(
A) Frequency of detected short gaps, likely representing photoblinking, during the tracking of a population of LacI-mMaple molecules using 500 ms capture rates. We applied a cut-off threshold at 2.6 s for the maximum duration of photoblinking based on previous characterisation of mMaple (
Durisic et al., 2014). More than 75% of the molecules did not show photoblinking (N = 148 molecules). (
B) Distribution of gap times between subsequent localizations at the same location of the field of view. Note that most events lasted for only one frame. N = 60 events. (
C) We fitted the distribution of gap times to a single exponential function using a truncated form of MLE. This was done to account for the fraction of events shorter than 500 ms, which would be missed in our experiments. Using a 1-frame memory parameter we estimate that our analysis will prematurely terminate less than 7.5%, 3% and 0.0001% of the tracks due to blinking when using a 1 s, 2 s, and 5 s intervals, respectively. (
D) Semi-log plots of the data presented in
Figure 2C for ε and DnaB. The plots show a relatively linear relation between number of cases and time, which is indicative of a single regime of binding for both subunits. Further support of a single binding behaviour is presented in
Supplementary file 1C. (
E) Plots showing the PDF curves of bound, bleaching, and tracking times for representative results from a single experiment of ε imaged with 500 ms (left) (N = 143) and 2 s exposure (right) (N = 415). The bound-time was 7.44 s (SE ±1.07 s) and 12.34 s (SE ±1.36 s) for 500 ms and 2 s, respectively. The plot for the 500 ms example is presented to facilitate comparison and is identical to that in
Figure 2C.