median-normalized for interplate differences, and the mean percentage deviations 

from NT control were calculated across conditions. *q < 0.05 by Student’s t-test (FDR-adjusted).

Gene Locus Low glucose High glucose IBMX Tolbutamide Cell count

ABCC8 KCNJ11 48.2* 24 26.7* 1.8 -1.4

ADAMTS9 ADAMTS9 6.3 -4.8 2.8 -8 12.2*

ADIPOQ ST64GAL1 87* 23.2 23.1 8.8 -7.3

ARL15 ARL15 -5.5 -25.9* -2.1 -15.5 -1.5

BCAR1 BCAR1 5.9 25.2 28.5* 9.5 -7

BCL6 LPP -20.7* -8.9 -1 -12 5.6

BMP8B MACF1 7.8 16.5 9.5 26.9* -1

CCNT2 TMEM163 -32.6* 1.8 4.7 5 -2.8

CDKAL1 CDKAL1 2.4 1.7 -10.6 -23.5* 7.5

DGKQ MAEA 3.3 17.5 20.4 33.6* -9.8

DMRTA2 FAF1 32.3* 24.5 13.1 22.7 -0.3

ELAVL4 FAF1 -3.6 9.1 21.2 22.8 -11.4*

ETV5 IGF2BP2 -12.4 -25.6* -10.9 -12.6 -2.5

FAH ZFAND6 -23.1* -20.6* -16.9 -27.2 -2.3

FBXW7 TMEM154 45.2* 9.6 8.7 11.7 9.9*

GINS4 ANK1 -16.1 -14.2 -9.5 -17 8.7*

GLIS3 GLIS3 -13 -10.6 6.4 -9.3 -10.3*

HEYL MACF1 29.2 29.2* 0.4 20 -7.2

HMGA2 HMGA2 16.5 4.1 14.2 24.1* -1.2

HNF1A HNF1A 21.7 38.3* 23.1 25.5* 5.2

HNF4A HNF4A 36.7* 66.9* 74.9 92.9* -8.8

IGF2 DUSP8 -26.3* -10.4 1.2 0.1 -1.3

INS DUSP8 -53.5* -44.8* -48.7 -38.7* 0.9

KCNK17 KCNK16 -9.4 -17.3 -2.5 -1.2 9.8*

KCTD15 PEPD 21.7 9.4 12.5 0.8 -10.9*

KIF11 HHEX/IDE 45.4* 35* 26.9 55.4* -40.1*

LINGO1 HMG20A 0 19.1 -12.4 -14.9 7.9*

MFGE8 AP3S2 30* 3.4 2.8 -1.7 -5.7

MIER3 ANKRD55 5.9 36.5* 5.8 18.2 1.9

NDUFS4 ARL15 1.6 -4.9 3.9 -1.7 10.8*

PABPC1L HNF4A -9.7 -12.3 -10.4 -28.8* -1.2

PHF23 SLC16A11 -25.6* -1.7 -5.9 3.5 -0.9

PLA2R1 RBMS1 8.6 1.6 10.8 1.6 9.1*

PRDX3 GRK5 24 31.7* 23.4 9.6 16.6*
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Gene Locus Low glucose High glucose IBMX Tolbutamide Cell count

PTHLH KLHDC5 -2.8 -6.5 -0.5 -25* -5.9

RND3 RND3 -8.7 -6.1 0 -3 -14.9*

SLC2A4 SLC16A11 14.5 0 27.2* 18.2 -1.6

SOCS7 HNF1B 3.9 -18.5* 11.2 -14.7 -1.6

SPPL3 HNF1A -11.9 -21.9* -6.1 -10 -10.8*

STK38L KLHDC5 15.2 40.9* 4.7 25.2* -3

THADA THADA -1.9 6.5 27.5 24.8* -10.3

TLE1 TLE1 4.3 -5 -23* 16.2 4.6

TM6SF2 CILP2 -22.6* -8.3 -0.8 -12 -8.7

UPF2 CDC123 7.5 -12.5 4.7 -24.9* -3.2

ZMIZ1 ZMIZ1 -29.5* -21.4* -19.8 -16.8 -15.2*
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