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Abstract. Atherosclerosis is a significant cause of morbidity 
and mortality globally. Many animal models have been 
developed to study atherosclerosis, and permit experimental 
conditions, diet and environmental risk factors to be carefully 
controlled. Pathophysiological changes can be produced using 
genetic or pharmacological means to study the harmful conse-
quences of different interventions. Experiments using such 
models have elucidated its molecular and pathophysiological 
mechanisms, and provided platforms for pharmacological 
development. Different models have their own advantages and 
disadvantages, and can be used to answer different research 
questions. In the present review article, different species of 
atherosclerosis models are outlined, with discussions on the 
practicality of their use for experimentation.
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1. Introduction

Atherosclerosis is an autoimmune condition characterized by 
the development of complex atherosclerotic plaques, leading to 
hardening and narrowing of the arterial lumen. Chronic exposure 

to cardiovascular risk factors, such as hyperlipidemia, hyperten-
sion, smoking, male gender and diabetes, can increase the rate 
and severity of atherosclerosis. Among the different risk factors, 
increased plasma low‑density lipoprotein (LDL) level has been 
identified as the most significant, which alone is sufficient to 
produce atherosclerosis in monogenetic hyperlipidemia disor-
ders, such as familial hypercholesterolemia (1). In individuals 
with normal LDL levels, other factors are responsible for the 
development and progression of atherosclerosis (2,3). However, 
these risk factors are rather insignificant in individuals with 
low LDL levels, who are unlikely to develop atherosclerosis 
irrespective of the presence of additional risk factors (4).

Excess LDL in plasma accumulates in the sub‑endothelial 
space of the arterial wall, undergoing oxidation to become 
oxidized LDL (oxLDL). This in turn, triggers an inflamma-
tory response, thereby inducing the expression of a number of 
different molecules, such as vascular cell adhesion molecule‑1, 
E‑selectin and P-selectin in the endothelium (5). This response 
provides the necessary conditions for chemotaxis, where blood 
cells are recruited into the injured arterial wall (6). Monocytes 
are the most prominent cell type involved (7). After entry 
into the tunica intima, monocytes undergo differentiation into 
macrophages, which take up oxLDL to become foam cells (8). 
Foam cells function as antigen-presenting cells, and activate 
circulating monocytes and T‑cells  (9). They also secrete 
mediators to further perpetuate inflammation, and stimulate 
the migration of smooth muscle cells from the tunica media 
into sub‑endothelial space (10). Mediated by platelet-derived 
growth factor, the smooth muscle cells exhibit abnormally high 
proliferation rates and secrete extracellular matrix proteins 
that contribute to fibrous cap formation (11). The fibrous cap 
protects the core of the plaque from circulating blood cells, 
especially platelets responsible for the thrombosis associ-
ated with rupture plaques. This maladaptive non‑resolving 
inflammation is the driving force of atherosclerotic plaque 
development (12). SMCs from different regions of the micro-
vasculature have different developmental origins (13), which 
can contribute to site‑specific atherosclerotic responses (14).
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During plaque evolution, macrophages proliferate, undergo 
apoptosis and efferocytosis (15,16). Apoptotic cells may be 
removed, leading to lesion size reduction, or may accumulate 
and be subjected to secondary necrosis, producing the 
necrotic core characteristic of advance plaques. Accumulation 
of apoptotic bodies may enhance the plaque instability by 
triggering inflammation. While foam cells are the most 
abundant leukocytes within the atherosclerotic lesions, other 
cell types, including neutrophils, mast cells, T‑lymphocytes 
and B‑lymphocytes are also involved in atherogenesis (17,18). 
Although these cells contribute little in mass to the lesions, 
they can secrete different signalling proteins that regulate 
other cells or components within the plaques (19‑21).

Plaque rupture is responsible for the adverse clinical 
consequences of ischaemia in cerebrovascular accidents, 
myocardial infarction and heart failure, producing significant 
morbidity and mortality in affected patients. In advanced 
stages of atherosclerosis, rupture of vulnerable plaques 
exposes their thrombogenic compounds, producing luminal 
thrombosis. Destabilization of plaques into a vulnerable state 
is in part mediated by macrophage‑derived proteases, such as 
metalloproteases; however, the precise mechanisms remain 
incompletely characterized (22).

2. Animal models of atherosclerosis

In 1908, Ignatowski provided the first experimental 
demonstrations that atherosclerosis can be induced in 
laboratory animals. He fed rabbits a protein‑rich diet (mainly 
meat, milk, and egg yolk), which led to the formation of 
atherosclerotic lesions in the aortic wall. Since then, a number 
of species, such as rabbits, mice, rats, guinea pigs, hamsters, 
birds, dogs and non‑human primates, have been developed. 
Despite differences between the animal models, a common 
finding is the necessary condition of hypercholesterolaemia 
in plaque development. Animal models have been extensively 
used for the study of human cardiovascular diseases (23‑41). In 
the present review, we review rabbit, porcine and non‑primate 
models of atherosclerosis, together with their advantages and 
disadvantages (Table I).

Rabbit. Rabbit is the first animal model developed for athero-
sclerosis research, leading to the identification of the crucial 
role of elevated plasma cholesterol in atherogenesis. It served 
as the mainstay of pre‑clinical model until genetically modi-
fied mouse models became widely available.

New Zealand White (NZW) strain. The most common strain 
is the NZW, in which the roles of lipoproteins of differing 
sizes on atherosclerosis were examined. For example, athero-
sclerosis was unexpectedly inhibited in an alloxan‑induced 
diabetes rabbit model, explicably by the accumulation of large 
triglyceride‑rich lipoprotein (>75 mm diameter), to which 
the vascular wall has limited permeability (42,43). However, 
NZW rabbits show high biological variability with respect 
to individual responsiveness to dietary cholesterol and the 
lesion morphology varies significantly depending on the 
cholesterol content of the diet (44). This strain is not prone 
to atherosclerotic risk due to its low plasma cholesterol level 
of 50 mg/dl when exposed to standard diet. The induction of 

vascular lesion in NZW rabbits generally requires feeding 
of a high cholesterol diet (from 0.2 to 2% cholesterol) which 
increases plasma cholesterol level by ≤8-fold and leads to 
the formation of foam cells‑enriched fatty streaks in several 
vascular regions, especially the aortic arch and the thoracic 
aorta (45). For complex atherosclerotic plaques with lipid core 
surrounded by smooth muscle cells to develop, a long period 
of cholesterol feeding, from six months to several years, is 
required. The disadvantage of this diet is its hepatic toxicity, 
which increases mortality.

Genetically modified rabbits. Due to the noxious side effects 
of the high-fat diet, genetically modified rabbits have been 
developed to produce spontaneous atherosclerotic lesions. For 
example, Watanabe hereditary hypercholesterolemic rabbit 
(WHHL), a LDLR-deficient model, was used by Buja et al, 
who identified LDL as the lipoprotein underlying human 
familial hypercholesterolemia  (46). The advantage of this 
WHHL model is that the morphology of lesions and lipid 
metabolism are largely similar to those observed in humans. 
When WHHL rabbit is fed with 1% cholesterol for 12 months, 
the atherosclerotic plaques resemble those seen in homozy-
gous familial hypercholesterolemia patients  (46,47), with 
areas of necrosis, cholesterol clefts and calcification (48), with 
foam cells originating from smooth muscle cells. Furthermore, 
WHHL rabbits share the same gender predisposition patterns, 
with males being more prone to coronary atherosclerosis (49).

Advantages and disadvantages of rabbit models. Rabbits 
share the same advantages with mice with their small size 
and hence ease in maintenance, high availability and low 
economical cost. They are frequently preferred because of 
similar lipoprotein metabolism to humans. With the expres-
sion of CETP, the predominant lipoprotein in rabbit is 
LDL (45). Rabbits are sensitive to dietary cholesterol overload, 
demonstrating subsequent hyperlipidemia without the need of 
the toxic high cholesterol diet. Since rabbits are larger than 
mice, catheter‑based procedure and non‑invasive imaging 
can be used for experimental interrogation. Some important 
differences are that the frequent sites of atherosclerotic lesions 
in rabbits are the aortic arch and descending thoracic aorta, 
whereas those in humans are the coronary arteries and the 
abdominal aorta (45). Nevertheless, application of an ameroid 
constrictor to induce arterial stenosis in rabbit coronary 
arteries led to intimal proliferation together with eccentric 
narrowing 4 weeks later (Fig. 1) (30).

Porcine. The different porcine models can broadly be divided 
into wild‑type or genetically modified models.

Wild‑type pig models. Rapacz pig is a wild-type model with 
a natural mutation in ApoB and LDLR genes, which were 
produced by selective breeding of pigs with high cholesterol 
by Davis  et  al  (50). Within 2-4 years on a normal diet, 
these pigs developed increased hypercholesterolemia, with 
LDL as the main circulating lipoprotein, associated with 
the development of coronary atherosclerosis. A mini‑pig 
model bearing the same gene mutation but with lower cost, 
the hypercholesterolemia Bretoncelles Meishan (FBM) 
pigs, was subsequently made available  (51). The diabetic 
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hypercholesterolemic wild‑type pig can provide a humanoid 
model for investigations. An example is the type I diabetes 
model produced by intravenous streptozotocin injection, 
which has been used to destroy >80% of pancreatic β‑cells in 
Yorkshire pigs (52). Its combination with a high cholesterol diet 

used to induce hypercholesterolemia increased atherosclerotic 
risk by 2‑fold, compared with hypercholesterolemia alone. 
Diabetic Yorkshire pigs demonstrated an accelerated rate of 
atherosclerotic lesion development in the aorta, coronary and 
femoral arteries (53). The lesions developed exhibit human‑like 

Table I. Models of atherosclerosis with their advantages and disadvantages.

Animal experimental models

Rabbits
  Advantages
    Similar lipid metabolism with human
    Similar morpology of lesion development
    Low cost for maintenance
    High availability
    Larger artery allow clinical evaluation: Ultrasound and MRI can be applied to determine plaque composition and its
    vulnerability
    Low cost of maintenance due to its small size
  Disadvantages
    Not always responsive to dietary cholesterol
  Different cardiovascular physiology with human: HDL as the predominant plasma lipoprotein,  absence of Apo AII,  
    low hepatic lipase activity 
    Low hepatic lipase acitivity leads to hepatotoxicity following prolonged cholesterol feeding
    Plaque lesion dissimilar with human: foam cells with more fatty streak and macrophage rich, advanced lesion (e.g., Fibrosis
    and haemorrhage and ulceration) are not seen 
    Different predilection site: Atherosclerotic plaque preferentially deposited in aorta, iliac arteries
Porcine
  Advantages
    Similar haemodynamics and pathogenesis to humans: Lesion location, morphology and content
    Similar heart size and cardiovascular anatomy
    Similar lipid metabolism, except for Apo II deficiency in porcine
    Highly defined genotypes for genetic manipulation
    Minipig version offer option with lower cost 
    Unlike mouse and rabbit, it can spontaneously develop atherosclerosis with an accelrated rate when fed with atherogenic diet 
    Easier to carry out imaging, e.g., Ultrasound, CT and MRI compared to smaller species
  Disadvantages
    Toxic diet needed for induction of atherosclerosis 
    Large in size, which limits its practical use 
Non-human primates
  Advantages
    Similar cardiac anatomy: Same predilection site for atherosclerosis 
    Similar cardiac physiology: Comparable lipid metabolism and advanced atherosclerotic lesion found 
    Closest phylogenetic relationship with human 
    Highest resemblance to human atherosclerotic clinical condition 
    Susceptible to spontaneous atherosclerosis 
    Similar omnivorous diet 
  Disadvantages
    High cost for purchase and maintenance 
    Long lifespan and hence long period of time needed for induction of atherosclerosis 
    Significant ethical concern 
    Large size with difficulty of management 
    Low availability 
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features of advanced plaques, including necrotic cores, 
fibrous caps, calcification, medial thinning and intraplaque 
haemorrhages.

Genetically modified porcine models. In genetic mini-pig 
models, atherosclerosis can be induced without the use of cholic 
acid, thereby avoiding its toxic inflammatory side effects (54). 
An example of a model system is the Yucatan mini‑pig with 
liver‑specific expression of D374Y, a gain‑of‑function mutation 
in human protein convertase PCSK9, which consistently 
downregulated LDL receptor levels and increased LDL 
concentrations following a high-fat diet. This led to a severe 
form of autosomal dominant hypercholesterolemia (55,56), 
successfully inducing atherosclerosis in thoracic, abdominal, 
ilio‑femoral and coronary arteries at 1 year of age. This model 
is applicable for validating equipment designed for human 
use, such as clinical scanners and intravascular devices. 
Another transgenic model is the LDLR knockout Yucatan 
mini‑pigs, which demonstrated similar hypercholesterolemia 
and progression of atherosclerotic development. A high-fat 

diet led to the development of atherosclerotic lesions at 
6-11 months (57).

Advantages and disadvantages of porcine models. The 
use of porcine models has the advantage of bearing close 
resemblance of cardiac anatomy and physiology to the human 
counterpart. LDL, as in humans, is the major circulating 
lipoprotein in plasma, except for apoliproprotein II deficiency 
in pigs. Another advantage is the highly defined genotypes, 
which enable the development of porcine models with multiple 
genetic alterations. The emergence of site‑specific nucleases, 
including the clustered regularly interspaced short palindromic 
repeats (CRISPR)/Cas9 system, was a breakthrough that 
allowed multiple genes to be targeted at the same time by 
the expression of multiple sgRNAs together with the Cas9 
nuclease. The CRISPR/Cas9 system allows pronuclear 
injection protocols with a high success rate (58), and only one 
animal cloning round is needed, reducing the time needed for 
breeding and the cost of production.

As with humans, pigs are susceptible to diet‑induced 
hypercholesterolemia, but they require high dietary 
cholesterol, typically combined with cholic acid to block the 
conversion from cholesterol to bile (59,60). The atherosclerotic 
lesions usually do not progress beyond the foam cell stage 
and the duration of atheroma formation is longer than that 
observed in mice. Combining the use of an atherogenic 
diet with artificial vascular injury is one of the methods to 
accelerate atherosclerosis development in pigs. First, normal 
pigs are fed with a high cholesterol diet and percutaneous 
intramural injection of cholesteryl esters and human 
oxLDL (61,62). Two weeks later, vascular injury is produced 
by methods such as guidewire‑induced injury, endovascular 
balloon inflation and partial vessel ligation (63). This method 
produces rapid atherosclerotic plaque development, thereby 
reducing the duration and cost of the experimental studies. 
The histopathology of atherosclerotic lesions are similar 
to humans, including their location and content  (57). This 
model therefore provides a platform for the investigation 
of the disease complications, including plaque rupture, 
ischemic reperfusion injury, arterial thrombosis and restenosis 
after angioplasty (64‑66), and explorations for therapeutic 
interventions such as drug‑eluting stents (66).

The use of the porcine model as an in  vivo validation 
of imaging tools is valuable, in contrast to the post mortem 
specimen and ex  vivo model, which failed to produce 
satisfactory validation. Post‑mortem specimens cannot imitate 
the dynamic cell components in atherosclerotic plaques, 
whereas ex vivo models do not demonstrate the pulsatile flow 
normally observed in elastic arteries, moving coronary arteries 
on a beating heart, irregular heart rhythms and the moving 
tissues surrounding the vessels. Initial validation is crucial for 
the development of intravascular imaging technique to guide 
therapy in symptomatic patients (67,68). With the authentic 
human‑like dimension and morphology of coronary arteries, 
pigs provide an ideal platform for the insertion of intravascular 
imaging tools, such as intravascular ultrasound  (69) and 
near‑infrared spectroscopy (70). Real‑time imaging of tissues 
and cells in evolving atherosclerotic plaques is also possible.

Due to lack of sensitive and reliable biomarkers for moni-
toring disease progression, imaging tools are important in 

Figure 1. A cross‑sectional image of a coronary artery in a rabbit model 
before (top) and 4 weeks after application of an ameroid constrictor to induce 
arterial stenosis, showing clear evidence of intimal proliferation with eccen-
tric narrowing (bottom). Reproduced from (22) with permission.
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monitoring plaque evolution and the efficacy of therapeutic 
treatment. For non‑invasive imaging with PET‑CT, MRI 
or CT, high resolution imaging of large arteries in smaller 
animals is possible using dedicated and modified scan proto-
cols. Porcine models are useful to establish the relationship 
between plaque size and system resolution, with similar 
extents of motion and artefacts compared to humans. The 
protocol of scan parameter can be used subsequently without 
the need of modification.

Another valuable use of the porcine model is drug 
development. In view of the close phylogenetic relationship 
and relevant atherosclerotic pathology observed in porcine 
systems (71,72), drug testing is predictive for efficacy of drugs 
in humans compared to the mouse model. It can be used to 
guide the decision on endpoint of drug efficacy in clinical 
trials. Currently, there is no standard imaging endpoint that is 
capable of detecting all beneficial effects of pharmacological 
intervention  (73,74). Some drugs target lipid content 
reduction, which is potentially measurable using near‑infrared 
spectroscopy (70). By contrast, other drugs that aim to reduce 
inflammation can be assessed by 18  fluorodeoxyglucose 
PET‑CT techniques (75). Porcine models offer a test platform 
where both pathological examinations of atherosclerosis and 
evaluation with clinical imaging end point can be performed 
concurrently (71).

Nonetheless, the large size of pigs limits their widespread 
use. Recently, genetically engineered mini‑pigs  (76,77) in 
which hyperlipidemia and consequently atherosclerosis were 
successfully induced, became available; they are cheaper to 
maintain compared to full‑sized pigs. A close examination of 
its pathophysiological mechanisms revealed similarities with 
human atherosclerosis, as in the full‑sized pigs, that are not 
observed in mouse models.

Non‑human primate models. Non‑human primate models bear 
closest similarities to humans compared to other species, in 
terms of phylogeny with 98% genetic material being identical.

Rhesus and cynomolgus monkeys. Complex atherosclerotic 
lesions in coronary arteries of Rhesus monkeys were success-
fully induced using a high fat, high cholesterol diet (57). The 
lesions demonstrated intimal thickening and increased density 
of vasa vasorum in the tunica media (78), which are features 
also observed in humans. The identification of regression 
of coronary atherosclerosis upon reversion to a low-fat diet 
was first established using this model system (79). This was 
associated with a lower cholesterol content within the lesions 
and a decrease in the number of foam cells as well as their 
lipid content. Cynomolgus monkeys have been used because 
of their higher sensitivity to a high-fat diet. When these 
animals were fed with 12.5% coconut oil and 12.5% of butter 
fat (50,80), their plasma cholesterol level was twice as high as 
those of the Rhesus monkeys, associated with a higher number 
of lipid‑loaded monocytes in the blood and skin xanthomata, 
as well as faster disease progression.

Advantages and disadvantages of primate models. The major 
advantage of using primates is that they have very similar cardiac 
anatomy and physiology compared to humans. Abnormal 
cardiovascular physiology in terms of lesion morphology, 

plaque vulnerability and development of spontaneous luminal 
thrombosis are observed in both species (51,80‑82). Primates 
bear similar susceptibility to atherosclerosis, with younger-
aged animals being reasonably resistant to development 
of atherosclerosis, but have an increased risk of becoming 
susceptible with increasing age  (83). Gender difference in 
the susceptibility of atherosclerosis have been demonstrated 
in these primate models, with a male preponderance to 
development of atherosclerosis following the introduction of 
a high-fat diet (84). High cholesterol diet greatly accelerated 
the development of atherosclerosis and frequently induced 
fatal MI in these primates (85). Conversely, disease regression 
upon low fat feeding was also evident, in keeping with clinical 
findings (86,87). Finally, associations between psychosocial 
factors and atherosclerosis have similarly been established 
for these primate models (88). Taken together, these factors 
lead to a greater applicability of experimental data on the  
clinical scenario.

Despite bearing close resemblances to humans, primate 
models are less popular than the other types of model due 
to its difficulty in maintainance due to their large size, high 
cost, limited availability and the special facilities required for 
their accommodation. Secondly, a considerate length of time 
is needed to induce significant atherosclerosis. Thirdly, the 
ethical concern of experimenting with human‑like primates 
limits their widespread use. Nevertheless, non‑human 
primates are ideal for the development of reliable biomarker 
tools for risk stratification and monitoring of the effects of 
pharmacological interventions on disease progression.

3. Concluding remarks

Animal models have been extensively used to study the patho-
physiology of cardiovascular disorders (89‑106). There is no 
one single ideal animal model for all the diseases (107,108). 
The general criteria for an appropriate animal model includes 
the size, docility, ease of breeding and housing, known genetic 
profile, analogies with humans and the cost associated. A 
smaller animal model, such as mouse and rabbit, generally 
provide valuable information on etiology and pathophysiology 
of atherosclerosis. Understanding of the risk factors and the 
natural history of atherosclerosis offer insights on disease 
prevention. On the other hand, larger animal models, such as 
porcine and non‑human primates, are more reliable homo
logies with human disease. The advanced lesions developed 
share similar histological features with humans, from initial 
content of fatty streak to final advanced lesion of ulceration 
and thrombus formation. Their use is therefore more valuable 
for the development of disease management, such as analysing 
the utility imaging methods and assessing the efficacy of phar-
macological intervention.

With the advancement in genetic technology, the develop-
ment of mini‑pigs is a favourable trade‑off between human‑like 
physiology compared to non‑human primate; and ease of 
handling compared with small animal, with high resemblance 
to human cardiac anatomy, physiology, lipid metabolism and 
atherosclerotic pathophysiology. IT is expected to act as an 
important in vivo model, for developing sensitive biomarkers 
and validated imaging tools to predict plaque rupture, as the 
most important clinical event that cost life in atherosclerosis.
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