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Abstract

Probabilistic forecasts are becoming more and more available. How should they be used and 

communicated? What are the obstacles to their use in practice? I review experience with five 

problems where probabilistic forecasting played an important role. This leads me to identify five 

types of potential users: Low Stakes Users, who don’t need probabilistic forecasts; General 

Assessors, who need an overall idea of the uncertainty in the forecast; Change Assessors, who 

need to know if a change is out of line with expectatations; Risk Avoiders, who wish to limit the 

risk of an adverse outcome; and Decision Theorists, who quantify their loss function and perform 

the decision-theoretic calculations. This suggests that it is important to interact with users and to 

consider their goals. The cognitive research tells us that calibration is important for trust in 

probability forecasts, and that it is important to match the verbal expression with the task. The 

cognitive load should be minimized, reducing the probabilistic forecast to a single percentile if 

appropriate. Probabilities of adverse events and percentiles of the predictive distribution of 

quantities of interest seem often to be the best way to summarize probabilistic forecasts. Formal 

decision theory has an important role, but in a limited range of applications.

1 Introduction

Much progress has been made over the past few decades in the development of methods for 

probabilistic forecasting, and probabilistic forecasts are now routinely used in several 

disciplines. These include finance, where trading decisions are made based on predictive 

distributions of assets, often using automated computer trading programs. In marketing, 

predictive distributions of future sales and inventory are commonly made using statistical 

models such as ARIMA models [1], and used as the basis for stocking and other decisions.

However, in other areas the development of probabilistic forecasting methods is more recent, 

and use of these methods in practice is at an earlier stage. How should probabilistic forecasts 

be used and communicated? What are the obstacles to their use in practice? Can these be 

overcome? Can they be presented in ways that make them more useful to possibly sceptical 

users?

Communicating uncertainty is inherently a challenging problem. [2] identified people’s 

resistance to uncertainty as

“a puzzling limitation of our mind: our excessive confidence in what we believe we 

know, and our apparent inability to acknowledge the full extent of our ignorance 

and the uncertainty of the world we live in. We are prone to overestimate how much 
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we understand the world and to underestimate the role of chance in events. 

Overconfidence is fed by the illusory certainty of hindsight.”

There are various possible explanations for this. One is that people’s cognitive bandwidth is 

limited, and uncertainty information increases cognitive load. For example, adding a range 

to a point or “best” forecast triples the cognitive load.

A more fundamental explanation is proposed, again by [2]:

“An unbiased appreciation of uncertainty is a cornerstone of rationality, but it is not 

what people and organizations want. Extreme uncertainty is paralyzing under 

dangerous circumstances, and the admission that one is merely guessing is 

especially unacceptable when the stakes are high. Acting on pretended knowledge 

is often the preferred solution.”

A related possible explanation arises when forecasters and decision-makers are different 

people, as is often the case in policy-making contexts. Then the decision-maker may wish to 

push the responsibility for the decision onto the forecaster, and when the forecasters 

provides a range or a probabilistic forecast, this is harder to do than when a single number is 

given. If things go wrong, it’s easier to blame the forecaster who gave an incorrect forecast.

In this article, I will describe experience with probabilistic forecasting in five different 

contexts and try to draw some conclusions. These will lead me to identify five types of 

potential users of probabilistic forecasts: Low Stakes Users, General Assessors, Change 

Assessors, Risk Avoiders, and Decision Theorists. Each may have different needs.

Some suggestions are that it is important to interact with users and consider their goals; 

ways of doing this include meetings and web surveys. This is a cognitive problem as well as 

a statistical one. The cognitive research tells us that calibration is important for trust in 

probability forecasts, and that it is important to match the verbal expression with the goal. 

The cognitive load should be minimized to the extent possible, even reducing the 

probabilistic forecast to a single number if appropriate. Probabilities of adverse events and 

percentiles of the predictive distribution of quantities of interest seem often to be the best 

way to summarize probabilistic forecasts.

Formal decision theory has an important role in a limited range of applications, particularly 

when users are aware of their loss functions, and when there is agreement on the loss 

function to use. This arises most clearly when costs and losses are measured in monetary 

terms. Decision theory is also useful in research on the use of probabilistic forecasts, to 

analyze different possible decision rules.

This article is organized as follows. In the following sections I will describe experience with 

five problems where probabilistic forecasting played an important role: setting aboriginal 

whaling quotas, probabilistic weather forecasting, projecting the worldwide HIV/AIDS 

epidemic, probabilistic population projections for the UN, and deciding on the number of 

funded graduate students to admit. I will then discuss what conclusions can be drawn from 

this experience.
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2 Setting Aboriginal Bowhead Whaling Quotas

For centuries, the Western Arctic stock of bowhead whales, Balaena mysticetus, off the 

coasts of Alaska and Siberia, has been the object of small-scale subsistence hunting by the 

Inuit, or Eskimo, peoples of the area, for whom it is vital both nutritionally and culturally; 

see Figure 1. The stock was severely depleted by commercial whaling by Yankee and 

European whalers in the late 19th and early 20th centuries. Commercial whaling of bowhead 

whales (although not other whale species) effectively ended around 1915, and the species 

was first protected legally from commercial whaling from 1931 by the League of Nations 

Convention, and then by the International Whaling Commission (IWC), founded in 1946.

This left the question of whether and how to regulate aboriginal whaling by the Inuit. It was 

generally recognized that it would be unfair to penalize the Inuit people for a problem that 

was not of their making, since they had been whaling sustainably for centuries, and that to 

ban aboriginal whaling would damage their livelihood and culture. This led to a tension 

between two conicting goals: on the one hand, to protect the whale stock and allow it to 

recover to its pre-commercial whaling levels, and on the other hand to satisfy the subsistence 

and cultural needs of the Inuit people.

The IWC’s solution was to allow continued limited aboriginal subsistence whaling, but with 

a quota to be set at a level low enough to allow the stock to recover. A key quantity for 

setting the quota in a given future year is the replacement yield (RY) in that year, namely the 

greatest number of whales that could be taken without the population decreasing. This is 

unknown and is subject to considerable uncertainty. Because it is important that the quota 

not exceed this unknown value, a conservative value or “lower bound” is sought, which 

should take account of all nonnegligible sources of uncertainty.

The future RY has traditionally been forecast using a deterministic population dynamics 

model, in which births are added and natural deaths and kills are subtracted. This requires as 

inputs age-specific fertility and natural mortality rates, and outputs the population for each 

future year, broken down by age and sex. The inputs are unknown and subject to 

considerable uncertainty.

Until 1991, the lower bound was set by doing several runs of the model with different 

scenarios or variants, consisting of combinations of “central,” “high,” and “low” values of 

the inputs. The range of values of RY output was then treated as a rough prediction interval. 

In 1991, however, the IWC Scientific Committee rejected this approach as statistically 

invalid, noting that it had no probabilistic interpretation and could lead to, for example, 

decisions that were riskier than they seemed. They recommended that statistically principled 

methods be developed.

In response to this, we developed the Bayesian melding method for making inference about 

outputs from the population dynamics model, taking account of all known substantial 

uncertainties about the inputs [3–5]. This yielded a posterior predictive distribution for RY 

for future years; an example is shown in Figure 2.
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Once this was available, the IWC Scientific Committee recommended that the 5th percentile 

of this distribution be taken as a precautionary lower bound on RY, and thus as an upper 

bound on the allowed hunting quota. The recommendation was accepted by the Commission 

itself (consisting mostly of politicians and senior civil servants, such as Fisheries Ministers 

and officials from the then 40 IWC member countries). Taking account of this lower bound, 

the desire to allow a margin for future recovery of the stock, and the Inuit subsistence and 

cultural needs, the Commission set a quota slightly below the lower bound.

This approach was used successfully for the following ten years. Over that period, the 

bowhead whale stock prospered, indeed increasing substantially, while the Inuit whale hunt 

continued and the related Inuit culture was preserved. The basic statistical ideas have since 

been used for other wildlife management problems [6–8].

The 5th percentile of the posterior predictive distribution effectively became the “point 

forecast” for this problem. To calculate it, it was necessary to compute the full posterior 

distribution. But once the 5th percentile had been calculated and agreed as valid by the IWC 

Scientific Committee, most of the policy-making attention focused on it, and the rest of the 

distribution (including measures of its center such as the median or mode) was largely 

ignored. Thus the cognitive load was no larger than for a single “best” forecast.

Also, the responsibility for making a single best forecast had been met by the forecasters (in 

this case the IWC Scientific Committee) — only in this case it was a lower bound rather 

than a predictive median or mode, or a deterministic point forecast. Probabilistic forecasts 

were important in this application because the first priority was to limit the risk of an 

adverse outcome, namely a decrease of the whale stock.

Note that formal decision theory was not used in this problem. The IWC Scientific 

Committee has considered using formal decision theory for such problems, but in general 

has not done so, because they considered that reaching agreement on the relative costs 

involved was not feasible. For example, what is the ratio of the cost to the stock of killing a 

whale to the benefit to the Inuit community? Consensus on the answers to questions like 

these would be hard to achieve [9–11].

Instead, the preferred approach was to set the quota so that the risk of the stock decreasing 

as a result would be no more than 5%, and this eventually commanded broad agreement, 

even in a body where debates have often been contentious because of the environmental 

sensitivities associated with whaling.

3 Probabilistic Weather Forecasting

3.1 Methods and Probcast Website

Probabilistic weather forecasts consist of predictive probability distributions of future 

weather quantities. In particular they yield probabilities of future adverse weather events, 

such as freezing temperatures, high rainfall or wind storms. Since 1992, probabilistic 

weather forecasts have been produced by major weather forecasting agencies using 
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ensembles of deterministic numerical weather predictions [12]. However, these have been 

little used as the basis for public forecasts, because they are typically poorly calibrated.

In response to this situation, methods for postprocessing ensembles to produce calibrated 

probabilistic weather forecasts have been developed, based on statistical methods, including 

ensemble Bayesian model averaging [13] and ensemble model output statistics (EMOS) 

[14]. In addition to temperature, methods were developed for precipitation [15], wind speeds 

[16], wind directions [17], wind vectors [18], and visibility [19].

Based on these forecasts, we set up a prototype real-time probabilistic weather forecasting 

website for the general public in the North American Pacific Northwest, at 

www.probcast.com [20]; see Figure 3. Its design and content were based on extensive 

cognitive experiments and ethnographic studies of forecasters and end-users [21–25].

The website contains three kinds of information. First are percentiles of decision-critical 

weather quantities, namely temperature and the amount of precipitation. The 10th, 50th and 

90th percentiles of future temperature are given. For precipitation the (upper) 90th percentile 

is given.

The second kind of information consists of probabilities of adverse weather events of 

common interest, namely freezing temperatures, precipitation (defined as more than 0.01 

inches in the 12-hour period of the forecast), heavy precipitation (defined as more than 0.25 

inches), and very heavy precipitation (defined as more than 1 inch). When the probabilities 

are below 5%, these fields are left blank. The third kind of information consists of maps of 

any of the percentiles or probabilities in the upper part of the web page, showing how they 

vary over the spatial domain.

The kinds of display used were chosen on the basis of cognitive experiments. For example, 

to choose the icon representing probability of precipitation seen in Figure 3, cognitive 

experiments were carried out to compare the relative effectiveness of several kinds of icon 

[24]. Three of the icons are shown in Figure 4: a question mark icon, a pie icon, and a bar 

icon. In the question mark icon, higher probability of precipitation is represented by darker 

colors. The pie icon produced the fewest misunderstandings among study participants and so 

was used on the Probcast website.

On the Probcast website we gave the 10th and 90th percentiles of temperature, 

corresponding to an 80% prediction interval. There is a trade-off in choosing the default 

probability levels to display: larger intervals (e.g. the 95% interval) contain a higher 

proportion of actual outcomes, but they are also much wider, and hence may be judged less 

useful. In the event, we received almost no requests for higher probability level intervals, 

and so we stuck with the 80% intervals. It would of course be possible to display multiple 

probability levels, but this would add to the cognitive load and so make the website harder to 

use.

3.2 Cognitive Findings

An important part of the probabilistic weather forecasting project consisted of carrying out 

cognitive experiments to determine how best to convey the uncertainty information. There is 
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a long tradition in psychology of assessing people’s understanding of probability and 

uncertainty by offering them simple gambles [26], but less research on how best to 

communicate uncertainty about complex real-life outcomes.

Calibration of the probability forecast (e.g. 80% prediction intervals contain the truth 80% of 

the time on average) is an important requirement for probabilistic forecasts [27]. One series 

of experiments showed that providing calibrated probability forecasts improve weather-

related decision-making and increases trust in the forecast [28–30]. This is good news for 

probabilistic forecasting, showing that ordinary people can understand and use probabilities 

to improve their decision-making.

[25] found that users of standard (deterministic) weather forecasts have well-formed 

uncertainty expectations, suggesting that they are prepared to understand explicit uncertainty 

forecasts for a wide range of parameters. Indeed, explicit uncertainty estimates may be 

necessary to overcome some of the anticipated forecast biases that may be affecting the 

usefulness of existing weather forecasts. Despite the fact that these bias expectations are 

largely unjustified, they could lead to adjustment of forecasts that could in turn have serious 

negative consequences for users, especially with respect to extreme weather warnings.

[22] reported on a series of experiments to investigate the effects of various aspects of how 

probability forecasts are presented: framing (positive versus negative), format (frequency 

versus probability), probability (low versus high), and compatibility between the 

presentation and the decision task. They showed that the key factor is the match between the 

verbal expression and the task goal. The other three factors (framing, format and probability) 

made a much smaller difference.

In one experiment, people were asked to decide whether or not to post a wind advisory for 

winds above 20 knots, and were given probability information. When people were told the 

probability that wind speed would be above 20 knots, they made few errors. However, when 

they were told the probability that wind speed would be below 20 knots, they made far more 

errors, even though the information is mathematically equivalent. This indicates that when 

the verbal expression and the task were mismatched, more errors were made.

Another series of experiments was carried out to assess whether it was better to present 

probability forecasts in terms of probability (e.g. 10% chance) or frequency (e.g. 1 time in 

10). It has been argued that uncertainty presented as frequency is easier for people to 

understand [31, 32]. However, [33] found that people better understood the forecast when it 

was presented in probability format rather than a frequency format, in contrast with the 

earlier research. This is more good news for probabilistic forecasting, indicating again that 

ordinary people can understand probabilities.

3.3 Assessment

Overall, the Probcast website has been reasonably successful, attracting about two million 

unique visits since it was set up in 2005 [34]. Public probabilistic weather forecasting 

(beyond probability of precipitation, which has been issued by the U.S. National Weather 

Service for about 40 years) is now being considered and evaluated by several national and 
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other weather agencies, and Probcast provides both a methodology for producing calibrated 

probabilistic forecasts and a model of how they might be communicated to the public. It has 

also been cited by [35] as a possible model for communication of uncertainty in weather 

forecasting.

While specialists sometimes argue that the public doesn’t understand probabilities and so 

that there’s little point in issuing probabilistic forecasts, the research results from the 

Probcast project suggest otherwise. The cognitive results indicate that users are ready for 

explicit uncertainty statements in forecasts, and that including them can improve decision-

making and increase trust in the forecast. The fairly wide public use of the Probcast website, 

in spite of its lack of substantial institutional backing and its narrow geographic range (the 

North American Pacific Northwest), suggest that the public is ready for probabilistic 

forecasts on a broader scale, although of course only a portion of the public would actively 

use them (notably those with higher-stakes weather-related decisions to make).

The cognitive experiments carried out as part of our project by Susan Joslyn’s research 

group at the University of Washington suggest that probabilities of particular adverse 

weather events (e.g. freezing temperatures, precipitation, heavy precipitation, high winds), 

and percentiles (10th, 50th, 90th) of the predictive distribution of continuous weather 

quantities of interest (e.g. temperature, amount of precipitation, wind speed) are useful 

quantities to provide to users [36]. The work suggests that both are understandable to people 

and that they make better decisions when they have this information.

A common prescription is that probabilities should be used in decision-making using 

decision theory [37]. This says that each possible outcome imposes a loss on the decision-

maker, and that the decision made should minimize the expected overall loss. In this case the 

expectation would be taken over possible future weather outcomes, and the losses might 

relate, for example, to the costs of issuing a high wind warning if no high winds occur, and 

to the damage that high winds would cause in the absence of a warning. This seems to be a 

very useful framework when the utilities associated with different outcomes can be 

quantified on the same scale, typically money. The clearest weather example that I know of 

is decision-making by wind energy companies that have to bid for contracts to provide 

specified amounts of energy at given prices and with specified penalties for failing to fulfil 

the contract, in the presence of great uncertainty about future wind speeds [38].

However, we did not incorporate decision-theoretic concepts explicitly into the Probcast 

website. It seems that most people are unaware of their utility functions, and may even be 

unwilling to specify them when the losses involved are on different scales (e.g. money 

versus possible loss of life). Thus people may find it easier to use probabilistic forecasts to 

make decisions that limit the risk of adverse outcomes to acceptable levels, rather than 

carrying out a full decision-theoretic analysis.

Nevertheless, [30] showed that when costs and benefits are on the same scale (e.g. money), 

while people do not match the optimal decision-making standard, they are closer to it when 

they have probabilistic information. [30] also found that if people were given decision 
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advice based on optimal decision-theoretic calculations, they followed the advice only if 

they were also given the probabilities.

4 Projecting the HIV/AIDS Epidemic

The Joint United Nations Programme on HIV/AIDS (UNAIDS) publishes updated estimates 

and projections of the number of people living with HIV/AIDS in the countries with 

generalized epidemics every two years. Generalized epidemics are defined by overall 

prevalence being above 1% and the epidemic not being confined to particular subgroups; 

there are about 38 such countries [39]. UNAIDS projections are typically provided for no 

more than five years into the future. As part of this, statements of uncertainty are also 

provided.

This exercise has two main goals. The first is to develop estimation and projection methods 

and software for use by country health officials for planning, for example to meet future 

medication needs. There, statements of uncertainty may be used, for example, for 

determining the amount of medication needed to be reasonably sure of having enough to 

meet the need; this would correspond to an upper percentile of the predictive distribution.

The second goal is to contribute to the basis for the UNAIDS annual reports [40]. 

Uncertainty statements about estimates are routine in the UNAIDS reports, perhaps because 

UNAIDS is a newer agency, established in 1996, by which time it had become the norm to 

include uncertainty measures of some kind with estimates of uncertain quantities. See Figure 

5(a) for an example. While the uncertainty statements do not feature prominently in the 

published report for the broad public, they underlie assessments in the report such as the 

following:

“The annual number of new HIV infections among adults and adolescents 

decreased by 50% or more in 26 countries between 2001 and 2012. However, other 

countries are not on track to halve sexual HIV transmission, which underscores the 

importance of intensifying prevention efforts.”

The phrase “not on track” reflects conclusions drawn in part from probabilistic projections.

We developed methods for assessing uncertainty about estimates and projections using 

Bayesian melding [41–43]. One example of the output is shown in Figure 5(b). Figures such 

as these typically do not make their way into the most visible public reports; instead they 

provide background support for the conclusions presented in these reports.

There seem to be two main kinds of use for the probabilistic estimates and projections 

developed by UNAIDS. The first is to provide a general assessment of the estimates and 

projections and how accurate they are likely to be.

The second kind of use is to assess changes. For example, reported HIV prevalence might 

increase in a given year, but the question then arises whether the increase is out of the range 

of normal expections, perhaps warranting some new policy intervention. Probabilistic 

forecasts such as those summarized by the uncertainty bands in Figure 5(b) can be useful in 

this context. For example, if the new estimated prevalence is inside the range of the 
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projection (even if there is an increase), then there is little evidence that what is happening is 

out of what could be expected in the normal run of things, and the chosen policy could be to 

continue as before while monitoring the situation. On the other hand, if the new estimate is 

outside the projected range, there may be grounds for concern and for an intervention.

5 Probabilistic Population Projections for the United Nations

The United Nations (UN) publishes projections of the populations of all countries broken 

down by age and sex, updated every two years in a publication called the World Population 
Prospects (WPP). It is the only organization to do so. These projections are used by 

researchers, international organizations and governments, particularly those with less 

developed statistical systems, and researchers. They are used for planning, social and health 

research, monitoring development goals, and as inputs to other forecasting models such as 

those used for predicting climate change and its impacts [44, 45]. They are the de facto 

standard [46].

Like almost all other population projections, the UN’s projections are produced using the 

standard cohort-component projection method [47–49]. This is a deterministic method based 

on an age-structured version of the basic demographic identity that the number of people in 

a country at time t+1 is equal to the number at time t plus the number of births, minus the 

number of deaths, plus the number of immigrants, minus the number of emigrants.

The UN projections are based on assumptions about future fertility, mortality and 

international migration rates; given these rates the UN produces the “Medium” projection, a 

single value of each future population number with no statement of uncertainty. The UN also 

produces “Low” and “High” projections using total fertility rates (the average number of 

children per woman) that are, respectively, half a child lower and half a child higher than the 

Medium projections. These are alternative scenarios that have no probabilistic interpretation.

Like the UN up to 2008, most national statistical offices, including the U.S. Census Bureau 

and the U.K. Office of National Statistics, use assumptions about future fertility, mortality 

and migration rates from experts: either internal experts or panels of outside experts. Expert 

knowledge is an essential part of the population projection process, and experts are generally 

agreed to be good at assembling and reviewing the underlying science, as well as assessing 

the actual forecasts.

However, evidence has been mounting over the past 60 years that experts in several domains 

are less good at producing forecasts themselves from scratch. [50] found that very simple 

statistical models beat expert human forecasters overall in a range of clinical disciplines, and 

this finding has been replicated in many subsequent studies [51]. [52] showed that expert 

forecasts of life expectancy at birth, both by leading demographers and forecasting 

organizations, had performed poorly over the previous 70 years. Forecasters generally 

tended to project that the future would be like the present, and in particular that a limit to life 

expectancy would be reached soon, whereas in fact life expectancy continued to increase 

throughout the period.
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[53] evaluated the quality of about 3,000 forecasts of political events and outcomes by 

experts, many highly distinguished, and found their performance to be startlingly poor. He 

memorably concluded that many of the experts would have been beaten by a “dart-throwing 

chimpanzee.” In a rare counterexample, [54] found that analysts in a Canadian intelligence 

agency provided calibrated forecasts of good quality.

In collaboration with the UN Population Division, we developed new statistical methods for 

projecting future fertility and mortality rates probabilistically, and translating these into 

probabilistic population projections for all countries [55–60].

An experimental version of the new probabilistic projections was issued by the UN in 

November 2012, at http://esa.un.org/unpd/ppp. This release was accompanied by no fanfare, 

but the experimental probabilistic projections have still had about 10,000 downloads per 

month. Official UN probabilistic population projections for all countries were issued for the 

first time on the same website on July 11, 2014 (World Population Day).

There are other indications of the beginning of a paradigm shift from deterministic 

population projections based on expert assumptions to probabilistic population projections 

based on statistical models. Statistics New Zealand changed its official population projection 

method to probabilistic projections in 2012 [61].

But these releases are recent, and it remains to be seen how and to what extent ultimate 

users, such as policy-makers and planners, make use of them. One possible use is in setting 

future international goals, similar to the Millenium Development Goals for 2015 for things 

like child and maternal mortality. It is desirable to set goals that are ambitious but also 

realistic, and probabilistic projections could be useful in indicating what is realistic, 

suggesting setting goals that are towards the “good” end of the probability distribution [62].

A possible use of probabilistic population projections is in making decisions about policy 

issues that depend directly on future population numbers, such as school and hospital 

infrastructure. One such decision is whether or not to close schools. These decisions are 

often based on deterministic population projections, which can have a spurious air of 

certainty. It is not desirable to close a school unless the probability of having to reopen it or 

find other premises in the future is small [63].

Even if a deterministic population projection points to school enrollments declining, there 

can still be a substantial probability of them staying essentially constant or even increasing, 

in which case closing the school would typically not be a good idea. Basing such decisions 

on reasonable upper percentiles of future school enrollments (such as the 90th percentile), 

rather than on a deterministic projection or a predictive mean or median, could be a 

reasonable approach.

6 Conditional Probabilistic Forecasts: How Many Graduate Students to 

Admit?

Like most U.S. academic departments with graduate programs, the Department of Statistics 

at the University of Washington, of which I am a faculty member, faces the problem of 
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deciding how many potential entering graduate students to make funded offers to for the 

next academic year. Offers are made in December for entry in the following September, nine 

months later, and are binding on the department.

Entering graduate students are funded by a mix of teaching assistantships, fellowships and 

research assistantships. There are several major uncertainties to deal with in making this 

decision. The number of research assistantships available depends on the outcome of faculty 

research grant applications, which are often unknown nine months ahead of time. Not all 

students accept our offers, and we do not know ahead of time how many will. We also do not 

know exactly how many current students will leave in the next nine months through 

graduation or dropout.

Up to 2009, departmental practice was to make a number of offers based on expected 

numbers of students graduating and grants, and on an assumed acceptance rate. However, 

these calculations were based only on expectations and were not probabilistic, and also did 

not incorporate past data in a systematic way.

This often led in practice to too few acceptances relative to the number of positions 

available, with the result that teaching assistants for Statistics courses had to be recruited 

from among non-Statistics graduate students. This was undesirable in that statistics teaching 

was not being done by optimally qualified people, departmental teaching assistantships were 

“lost” to other departments, and the pool of future potential research assistants was depleted. 

Also, there are currently more jobs available for Ph.D. statisticians that graduates, so 

increasing the number of entering graduate students is desirable from the labor market point 

of view as well. In the five years up to 2009, about four teaching assistantships were being 

“lost” to the department every year, compared with a typical incoming class size of about ten 

graduate students.

The downside is that if students accept and there is no identified funding for them, the 

deparment has to scramble to find funding. This is difficult but possible within the 

university, because many non-Statistics departments have research and teaching needs for 

statistically qualified people that they find it hard to meet from within their own pool of 

students.

In 2010, the departmental faculty decided to base the decision about the number of students 

to admit on a probabilistic calculation instead of the then current expectation-based 

approach, and I took on the task of developing the appropriate method. For each possible 

number of offers, I computed the predictive probability distribution of the number of TA 

positions lost to the department, as this seemed to be the key quantity for decision-making. 

Ideally this would be equal to zero.

With perfect knowledge, the number of TA positions lost conditional on a given number of 

offers is equal to

(1)
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where

Y = Number of TA positions lost to department

T = Number of TA positions available

R1 = Number of RA positions available within the department

R2 = Number of RA positions available outside the department

G = Number of students graduating by September

L = Number of students dropping program by September

C = Number of current students

A = Number of acceptances.

T and C are taken as known exactly, but the other quantities in equation (1) are uncertain at 

the time when the decision has to be made.

The predictive distributions of R1, R2, G, L, and A are derived from past data and elicited 

information. They are treated as independent in order to derive a joint distribution. The 

predictive distribution of A depends on the number of offers, O, and is modeled as Binomial 

(O; Π), where Π is estimated from historical data. The predictive distribution of R1 is 

obtained by polling departmental faculty to elicit from each of them a predictive distribution 

of the number of research assistantships they will have available in the next academic year. 

The distribution of R1 is then the distribution of the sum of the numbers from faculty, 

obtained by convolving the elicited distributions. The predictive distributions of R2 and L 
are based on historical data on these quantities; empirical rather than model-based 

distributions are used. The predictive distribution of G is based on current information about 

student progress and is typically quite tight.

The predictive distribution of Y, the number of lost TA positions, which is the primary 

quantity for decision-making, is then obtained by Monte Carlo. A large number of values of 

each of R1, R2, G, L, and A are simulated from their predictive distributions, and the 

corresponding simulated values of Y are found from equation (1).

Figure 6 shows conditional predictive distributions of the number of lost TA positions given 

several possible number of offers, and Table 1 shows percentiles of these distributions. Note 

that negative numbers correspond to the number of students that would not be funded with 

current funding sources. In these cases, alternative funding sources would be sought, such as 

research or teaching assistantships in departments that currently fund few or no statistics 

graduate students.

The verbal descriptions in Table 1 characterize how aggressive a decision is relative to the 

uncertainty. For example, 20 offers is the break-even point, because with that number the 

department is equally likely to lose TA positions as to have to seek additional funding 

sources. Similarly, 23 offers is described as “bold” because there is only one chance in three 

of losing TA positions, but a larger chance of having to seek additional positions.
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Given these numbers, the then department chair decided to take a “bold” stance and make 23 

offers. Under the previous system fewer offers would likely have been made. In the event, 

the department was able to fund the students who accepted the offers quite comfortably, so 

that the bold stance turned out well. The previous expectation-based more conservative 

approach could have led to several TA positions being lost to the department, as in the 

preceding years. The probabilistic approach made it possible to go beyond the break-even 

point, and to quantify the risk in so doing, thus helping the decision-maker to decide how far 

beyond the break-even point to go. Given this successful outcome, the department decided to 

continue to use this approach, which has now been used in four successive years.

The decision to be made in this case involves trading off losses of different kinds (lost TA 

positions against the possible need to seek additional funding sources outside the 

department, which could be difficult and stressful). Thus it would seem like a possible 

candidate for formal decision analysis, especially given that the decision-makers are trained 

statisticians. Nevertheless, a loss function was not assessed at any point, and decision theory 

was not used; the predictive distributions by themselves provided enough information to the 

decision-maker. After the fact, it seems possible to argue that the decision-maker was using 

a loss function under which losing a TA position was twice as bad as having to find funding 

for an additional student outside current sources, but if so this was never explicitly 

articulated.

It would be possible to improve the statistical model used for generating the probabilistic 

forecasts. For example, the students the department ranks most highly for funding typically 

are less likely to accept the offer, because they often have more options. However, the model 

assumes that all students with an offer are equally likely to accept it; it would be possible to 

relax this assumption. Also, a second round of offers is sometimes made, depending on 

initial responses to the first round of offers. It would be possible to extend the model to 

include the second round, about which decisions are currently made without similar 

quantitative analysis. But overall, the method seems developed enough to provide useful 

guidance to the decision-makers, and there has not yet been a strong demand for further 

methodological refinement.

7 Discussion

I have described five cases in which probabilistic forecasts have been used with a certain 

degree of success. These lead me to identify five types of potential user of probabilistic 

forecasts (where the five cases don’t map exactly onto the five types of user):

1. Low Stakes User: This is a user for whom the stakes are low and/or the losses 

from over- and underpredicting are similar. An example might be someone 

deciding whether to wear a sweater or a short-sleeved shirt based on temperature; 

a single “best” temperature forecast will often be enough in this case.

2. General Assessor : This is a user for whom the probabilistic forecast provides a 

general assessment of the likely quality of the forecast. The UNAIDS annual 

report is a possible example. This is important also for the process of forecast 

improvement. The goal of forecast development should be to improve forecast 
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accuracy, and hence to reduce the uncertainty around the forecast [64]. It is hard 

to guide this process without an accurate assessment of forecast uncertainty.

3. Change Assessor: For this kind of user, the probabilistic forecast provides a way 

of assessing whether a change in some measurement is in line with expectations, 

or instead is a source of concern warranting action. An example might be the 

probabilistic forecasts of HIV prevalence produced by UNAIDS, where some 

changes (including increases) are to be expected, but larger increases that are 

“significant” would sound an alarm. One-number forecasts provide no way of 

making this kind of assessment.

4. Risk Avoider: Here the goal includes keeping the risk of an adverse outcome to 

an acceptable level. The IWC bowhead whale quota is a good example of this, in 

which the risk of possible damage to the stock from aboriginal whaling was to be 

kept to a low level. Note that this did lead to a “one number” forecast, but the 

forecast was not the “best” or “central” forecast, but rather a lower percentile of 

the predictive distribution, in this case the 5th percentile.

5. Decision Theorist: This user has an explicit loss function and is able to quantify 

it. He or she uses the probabilistic forecast to explicitly minimize expected loss, 

as advocated by formal decision theory. This did not arise in any of the cases I 

described, and seems most likely when the different kinds of possible loss being 

traded off are on the same scale, typically money. One example would a wind 

energy company, which needs to bid on a contract to supply a given amount of 

energy, with specified penalties if the contract is not fulfilled [38].

The fact that there are different types of user and use of probabilistic forecasts suggests that 

it is important for developers of probabilistic forecasts to interact with users and consider 

their goals. While this may seem obvious, it is often not done. Interaction can take the form 

of direct contact (meetings, phone, email and so on) between developers and users. This can 

be in the context of an established Scientific advisory committee with regular meetings and 

an official membership (as used by the IWC), or a small less formal reference group with 

rotating members (as used by UNAIDS), or expert group meetings, which are effectively 

workshops lasting several days (as used by the UN Population Division). If the probabilistic 

forecasts are delivered to the general public using a website (as in the case of probabilistic 

weather forecasting), the interaction can take the form of a web survey [25].

It is important for trust in the forecast that the probabilistic statements be at least 

approximately calibrated, so that, for example, events given predictive probability 80% 

happen about 80% of the time on average. For the forecast to be useful, it is also important 

that forecast intervals be narrow, or sharp, enough to provide a basis for action. Indeed, [27] 

defined the key design principle of probabilistic forecasting as being to maximize sharpness 

subject to calibration, and this has been widely accepted.

The experience I have described suggests that formal decision theory, much advocated in 

theory by statisticians and economists, may have less practical application than sometimes 

claimed. One reason may be that people are often not aware of their loss functions. Another 

may be that using formal decision theory greatly increases the cognitive load, in that one’s 
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loss function has to be assessed and then the decision theoretic calculations performed. One 

also needs to be careful because in practice people tend to attribute different values to 

equivalent losses and gains, contrary to decision theory, a finding referred to as “prospect 

theory” [65, 66].

Nevertheless, a recent result suggests that the scope of decision theory may be wider than I 

have conceded. [67] showed that if the loss function is generalized piecewise linear as a 

function of the quantity being predicted probabilistically, then the optimal point forecast is a 

quantile of the predictive distribution. An important special case of this is when the cost of 

an overestimate is a fixed multiple of the cost of an underestimate. This will often be at least 

roughly true, and it may be much easier to elicit that multiple than the full loss function. 

People may be able to say, at least approximately, how much worse an overestimate is than 

an underestimate, or vice versa. This also greatly simplifies the practical use of decision 

theory, reducing it to the calculation of a predictive quantile, so that the cognitive load is 

little greater than that of probabilistic forecasting by itself.

One overarching conclusion is that people can use and understand probabilities and 

probabilistic forecasts, even if they do not have advanced training in statistics. The cognitive 

research shows that probabilistic forecasts lead to better decision-making than deterministic 

ones, and also to increased trust in the forecast by users. Experience with probabilistic 

weather forecasting and probabilistic population projection websites has shown that there is 

considerable public interest in probabilistic forecasts, even in the absence of much publicity. 

This suggests that once probabilistic forecasts become available in a domain, they will be 

used: “Build it and they will come.”

Acknowledgements

This work was supported by the Eunice Kennedy Shriver National Institute of Child Health and Development 
through grants nos. R01 HD054511 and R01 HD070936, and by a Science Foundation Ireland E. T. S. Walton 
visitor award, grant reference 11/W.1/I2079. The author is grateful to Geof Givens, Susan Joslyn, Giampaolo 
Lanzieri and Elizabeth Thompson for helpful comments and discussions, and to Nial Friel and the School of 
Mathematical Sciences at University College Dublin for hospitality during the preparation of this paper.

References

1. Box, GEP., Jenkins, GM., Reinsel, GC. Time Series Analysis, Forecasting and Control. 4th edition. 
New York: Wiley; 2008. 

2. Kahneman, D. Thinking, Fast and Slow. New York: Farrar, Strauss and Giroux; 2011. 

3. Raftery, AE., Givens, GH., Zeh, JE. Inference from a deterministic population dynamics model 
about bowhead whale, balaena mysticetus, replacement yield. Department of Statistics, University 
of Washington; 1992. Technical Report 232

4. Raftery AE, Givens GH, Zeh JE. Inference from a deterministic population dynamics model for 
bowhead whales (with discussion). Journal of the American Statistical Association. 1995; 90:402–
430.

5. Poole D, Raftery AE. Inference for deterministic simulation models: The Bayesian melding 
approach. Journal of the American Statistical Association. 2000; 95:1244–1255.

6. Powell MR, Tamplin M, Marks B, Compos DT. Bayesian synthesis of a pathogen growth model: 
Listeria monocytogenes under competition. International Journal of Food Microbiology. 2006; 
109:34–46. [PubMed: 16499986] 

Raftery Page 15

Stat Anal Data Min. Author manuscript; available in PMC 2017 April 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



7. Brandon JR, Breiwick JM, Punt AE, Wade PR. Constructing a coherent joint prior while respecting 
biological realism: application to marine mammal stock assessments. ICES Journal of Marine 
Science. 2007; 64:1085–1100.

8. Falk MG, Denham RJ, Mengersen KL. Estimating uncertainty in the revised universal soil loss 
equation via Bayesian melding. Journal of Agricultural, Biological and Environmental Statistics. 
2010; 15:20–37.

9. Punt A, Donovan G. Developing management procedures that are robust to uncertainty: lessons 
from the International Whaling Commission. ICES Journal of Marine Science. 2007; 64:603–612.

10. Cooke JG, Leaper R, Papastavrou V. Science should not be abandoned in a bid to resolve whaling 
disputes. Biology Letters. 2009; 5:614–616. [PubMed: 19515654] 

11. Cooke JG, Leaper R, Papastavrou V. Whaling: Ways to agree on quotas. Nature. 2012; 482:308.

12. Gneiting T, Raftery AE. Weather forecasting with ensemble methods. Science. 2005; 310:248–249. 
[PubMed: 16224011] 

13. Raftery AE, Gneiting T, Balabdaoui F, Polakowski M. Using Bayesian model averaging to 
calibrate forecast ensembles. Monthly Weather Review. 2005; 133:1155–1174.

14. Gneiting T, Raftery AE, Westveld AH, Goldman T. Calibrated probabilistic forecasting using 
ensemble model output statistics and minimum CRPS estimation. Monthly Weather Review. 2005; 
133:1098–1118.

15. Sloughter JM, Raftery AE, Gneiting T, Fraley C. Probabilistic quantitative precipitation forecasting 
using Bayesian model averaging. Monthly Weather Review. 2007; 135:3209–3220.

16. Sloughter JM, Gneiting T, Raftery AE. Probabilistic wind speed forecasting using ensembles and 
Bayesian model averaging. Journal of the American Statistical Association. 2010; 105:25–35.

17. Bao L, Gneiting T, Grimit EP, Guttorp P, Raftery AE. Bias correction and Bayesian model 
averaging for ensemble forecasts of surface wind direction. Monthly Weather Review. 2010; 
138:1811–1821.

18. Sloughter JM, Gneiting T, Raftery AE. Probabilistic wind vector forecasting using ensembles and 
Bayesian model averaging. Monthly Weather Review. 2013; 141:2107–2119.

19. Chmielecki RM, Raftery AE. Probabilistic visibility forecasting using Bayesian model averaging. 
Monthly Weather Review. 2011; 139:1626–1636.

20. Mass CF, Joslyn SL, Pyle J, Tewson P, Gneiting T, Raftery AE, Baars J, Sloughter JM, Jones DW, 
Fraley C. PROBCAST: A web-based portal to mesoscale probabilistic forecasts. Bulletin of the 
American Meteorological Society. 2009; 90:1009–1014.

21. Joslyn, SL., Jones, DW. Strategies in naturalistic decision-making: A cognitive task analysis of 
naval weather forecasting. In: Schraagen, JM.Militello, L.Ormerod, T., Lipshitz, R., editors. 
Naturalistic Decision Making and Macrocognition. Aldershot, U.K.: Ashgate Publishing; 2008. p. 
183-202.

22. Joslyn S, Nadav-Greenberg L, Taing MU. The effects of wording on the understanding and use of 
uncertainty information in a threshold forecasting decision. Applied Cognitive Psychology. 2008; 
23:55–72.

23. Nadav-Greenberg L, Joslyn SL, Taing MU. The effect of weather forecast uncertainty visualization 
on decision making. Journal of Cognitive Engineering and Decision Making. 2008; 2:24–47.

24. Joslyn S, Nadav-Greenberg L, Nichols RM. Probability of precipitation: Assessment and 
enhancement of end-user understanding. Bulletin of the American Meteorological Society, 
February. 2009; 2009:185–193.

25. Joslyn SL, Savelli S. Communicating forecast uncertainty: Public perception of weather forecast 
uncertainty. Meteorological Applications. 2010; 17:180–195.

26. Kahneman D, Tversky A. Choices, values and frames. American Psychologist. 1984; 39:341–350.

27. Gneiting T, Balabdaoui F, Raftery AE. Probabilistic forecasts, calibration and sharpness. Journal of 
the Royal Statistical Society, Series B. 2007; 69:243–268.

28. Joslyn SL, Pak K, Jones DW, Pyles J, Hunt E. The effect of probabilistic information on threshold 
forecasts. Weather and Forecasting. 2007; 22:804–812.

29. Nadav-Greenberg L, Joslyn SL. Uncertainty forecasts improve decision-making among nonexperts. 
Journal of Cognitive Engineering and Decision Making. 2009; 2:24–47.

Raftery Page 16

Stat Anal Data Min. Author manuscript; available in PMC 2017 April 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



30. Joslyn SL, LeClerc JE. Uncertainty forecasts improve weather-related decisions and attenuate the 
effects of forecast error. Journal of Experimental Psychology: Applied. 2012; 18:126–140. 
[PubMed: 21875244] 

31. Fiedler K. The dependence of the conjunction fallacy on subtle linguistic factors. Psychological 
Research. 1988; 50:123–129.

32. Hertwig R, Gigerenzer G. The “conjunction fallacy” revisited: How intelligent inferences look like 
reasoning errors. Journal of Behavioral Decision Making. 1999; 12:275–305.

33. Joslyn SL, Nichols RM. Probability or frequency? expressing forecast uncertainty in public 
weather forecasts. Meterological Applications. 2009; 16:309–314.

34. Jones, DW. Probcast: A tool for conveying probabilistic weather information to the public; 
Presented to the NUOPC Conference; June 2011; 2011. 

35. National Research Council. Completing the Forecast: Characterizing and Communicating 
Uncertainty for Better Decisions Using Weather and Climate Forecasts. Washington, D.C.: 
National Academies Press; 2006. 

36. Savelli S, Joslyn S. The advantages of 80% predictive interval forecasts for non-experts and the 
impact of visualizations. Applied Cognitive Psychology. 2013; 27:572–541.

37. von Neumann, J., Morgenstern, O. Title of Games and Economic Behavior. 2nd edition. Princeton, 
N.J.: Princeton University Press; 1947. 

38. Pinson P, Chevallier C, Kariniotakis GN. Trading wind generation with short-term probabilistic 
forecasts of wind power. IEEE Transactions on Power Systems. 2007; 22:1148–1156.

39. Ghys PD, Brown T, Grassly NC, Garnett G, Stanecki KA, Stover J, Walker N. The UNAIDS 
Estimation and Projection Package: a software package to estimate and project national HIV 
epidemics. Sexually Transmitted Infections. 2004; 80:i5–i9. [PubMed: 15249692] 

40. UNAIDS. Global Report: UNAIDS Report on the Global AIDS Epidemic 2013. Geneva: 
UNAIDS; 2013. 

41. Bao L, Salomon JA, Brown T, Raftery AE, Hogan D. Modeling HIV/AIDS epidemics: revised 
approach in the UNAIDS Estimation and Projection Package 2011. Sexually Transmitted 
Infections. 2012; 88:i3–i10. [PubMed: 23044436] 

42. Alkema L, Raftery AE, Clark SJ. Probabilistic projections of HIV prevalence using Bayesian 
melding. Annals of Applied Statistics. 2007; 1:229–248.

43. Brown T, Salomon JA, Alkema L, Raftery AE, Gouws E. Progress and challenges in modelling 
country-level HIV/AIDS epidemics: the UNAIDS Estimation and Projection Package 2007. 
Sexually Transmitted Infections. 2008; 84:i5–i10. [PubMed: 18647867] 

44. Intergovernmental Panel on Climate Change. Climate Change 2007: Synthesis Report. Geneva, 
Switzerland: IPCC; 2007. 

45. Seto KC, Güneral B, Hutyra LR. Global forecasts of urban expansion to 2030 and direct impacts 
on biodiversity and carbon pools. Proceedings of the National Academy of Sciences. 2012; 
109:16083–16088.

46. Lutz W, Samir KC. Dimensions of global population projections: what do we know about future 
population trends and structures? Philosophical Transactions of the Royal Society B. 2010; 
365:2779–2791.

47. Whelpton PK. An empirical method for calculating future population. Journal of the American 
Statistical Association. 1936; 31:457–473.

48. Leslie PH. On the use of matrices in certain population dynamics. Biometrika. 1945; 33:183–212. 
[PubMed: 21006835] 

49. Preston, SH., Heuveline, P., Guillot, M. Demography: Measuring and Modeling Population 
Processes. Malden, Mass: Blackwell; 2001. 

50. Meehl, PE. Clinical versus Statistical Prediction: A Theoretical Analysis and a Review of the 
Evidence. Minneapolis, Minn.: University of Minesota Press; 1954. 

51. Meehl PE. Causes and consequences of my disturbing little book. Journal of Personality 
Assessment. 1986; 50:370–375. [PubMed: 3806342] 

52. Oeppen J, Vaupel JW. Broken limits to life expectancy. Science. 2002; 296:1029–1031. [PubMed: 
12004104] 

Raftery Page 17

Stat Anal Data Min. Author manuscript; available in PMC 2017 April 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



53. Tetlock, PE. Expert Political Judgment: How Good Is It? How Can We Know?. Princeton, N.J.: 
Princeton University Press; 2005. 

54. Mandel DR, Barnes A. Accuracy of forecasts in strategic intelligence. Proceedings of the National 
Academy of Sciences. 2014 page in press. 

55. Alkema L, Raftery AE, Gerland P, Clark SJ, Pelletier F, Buettner T, Heilig GK. Probabilistic 
projections of the total fertility rate for all countries. Demography. 2011; 48:815–839. [PubMed: 
21748544] 

56. Raftery AE, Li N, Ševčíková H, Gerland P, Heilig GK. Bayesian probabilistic population 
projections for all countries. Proceedings of the National Academy of Sciences. 2012b; 
109:13915–13921.

57. Raftery AE, Chunn JL, Gerland P, Ševčíková H. Bayesian probabilistic projections of life 
expectancy for all countries. Demography. 2013; 50:777–801. [PubMed: 23494599] 

58. Fosdick BK, Raftery AE. Regional probabilistic fertility forecasting by modeling between-country 
correlations. Demographic Research. 2014; 30:1011–1034. [PubMed: 25242889] 

59. Raftery AE, Lalic N, Gerland P. Joint probabilistic projection of female and male life expectancy. 
Demographic Research. 2014; 30:795–822. [PubMed: 25580082] 

60. Raftery AE, Alkema L, Gerland P. Bayesian population projections for the United Nations. 
Statistical Science. 2014; 29:58–68. [PubMed: 25324591] 

61. Bryant, J. Probabilistic population forecasts at statistics new zealand: Experience at the national 
level and plans for the local level. Presented at the Workshop on Use of Probabilistic Forecasts; 
London. June 2014; 2014. 

62. Gerland, P. Beyond uncertainty: insights from a demographer about probabilistic forecasts in an 
international context. Presented at the Workshop on Use of Probabilistic Forecasts; London. June 
2014; 2014. 

63. Louis, TA. Biostatistics and biostatisticians in the policy arena; Presented at the 2012 American 
Statistical Association Statistics and Public Policy Conference; 2012. 

64. Soneji S, King G. Statistical security for social security. Demography. 2012; 49:1037–1060. 
[PubMed: 22592944] 

65. Kahneman D, Tversky A. Prospect theory: An analysis of decision under risk. Econometrica. 1979; 
47:263–291.

66. Tversky A, Kahneman D. Advances in prospect theory: Cumulative representations of uncertainty. 
Journal of Risk and Uncertainty. 1992; 5:297–323.

67. Gneiting T. Quantiles as optimal point forecasts. International Journal of Forecasting. 2011; 
27:197–207.

Raftery Page 18

Stat Anal Data Min. Author manuscript; available in PMC 2017 April 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Left: Bowhead whale, Balaena mysticetus. Right: Community celebration after Inuit 

bowhead whale hunt.
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Figure 2. 
Posterior Predictive Distribution of the 1990 Replacement Yield of Bowhead Whales, 

obtained by Bayesian Melding. Source: Raftery, Givens and Zeh (1995).
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Figure 3. 
Screenshot of the Probabilistic Weather Forecasting Website at www.probcast.com.

Raftery Page 21

Stat Anal Data Min. Author manuscript; available in PMC 2017 April 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.probcast.com


Figure 4. 
Icons used in cognitive experiments to compare the relative effectiveness of different icons 

for probability of precipitation: question mark icon (where the icon is darker when the 

probability is higher), pie icon and bar icon. Source: [24].
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Figure 5. 
Uncertainty Statements in Estimates and Projections of the HIV/AIDS Epidemic. Left: 

Estimates of global number of new HIV infections, 2001–2012, with uncertainty bounds, 

from UNAIDS’ main annual public statement. Source: [40]. Right: Estimates and 

projections of HIV prevalence in Gabon, 1970–2015, based on antenatal clinic data up to 

2009; the bands for 2010–2015 summarize probabilistic projections. The results are shown 

for two different models, EPP and R-ex, and the observed prevalence at individual clinics is 

shown by unfilled circles. Source: [41].
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Figure 6. 
Conditional Probabilistic Forecasts of the Number of Lost Teaching Assistant Positions 

given Different Numbers of Graduate Student Offers with Funding. Negative values indicate 

the number of students that would not be funded from current funding sources.
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Table 1

Percentiles of the Predictive Distributions of the Conditional Probabilistic Forecasts of the Number of Lost 

Teaching Assistant Positions given Different Numbers of Graduate Student Offers with Funding. Negative 

values indicate the number of students that would not be funded from current funding sources.

#Offers 10% 33% 50% 67% 90% Description

12 0 2 3 5 7 Very conservative

17 −3 0 1 2 5 Conservative

20 −4 −2 0 1 4 Break-even

23 −6 −3 −2 0 3 Bold

30 −9 −6 −5 −3 0 Very bold
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