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Abstract

Background

Human respiratory syncytial virus (RSV) remains the most common cause of severe lower

respiratory tract disease amongst infants, and continues to cause annual epidemics of respi-

ratory disease every winter worldwide. Demonstrating placental transmission of viable RSV

in human samples is a major paradigm shift in respiratory routes considered likely for RSV

transmission.

Methods

Droplet digital PCR (ddPCR) was used to identify RSV present in cord blood mononucleo-

cytes (CBM). CBMs testing positive for RSV were treated with phytohemagglutinin (PHA),

PHA and nitric oxide (NO) or PHA, NO and palivizumab, and co-cultured with HeLa cell mono-

layers. Subsequent immuno-staining for RSV was used to visualize infective viral plaques.

Results

RSV was detected in 26 of 45 samples (57.7%) by ddPCR. CBM’s collected in winter were

more likely to test positive for RSV (17/21 samples, risk = 80%, OR = 7.08; 95% CI 1.80–

27.80; p = 0.005) compared to non-winter months (9/24 samples, 37.5%). RSV plaques

were observed in non-treated and treated co-cultured HeLa monolayers.

Conclusions

Demonstrating active RSV in CBMs suggests in utero transmission of infective virus to the

fetus without causing overt disease. This is likely to have an important impact on immune
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development as well as future virus-host interactions, thereby warranting further

investigation.

Introduction

Despite more than 50 years of research, human respiratory syncytial virus (RSV) continues to

cause annual epidemics of respiratory disease every winter worldwide [1]. RSV remains the

most common cause of severe lower respiratory tract disease amongst infants and is also

responsible for a significant burden of respiratory disease in the elderly [2–4]. As a member of

the paramyxovirus family, RSV is an RNA virus related to other respiratory viruses such as

influenza and parainfluenza [1].

RSV invades the epithelial cells of the lower respiratory tract following exposure to inhaled

infective aerosolized droplets, or self-inoculation of the eyes and/or nose by contaminated fin-

gers [2, 3]. The virus spreads from cell to cell by inducing cell fusion and the formation of syncy-

tia [4]. This process leads to blocked airways and difficult breathing as a result of inflammation,

cell death and raised mucus secretion [5]. In the absence of an effective vaccine or anti-viral

therapy, treatment of RSV infection in infants is largely supportive and may include administra-

tion of supplemental oxygen, mechanical ventilation and fluid replacement [5, 6]. The failure to

develop an effective vaccine is surprising given that there are only two subtypes of RSV which

do not exhibit major antigenic drift [7]. This suggests improved insight into virus–host interac-

tions are needed to progress treatment strategies.

RSV has also been shown to infect myeloid cells such as macrophages, dendritic cells

(DCs), and cord blood monocytes [5–10]; however, a role for these alternate infection sites in

RSV mediated airway disease is not currently well addressed. Furthermore, a paucity of data

exists to explain ongoing evidence for RSV persistence observed beyond the epidemic periods

in monocytes from human respiratory samples [11–13] and animal models [14–17]. Even

more intriguing are observations to suggest RSV remains co-localised with cultured DCs for

prolonged periods, with replication reactivation occurring spontaneously or following expo-

sure to nitric oxide (NO) [5]. Together these studies point to monocyte infection by RSV, with

a portion of these cells able to carry the virus for prolonged periods without causing obvious

signs of infection; and the possibility of viral replication reactivation when triggered by appro-

priate stimuli.

Based on observations from studies which have shown RSV persistence and replication

reactivation in cells of monocyte lineage [5–9], we hypothesized a presence of RSV in cord

blood mononucleocytes (CBM) which could be activated by external stimuli. We sought to

find evidence of RSV in CBMs to demonstrate human in utero transmission, and activation of

live virus in these cells to suggest a cellular reservoir. Findings from this study could be used to

explain the prevalence of RSV bronchiolitis observed in infants every winter and inform novel

targets for effective treatment of RSV induced airway disease.

Methods

Patient samples

Cord blood samples collected from 45 term infants (23 female) from healthy mothers (18–45

years) recruited antenatally. Samples were collected from August 2002 until September 2003.

Cord blood was collected immediately after delivery by means of venipuncture of placental
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vessels, as previously described [18]. Mononuclear cells were isolated by means of Ficoll-Hypa-

que gradient centrifugation (Lymphoprep; StemCell, Vancouver, Canada) and cryopreserved.

RNA purified from a pooled preparation of nasopharyngeal aspirates collected from

patients diagnosed with RSV bronchiolitis were used as positive controls for RSVA and RSVB

detection in cord blood samples by digital PCR analysis.

Ethics statement

De-identified cord and maternal blood samples used for this study were collected under insti-

tutional ethics approval with informed adult written consent (Approval 728/EP, Child and

Adolescent Health (CAHS) Human Research Ethics Committee) to investigate developmental

immunology. De-identified nasopharyngeal aspirates collected from patients testing positive

for RSV were obtained with agreement from PathWest Laboratory Medicine (Nedlands, Aus-

tralia) to validate the presence of RSV by droplet digital PCR. According to the Human Tissue

Acts of Australia, ethics approval was not required for use of these human samples as they

were collected for therapeutic and/or diagnostic purposes and subsequently de-identified for

pathology purposes, including assay validation [19]. All research investigation in this study

was conducted according to the principles expressed in the Declaration of Helsinki.

RSV detection

a) Droplet digital PCR (ddPCR). RSV gene expression was measured using a commer-

cially available fluorescent probe real-time PCR kit designed to detect all species of RSV

(RSVSpp; GeneSig, Southampton, UK) on a droplet digital PCR platform (Bio-Rad, Hercules,

US). Droplet digital PCR (ddPCR) is a next generation digital PCR with greater analytical sen-

sitivity compared to conventional real-time PCR due to an enhanced ability to read nucleic

acid at a single molecule level [20]. Viral RNA was extracted from thawed CBM cell pellets

(Roche, Basel, Switzerland) and a minimum of 200ug used as template for cDNA synthesis

using random primers and M-MLV reverse transcriptase (Promega, Southampton, UK).

Twenty microliters of ddPCR fluorescent probe supermix with cDNA was added to the droplet

generator cartridge and placed in the droplet generator with 70μl of generator oil. The result-

ing picoliter droplet emulsions were transferred to a 96 well PCR plate and cycled under the

following conditions: 10 min hold at 98˚C, 40 cycles of 95˚C for 30s then 60˚C for 60s and

finally a 10 min hold at 98˚C. After amplification the plate was transferred to the droplet reader

to measure the number of positive and negative droplets based on fluorescence amplitude. The

number of template molecules per microliter of starting material was estimated by Quanta-

Soft™ ddPCR software (Bio-Rad, Hercules, US) using an internal Poisson algorithm described

previously [20].

b) Immunostaining for RSV plaque detection. Immuno-probing using an anti-RSV

antibody was used to detect RSV plaques in order to demonstrate infective RSV detected by

ddPCR in monocyte precursor cells contained in cord blood samples. Briefly, cryopreserved

cord blood mononucleocytes (CBM) were thawed and allowed to rest for 3hrs at 37˚C/5%

CO2 in specialised dendritic cell media, X-VIVO (Lonza, Basel, Switzerland). Following this,

cultures were treated with one of the following: phytohaemagglutinin (PHA, 1ug/ml; Sigma-

Aldrich, St Louis, US); PHA with a soluble nitric oxide donor (NO, 65ug/ml; S-Nitroso-N-ace-

tyl-DL-penicillamine, Sigma-Aldrich, St Louis, USA); or PHA with NO and palivizumab

(PZB, 1600ug/ml; Synagis1 MedImmune; Gaithersburg, US). All cultures were incubated for

24hrs and then added to HeLa monolayers (American Tissue Culture Collection) grown to

70% confluence in Dulbecco’s minimum essential medium (DMEM) supplemented with fetal

calf serum (10% v/v). After 48 hours culture supernatants were removed and the remaining
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HeLa cell monolayers washed with PBS, and fixed with methanol containing hydrogen perox-

ide (1% v/v). These fixed HeLa cultures were then probed for RSV expression using anti-RSV

HRP conjugated monoclonal antibody (Bio-Rad, Hercules, US) followed by incubation with

Sigma-Fast Red (DAB; Sigma-Aldrich, St Louis, US) to detect the presence of RSV as described

previously [21]. Stained RSV plaques were counted for analysis.

Statistical analysis

A total of 45 samples were assessed for RSV expression and a minimum of 11 samples were

used to compare RSV plaque assay formation in each treatment group. All samples were run

in duplicate and all experiments completed at least twice to ensure reproducibility. Odd’s

ratios and relative risk for RSV detected in cord samples were calculated using cross-tabula-

tions with Fishers exact analysis. Due to an absence of data regarding the prevalence of RSV in

CBMs, post-hoc power analysis was used to assess if the study interpretations were feasible

based on the sample size available. The observed power was calculated at 82% based on the rel-

ative risks of RSV detection and sample size used. In order to mitigate concerns surrounding

use of observed power and demonstrate the precision of these findings, confidence intervals

are reported for the effect sizes calculated. Due to the small sample size and skewed distribu-

tion of the dataset, Mann Whitney-U analysis was used to compare RSV expression between

birth seasons, and to assess differences in RSV plaque numbers between non-treated and

treated co-cultured cells. Stata software by StataCorp (College Station, Texas, USA) was used

to complete graphs and statistical analysis for this study with significance taken as p =<0.05

for two-tailed tests. Graphs represent median values with interquartile ranges unless stated

otherwise.

Results

RSV detection in cord blood

Low level RSV expression was detected in human cord blood samples using droplet digital

PCR (26/45 samples, 57.7%, Fig 1), suggesting in utero transmission of RSV to the human

fetus. RSV could not be detected in a subset of 16 matched maternal bloods analysed by the

same methods.

Birth season distribution of cord blood samples testing positive for RSV

Samples testing positive for RSV were identified across all birth seasons (Fig 2), with a greater

number of RSV positive samples observed in winter (17/21) compared to non-winter birth

months (9/24). A significantly raised odds ratio (OR = 7.08; 95% CI 1.80–27.80; p = 0.005) sub-

stantiated the significantly raised risk of RSV detection in cord bloods collected in winter

(81%; 95% CI 64.2–97.7) compared to those collected in non-winter months (37.5%; 95% CI

18.1–56.9, p = 0.003; Fig 3A). While RSV was present in a greater proportion of samples col-

lected in winter, the amount of virus was not significantly different to those samples testing

positive and collected in non-winter months (Winter months: 1.3 copies/20ul IQR 0.6–2.7;

Non winter months: 1.2 copies/20ul IQR 0.6–2.7; p = 0.567, Fig 3B).

Cord blood co-cultures

Low level spontaneous release of RSV was observed in epithelial cells co-cultured with CBMs

compared to HeLa monolayers alone (p<0.01, Fig 4). RSV release was significantly enhanced

when CBMs were matured with phytohaemagglutinin (PHA, p = 0.014) and treated with nitric

oxide (NO), used as an environmental trigger of RSV replication (p = 0.040). This effect was
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attenuated by treatment with the therapeutic anti-RSV antibody palivizumab (p = 0.193), con-

firming RSV release from these cells.

Fig 1. RSV N gene expression in cord blood samples measured by droplet digital real time PCR

(ddPCR) using fluorescent probe detection. Cord blood samples were assessed for RSV N gene

expression using a commercially available RSV fluorescent probe real-time PCR detection kit, with droplets

prepared using BioRad ddPCR fluorescent probe immersion oil and droplet generator. RNA purified from a

pooled preparation of nasopharyngeal aspirates collected from patients diagnosed with RSV bronchiolitis

were used as positive controls for RSVA and RSVB detection. Non-template control and cDNA prepared from

non-infected HeLa cells were used as negative controls to set the appropriate background expression

threshold (black line). All samples were run in duplicate with events above the threshold line considered

positive (26/45 samples, 57.7%).

https://doi.org/10.1371/journal.pone.0173738.g001

Fig 2. Birth season distribution for cord blood samples tested for RSV by ddPCR. Of the 45 samples

tested for RSV N gene expression by ddPCR, the largest proportion of positive samples was observed in

those collected during winter months (17/26).

https://doi.org/10.1371/journal.pone.0173738.g002
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Discussion

This is the first study to show evidence of low level RSV expression in human cord blood sam-

ples, suggesting in utero transmission of RSV to the human fetus. Importantly, release of infec-

tive RSV from cultured cord blood mononucleocytes indicates these cells harbor active virus.

While RSV was present in a greater proportion of samples collected in winter (OR = 7.08), the

Fig 3. Relative risk (A) and expression (B) of RSV N gene detected in cord blood samples collected in

winter and non-winter months. RSV N gene expression was more likely to be detected in samples collected

during winter birth months (17/21, 81%; 95% CI 64.2–97.7) compared to cord blood samples from non-winter

birth months (9/24, 37.5%; 95% CI 18.1–56.9, Fishers exact analysis). Of those samples where RSV was

detected, no significant difference in RSV N gene expression was observed between winter and non-winter

birth months (Mann-Whitney U analysis, p = 0.567).

https://doi.org/10.1371/journal.pone.0173738.g003
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amount of virus was not significantly different to those samples testing positive and collected

in non-winter months.

We believe acute maternal respiratory infection acquired during annual RSV winter epi-

demics in late pregnancy may explain the greater number CBM samples testing positive for

RSV in winter. RSV infections are common throughout adult life but generally cause mild

symptoms in healthy adults, meaning presentations of RSV induced illness in healthy adults

are unusual [22]. Therefore, it is not surprising that prospective data regarding the mother’s

respiratory health during pregnancy was not available to further support transmission of active

virus from a maternal RSV infection. Interestingly RSV could not be detected in a subset of

matched maternal bloods analysed by the same methods.

Of the non-winter seasons RSV was most prevalent in spring. This may represent persis-

tence following acquisition of RSV during winter months. DCs have been shown to harbor

RSV [17] with spontaneous viral release being more pronounced when treated with environ-

mental factors associated with winter months [5]. If the same applied to maternal sites of RSV

persistence, under appropriate circumstances spontaneous release could result in RSV trans-

mission and detection in CBMs in non-winter months [5, 23]. To date, only two RNA non-ret-

roviruses, hepatitis C and human Pegivirus, are known to successfully persist in human hosts

with normal and otherwise healthy immune systems [24]. Both viruses are transmitted by

blood, sexually and from mother to child [24]. While a number of immune evasion mecha-

nisms have been identified for these RNA viruses, the host mechanisms permitting persistence

remain to be fully elucidated and may be relevant to DC-bound persistent RSV [24, 25].

Low level spontaneous release of RSV observed in epithelial cells co-cultured with CBMs

suggest the fetus is exposed to low levels of infective RSV in utero. RSV release was significantly

Fig 4. RSV plaques detected in HeLa cultures co-cultured with cord blood mononucleocytes (CBM)

matured with PHA and treated with soluble nitic oxide (NO) and palivizumab (PZB). Cryopreserved cord

blood samples were treated with PHA, ‘PHA with NO’ or ‘PHA with NO and PZB’ for 24hrs, then added to

HeLa cells grown to 70% confluence. Significantly more RSV was detected in all HeLa monolayers co-

cultured with CBMs regardless of treatment compared to HeLa monolayers alone (p<0.01). Non-treated

CBMs co-cultured with HeLa cells had less RSV plaques then similar cultures treated with PHA and PHA with

NO. While RSV was detected in co-cultures treated with ‘PHA, NO and PZB’ this was not significantly different

to non-treated CBM co-cultures (Mann-Whitney U analysis, p = 0.193; n = 11 samples for all treatments).

https://doi.org/10.1371/journal.pone.0173738.g004
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enhanced when CBMs were matured with phytohaemagglutinin (PHA) and treated with nitric

oxide (NO), used as an environmental trigger of RSV replication. This effect was attenuated by

treatment with the therapeutic anti-RSV antibody palivizumab, confirming RSV release from

these cells. Therefore, this data suggests RSV is able to transmit from and between cells of

monocyte lineage without inducing inflammatory symptoms usually associated with infection.

Importantly, exposure to infective RSV in utero during fetal immune system development

may cause RSV immune tolerance [26, 27] explaining weak RSV antibody responses observed

in infancy and adult life [28–30]. Diminished immune memory responses contribute to poor

herd immunity, a factor considered to underpin annual epidemics of RSV induced respiratory

disease observed every year worldwide [1, 3, 30]. Immune tolerance to RSV would also explain

why RSV vaccines have failed to generate suitable antibody responses to date [26]. In light of

these findings maternal immunization against RSV would seem a more effective option over

post-natal vaccine strategies [31]. However, further investigation to determine RSV immune

tolerance as a result of in utero exposure and the impact of viral exposure during fetal develop-

ment is warranted due to maturing antigen-presenting precursor cell populations over the

course of gestation [32].

As this study was conducted retrospectively it was not possible to explore the impact of

RSV detection on infant lung structure and function. An association between viral respiratory

illness in asthmatic mothers and increased lower respiratory tract symptoms amongst their

infants during the first year of life has been shown previously [33]. The authors speculate that

maternal respiratory infection may influence immune responses such that the off-spring may

be more susceptible to asthma [33]. Two retrospective studies have produced results that

appear to support this suggestion [34, 35], however further investigation is needed to clarify

the influence of viral infection on these observations.

The novel data generated in this study indicates RSV can cross the placenta and infect the

fetus without causing overt disease. Trans-placental transmission of RSV appeared to be most

common during the winter epidemic but was not limited to this period. While the implications

of these findings remain confined to understanding the dynamics of RSV transmission, it is

likely the effects of in utero infection on host immune responses will have an important role in

developing effective RSV vaccines and treatment in the future.
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