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Abstract

Many biomolecules undergo conformational changes associated with allostery or ligand binding. 

Observing these changes in computer simulations is difficult if their timescales are long. These 

calculations can be accelerated by observing the transition on an auxiliary free energy surface with 

a simpler Hamiltonian and connecting this free energy surface to the target free energy surface 

with free energy calculations. Here we show that the free energy legs of the cycle can be replaced 

with energy representation (ER) density functional approximations. We compute: 1) The 

conformational free energy changes for alanine dipeptide transitioning from the right-handed free 

energy basin to the left-handed basin and 2) the free energy difference between the open and 

closed conformations of β-cyclodextrin, a “host” molecule that serves as a model for molecular 

recognition in host-guest binding. β-cyclodextrin contains 147 atoms compared to 22 atoms for 

alanine dipeptide, making β-cyclodextrin a large molecule for which to compute solvation free 

energies by free energy perturbation or integration methods and the largest system for which the 

ER method has been compared to exact free energy methods. The ER method replaced the 28 

simulations to compute each coupling free energy with 2 endpoint simulations, reducing the 

computational time for the alanine dipeptide calculation by about 70% and for the β-cyclodextrin 

by > 95%. The method works even when the distribution of conformations on the auxiliary free 

energy surface differs substantially from that on the target free energy surface, although some 

degree of overlap between the two surfaces is required.
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Graphical abstract

The free energy differences associated with conformational changes are difficult to compute in 

explicit solvent. Instead, these free energy differences can be computed on an auxiliary free energy 

surface and the desired free energy difference obtained by adding the free energies of transferring 

the end states from the auxiliary surface to the target surface. Here we show that computing these 

transfer free energies with the energy representation method substantially reduces the cost of these 

calculations.
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INTRODUCTION

Many proteins undergo large-scale conformational changes during folding or to perform 

different functions, and many biomolecular targets of interest in drug discovery undergo 

large conformational changes upon binding to ligands. Estimating the free energies of 

folding, allostery, and binding therefore requires the evaluation of free energy differences 

associated with conformational changes1–3. In principle, these free energy differences could 

be computed by running molecular dynamics simulations of the systems, waiting for them to 

spontaneously undergo the conformational transitions, and measuring the relative 

probabilities of the conformational states. However, if the free energy barriers between the 

conformational states of interest are large, then the system will remain kinetically trapped in 

one of the states during the timescales accessible to molecular dynamics, making such direct 

calculations become computationally too costly or unfeasible. For example, in a previous 

paper, using the solvated alanine dipeptide free energy surface as an example, we ran 

molecular dynamics simulations and found that it would require approximately 4 µs of 
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simulation time to obtain converged estimates of the free energy difference between the 

right- and left-handed regions of the Ramachandran plot4. Such long simulations are 

expensive, even for small systems, and for many conformational changes of larger 

biomolecules the required timescales could be many orders of magnitude larger.

Many different techniques have been developed to get around this problem (eg. replica-

exchange molecular dynamics5,6, metadynamics7, accelerated molecular dynamics8, 

adaptive umbrella sampling9, transition path sampling10, milestoning11, and Markov state 

models12–15). Alternatively, the simulations can be run with various implicit solvent 

models16–21, which by averaging over the coordinates of the solvent greatly reduce the 

degrees of freedom of the system. However, because implicit solvent models perform this 

averaging in an approximate way, the accuracies of their predictions can be difficult to 

evaluate18,22–26.

In a recent paper we proposed a new implicit/explicit thermodynamic cycle that takes 

advantage of the speed of implicit solvent simulations but is designed to give the same 

answer as exhaustive sampling in explicit solvent. If a conformational transition of interest 

occurs faster in implicit solvent or vacuum or the simulation is simply faster in an implicit 

solvent model because of the many fewer degrees of freedom in the system, then we can 

estimate the desired free energy change on this auxiliary (implicit solvent or vacuum) free 

energy surface and obtain the free energy difference on our target (explicit solvent) free 

energy surface by connecting the two free energy surfaces with focused free energy 

calculations4. In that case, computing conformational free energy changes in vacuum and/or 

implicit solvent and connecting those free energy surfaces to the explicit solvent free energy 

surface reduced the necessary computational time to obtain the free energy changes by 

>90%.

In the present study we show that the free energies connecting the target and auxiliary free 

energy surfaces with free energy calculations can be replaced by the results of free energy 

functional/endpoint energy representation (ER)27–31 calculations that use data from the 

endpoints of the free energy calculations to estimate these connecting free energy 

differences. We show that doing so reduces by ~70% the cost of obtaining the 

conformational free energy changes for alanine dipeptide and by more than 95% the 

computational cost of obtaining conformational free energy estimates for β-cyclodextrin, a 

flexible “host” molecule used to investigate molecular recognition32–38. β-cyclodextrin 

contains 147 atoms, as compared to the 22 atoms in alanine dipeptide, making these 

calculations a stringent test of the proposed method. Indeed, the number of atoms in β-

cyclodextrin is much larger than the numbers of atoms in most molecules for which 

solvation free energies have been computed with free energy methods. We also show that 

while these methods do require some overlap between the conformational distributions on 

the auxiliary and target free energy surfaces, these distributions can be quite different. For β-

cyclodextrin, for example, the system had two free energy minima in explicit solvent but 

only one minimum in vacuum.
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METHODOLOGY

Connecting free energy surfaces

In principle, the free energy difference (ΔG1,A→B) between two states A and B on a target 

(1) free energy surface can be computed from a molecular dynamics trajectory by

(1)

where k is Boltzmann’s constant, T is the temperature, and  and  are the probabilities 

that the system is in state A and B, respectively. However, if the two states are separated by a 

large free energy barrier, then molecular dynamics simulations started in either state A or 

state B can remain kinetically trapped in that state, making computing  and  difficult.

In a previous paper we showed that computing ΔG1,A→B by computing the free energy 

difference (ΔG0,A→B) between states A and B on an auxiliary free energy (0) surface and 

connecting the two free energy surfaces with free energy calculations can be much more 

efficient4. We therefore proposed the following equation:

(2)

where  and  are the probabilities that the system falls in a small region (a1) of state 

A in the auxiliary and target free energy surfaces, respectively,  and  are the 

probabilities that the system falls in a small region (b1) of state B in the auxiliary and target 

free energy surfaces, respectively, and ΔG0→1,a1 and ΔG0→1,b1 are the free energies 

required to move a system restrained to a1 and b1, respectively, from the auxiliary to the 

target free energy surface.

In this equation, the terms  and  reflect the local 

curvature of the target and auxiliary free energy surfaces. They are not sensitive to changes 

in the free energy difference between the A and B basins on the target and auxiliary free 

energy surfaces. They are the differences between the free energies required to restrain a 

system in basin A or B to a1 or b1 on the target free energy surface and those on the auxiliary 

surface.

Endpoint method: Energy representation approximate functional

In Equations 1 and 2, state 1 refers to the solution system of interest, and a natural choice of 

state 0 is the isolated solute in vacuum and the pure solvent uncoupled to the solute. In this 

case, ΔG0→1,a1 and ΔG0→1,b1 of Equation 2 correspond to the solvation free energies of the 

solute restrained to a1 and b1, respectively. Computing solvation free energies with 

molecular dynamics methods, such as free energy perturbation (FEP) and thermodynamic 

integration (TI), is computationally expensive and usually requires the introduction of 
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fictitious intermediate states connecting the state where the solvent and solute are uncoupled 

(the initial state) to the state where they are fully coupled (the final state).

To reduce the computation time for the solvation free energy, in this work we also resort to 

the ER method27–31. Within the framework represented by Equation 2, a fast scheme for 

obtaining ΔG0→1,a1 and ΔG0→1,b1 that explicitly accounts for the intramolecular flexibility 

within the a1 and b1 regions is required. The ER method meets this requirement. It is a 

theory of distribution functions in solution and was formulated by adopting the solute-

solvent pair interaction energy for the coordinate of the distribution functions. Among a 

variety of approximate free-energy methods39–50, the ER method is unique in its high 

accuracy, efficiency, and range of applicability30,31,51–53. In ER, the simulations are 

performed only at the initial and final states (endpoints) of the solute insertion process, and a 

set of energy distribution functions obtained from the endpoint simulations provides the 

solvation free energy through an approximate functional. The intramolecular flexibility does 

not require special treatment, furthermore, and is handled as a natural part of the MD data 

analysis. It has also been observed for small molecules that the error due to the use of the 

approximate functional is not larger than the error due to the force field. We employ ER for 

ΔG0→1,a1 and ΔG0→1,b1 of Equation 2.

The solvation free energy Δμ is the free-energy change for turning on the solute-solvent 

interaction. In the ER method, the value of the solute-solvent interaction υ of interest is 

adopted as the coordinate ε for the solute-solvent distribution and the instantaneous 

distribution ρ̂e is defined as

(3)

where ψ is the configuration of the solute molecule, xi is the configuration of the ith solvent 

molecule, the sum is taken over all the solvent molecules, and a superscript e is attached to 

emphasize that a function is represented over the energy coordinate. Let ρe(ε) and  be 

the statistical averages of ρ̂e(ε) in the solution system of interest (state 1 of Equation 2) and 

in pure solvent with the solute uncoupled (state 0), respectively. Δμ can be then be expressed 

exactly as

(4)

where Ωe(ε) represents the contribution due to the change in the solvent-solvent correlation 

upon introduction of the solute. In the present study we use an approximate Ωe(ε) obtained 

by adopting hypernetted-chain(HNC)–type and Percus-Yevick(PY)–type expressions. See 
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Appendix and previous papers for the explicit form of Ωe(ε) and methodological 

details28,30,31.

In Equation 2, regions a1 and b1 should not be made too “small” because when a1 or b1 is 

small, the probabilities appearing in the second and fourth terms are small, which may lead 

to statistical errors in those terms. On the other hand, the sizes of the regions should not be 

too “large”, either. In this case, computing ΔG0→1,a1 and ΔG0→1,b1 would require sampling 

a wide range of solute configurations, requiring long simulation times. This tradeoff exists 

even when the ER endpoint scheme is employed. The method requires simulations at state 1 

(solution of interest) and state 0 (solute at isolation in vacuum) and is advantageous when 

the solute configuration space to be sampled is not too wide. As mentioned above, the solute 

can be flexible when the free energy is computed with the ER method. Still, the computation 

is faster when the solute flexibility is restricted, and as a result the endpoint method is well 

suited for use in Equation 2 as a substitute for more standard free energy methods, such as 

TI.

Alanine dipeptide

In a previous paper4 we showed that using vacuum and implicit solvent models as auxiliary 

energy surfaces could accelerate the computation of various free energy differences for 

alanine dipeptide in different free energy basins. In the present paper we compare the results 

from those calculations to those we obtain by computing ΔG0→1,a1 and ΔG0→1,b1 with the 

ER method. This method requires three MD simulations. One is of the solution system of 

interest, and corresponds to the fully coupled state (for both the electrostatic and van der 

Waals interactions) of the TI calculation in our previous paper4. The parameters and settings 

for this MD were identical to those in TI4, and the MD trajectory was sampled every 100 fs 

to obtain the energy distribution function. The second MD is of pure water. The MD 

procedures were also unchanged from those in TI4, except that the simulation length was 

shortened to 20 ps with a sampling interval of 100 fs. In the third simulation, an MD 

simulation was carried out for an isolated solute in vacuum. The electrostatic potential was 

then handled by its bare form of 1/r, and the MD length was 20 ns with 100 fs for the 

sampling interval. The other options, including the restraints on the solute, were the same as 

those for the solution, and the correction due to the periodic boundary condition was 

implemented by the self-energy scheme54,55. The solute configurations in vacuum were 

inserted into pure water as test particles at random positions and orientations to determine 

the distribution functions corresponding to the density of states of solute-solvent pair 

interactions and the solvent-solvent pair correlations. The test-particle insertion was carried 

out 1000 times per pure-water configuration sampled, leading to the generation of 2 × 105 

solute-solvent configurations in total.

As noted above, the MD of pure water was as short as 20 ps. This is possible because the 

insertions at random positions and orientations average out the structural inhomogeneity of 

the pure-solvent system, which might be transiently present on a ps time scale. The spatial 

inhomogeneity is exploited to reduce the computation time, and in this sense, the averaging 

over time is replaced by the averaging over space. It should be further noted that the solute 

sampled from its MD at isolation in vacuum is inserted into pure solvent to take the 
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ensemble averages at state 0 of Equation 2 and Equations 7 and 8 in the Appendix. This 

means that at state 0, the effect of solute-solvent interaction is not yet turned on for the 

solute structure. The difference in the solute structure between the solution and vacuum 

arises through introduction of the solute-solvent interaction and is reflected in the solvation 

free energy computed through Equation 4.

For the alanine dipeptide, all values except the endpoint calculations were taken from our 

previous paper4. In those calculations the system was constrained to 3° × 3° patches of 

Ramachandran space with harmonic restraints on the backbone dihedral angles with restraint 

constants set to maintain the system in the desired ranges of dihedral angles.

β-Cyclodextrin

The flexible host β-cyclodextrin adopts two interconverting configurations in water, an open 

configuration where the planes of the sugar rings are nearly perpendicular to the plane of the 

molecule and a closed configuration where one of the sugar rings rotates so that its plane is 

closer to the plane of the molecule, with its COH2 arm entering the interior of the β-

cyclodextrin ring (Figure 1).

To track this transition, we defined a collective variable (Θ) as follows:

For each sugar ring we defined an angle (θi) as follows:

1. For each ring we defined the plane of the cyclodextrin molecule to be the plane 

defined by three points:

• The center of mass of the 7 glycosidic oxygens.

• The carbon connecting the sugar ring to the next sugar ring.

• The carbon connecting the sugar ring to the previous sugar ring.

2. We defined the plane of the sugar ring to be the plane defined by three points:

• The carbon connecting the sugar ring to the next sugar ring.

• The carbon connecting the sugar ring to the previous sugar ring.

• The carbon on the COH2 arm of the sugar ring.

3. We then defined θi to be the torsion angle between these two planes. If the COH2 

arm was rotated directly out of the cyclodextrin molecule but in the plane of the 

cyclodextrin, we defined θi to be −π rad, and if it was rotated into the 

cyclodextrin molecule and in the plane of the cyclodextrin we defined θi to be 0 

rad.

We then defined Θ to be the greatest of the θi. It is therefore the angle between the plane of 

the cyclodextrin and the plane of the sugar that is most rotated into the cyclodextrin ring. 

The atoms used in this definition are illustrated in Figure 2.

Figure 3 shows a histogram of Θ in water. This histogram has two peaks, one at about Θ = 

−1.25 rad, corresponding to the open state, and one at about Θ = 0 rad, corresponding to the 

closed state. We divided the full range of Θ into the 100 bins shown in Figure 3. We defined 
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the boundary between these two states to be Θ = −0.25 rad, and we defined a1 to correspond 

to the bin with −1.25663 rad < Θ <−1.19381 rad and b1 to correspond to the bin with 

0.0628318 rad < Θ < 0.125664 rad.

Molecular dynamics details

For β-cyclodextrin we simulated the unrestrained system in water for 200 ns and in vacuum 

for 500 ns. From these simulations all quantities in Equations 1 and 2 except ΔG0→1,a1 and 

ΔG0→1,b1 were computed. The estimate of ΔG0,A→B was obtained from this simulation 

following Equation 1. The parameters for β-cyclodextrin were taken from the OPLS 2005 

force field56, and the TIP3P parameters57 were used for the water. These simulations were 

run with the Groningen Machine for Chemical Simulations (GROMACS) version 4.5.458,59. 

The vacuum simulation was run for 2.5 × 108 steps with a time step of 2 fs and 

GROMACS’s leap-frog integrator60. The lengths of the bonds connecting hydrogen atoms to 

other atoms were constrained with the default LINCS algorithm61. Electrostatic and 

Lennard-Jones interactions were cut off at 10 Å, and the temperature was maintained at 300 

K with the Berendsen thermostat62. Periodic boundary conditions were not used for this 

simulation. The simulation in water used the same options except that periodic boundary 

conditions were used with smooth particle-mesh Ewald electrostatics63. A constant pressure 

of 1 atm was maintained with the Berendsen barostat62, and for the production simulation 

the temperature was maintained at 300 K with GROMACS’s stochastic dynamics 

integrator64. For the simulation in water 1451 water molecules were added to the system, 

and it was minimized with 50000 steps of the steepest descent algorithm. The system was 

then run at constant volume for 50000 steps with GROMACS’s leap-frog integrator60 and a 

constant temperature of 300 K maintained with the Berendsen thermostat62, followed by an 

additional 50000 steps at constant pressure with GROMACS’s leap-frog integrator60 and a 

constant temperature of 300 K maintained with the Berendsen thermostat62. Finally, the 

system was run for 1 × 108 steps with a constant temperature maintained at 300 K with 

GROMACS’s stochastic dynamics integrator64.

For β-cyclodextrin ΔG0→1,a1 and ΔG0→1,b1 were computed with TI in GROMACS version 

5.1.058,59 patched with PLUMED version 2.2.165. Starting structures of β-cyclodextrin in 

bins a1 and b1 were taken from the simulation run in water, and for the structure in a1 and b1 

3397 and 3459 water molecules, respectively, were added. These systems were then each 

minimized for 50000 steps with the steepest descent algorithm and the same molecular 

dynamics options as for the simulation in water.

Next, for the system in a1 Θ was restrained by

1. imposing an upper harmonic wall on one of the θi at −1.19381 with a force 

constant of 1000 kJ/mol/rad2,

2. imposing a lower harmonic wall on this θi at −1.25663 with a force constant of 

1000 kJ/mol/rad2, and

3. imposing an upper harmonic wall on all other θi at −1.25663 with a force 

constant of 1000 kJ/mol/rad2,

and for the system in b1 Θ was restrained by
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1. imposing an upper harmonic wall on one of the θi at 0.125664 with a force 

constant of 100000 kJ/mol/rad2,

2. imposing a lower harmonic wall on this θi at 0.0628318 with a force constant of 

100000 kJ/mol/rad2,

3. imposing an upper harmonic wall on all other θi at 0.05 with a force constant of 

50 kJ/mol/rad2, and

4. imposing a lower harmonic wall on all other θi at −2.8 with a force constant of 

1000 kJ/mol/rad2.

Setting the values of these restraint constants involved a tradeoff between two different 

concerns: 1) If they are too weak the system will not remain in the desired region of phase 

space, but 2) if they are too strong the system will experience energy drift from hitting the 

harmonic walls. The values used here were selected because they produced stable 

simulations with only small numbers of configurations falling outside the desired regions of 

phase space. Restraining β-cyclodextrin to b1 required more complicated restraints than 

restraining it to a1, probably because the system is less stable in the closed (b1) than open 

(a1) configuration. Also, note that these restraints are not simple at-bottomed restraints on Θ. 

We should therefore expect some differences between the value of ΔG1,A→B computed with 

Equation 1 and that computed with Equation 2 with these definitions of ΔG0→1,a1 and 

ΔG0→1,b1. However, this difference was too small to be observed in this study, as can be 

seen from the Results.

After imposing restraints, 11 4-ns (2 × 106 steps) simulations were run for each system 

where the electrostatic interactions between the solute and solvent were reduced by a factor 

of λ (λ = 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, and 1.0). In each of these simulations the 

derivative (dU/dλ) of the potential energy of the system with respect to λ was computed 

every 0.2 ps (100 steps). The averages (〈dU/dλ〉i) of these quantities in each simulation i 
were then combined to compute the free energy (ΔGel) of turning on the electrostatic 

interaction between the solute and solvent by TI66,67:

(5)

Once the electrostatic interactions had been turned off, the Lennard-Jones interactions 

between the solute and solvent were slowly switched off using GROMACS’s soft-core 

method68 with α = 0.5, a soft-core power of 1, and σ = 0.3. Lambda-space was divided into 

17 windows (λ = 0,0.1,0.2,0.3,0.4,0.5,0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9,0.94,0.985, and 1), 

and 4 ns simulations were run in each window. The free energy of turning on the Lennard-

Jones interactions was then computed using the same method as in Equation 5 and combined 

with ΔGel to obtain ΔG0→1,a1 and ΔG0→1,b1 (Table 2). During these simulations the 

intramolecular nonbonded interactions of the solute were maintained, so the reference state 

was the same as that used in the ER calculations.
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The simulations used to obtain ΔG0→1,a1 and ΔG0→1,b1 were run with the same options as 

for the unrestrained simulation in water except that the lengths of bonds connecting 

hydrogen atoms to other atoms were constrained with SHAKE69 rather than LINCS61.

The solvation free energies were also computed by the ER method. The computational 

schemes were parallel to those described in the Alanine dipeptide subsection of the 

Methodology section. The only differences are that the MD of pure water was done over 200 

ps and that 2 × 106 solute-solvent configurations in total were prepared by test-particle 

insertions. As is so for alanine dipeptide noted in “Alanine dipeptide” subsection, in 

addition, the ER calculations for β-cyclodextrin were done with exactly the same potential 

functions and restraints as the TI calculations.

RESULTS

Alanine dipeptide

Previously we computed the free energy differences between right-handed and left-handed 

helical basins by computing the free energies in vacuum and generalized-Born solvent and 

connecting these calculations to the calculations in explicit solvent with free energy 

calculations4. Figure 4 shows a Ramachandran plot for alanine dipeptide in explicit solvent 

taken from our previous paper. These calculations were much more efficient than computing 

the free energies directly by determining the populations of the two basins in explicit 

solvent, which requires barrier crossing, where the first passage time in explicit solvent was 

~100 ns.

Here we show that using the free energy functional/endpoint methods described above lead 

to further substantial improvements in the efficiency of these calculations (Table 1). The 

calculation of the coupling free energies, ΔG0→1,a1 and ΔG0→1,b1 cost about 25 ns each 

with TI. Replacing these two calculations with free energy functional/endpoint calculations 

can nearly eliminate the time required for this portion of the calculation, reducing the time 

required for the total calculation by about 70%.

With the endpoint calculation with ER, an approximate functional is used for obtaining 

G0→1,a1 and ΔG0→1,b1. In previous work, benchmark computations were conducted for 

amino-acid analog solutes in water, and the deviations between the ER and exact results 

were found to be less than 1 kcal/mol51–53. The ER functional is expected to deteriorate in 

its performance when the solute size is larger. According to a study of size effects for hard-

sphere solutes70, ER estimates of the solvation free energies of larger solutes are less 

favorable than the exact values, and these differences increase with solute size. These 

observations are in agreement with the data in Table 1. The values of G0→1,a1 and ΔG0→1,b1 
given by the ER method are within about 2 kcal/mol of those given by TI, but these 

differences in the solvation free energies partially cancel, leading to the differences between 

the conformational free energy differences given by the ER method and those given by TI 

being less than 1 kcal/mol. These observations show that the ER method provides a fast 

alternative to obtain accurate estimates of free-energy differences between basins in 

combination with Equation 2.
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β-cyclodextrin

For β-cyclodextrin we were interested in computing ΔG1,A→B, the free energy difference 

between the open and closed states. In principle, ΔG1,A→B can be computed by simulating 

the system in explicit water and using Equation 1. However, the time between transitions for 

this system is rather long (~60 ns), making direct estimates of ΔG1,A→B converge slowly 

(Figure 5). From a 200 ns simulation of the system in explicit water we obtained ΔG1,A→B = 

0.99 ± 0.14 kcal/mol.

In contrast, in vacuum β-cyclodextrin only has one free energy minimum (Figure 3) and 

does not have a slow switching between the open and closed states (Figure 5). This 

observation suggests that computing ΔG1,A→B by connecting the vacuum and explicit water 

free energy surfaces with Equation 2 can be useful. The results of such a calculation are 

summarized in Table 2. As described in the Methodology section, the calculations 

connecting the vacuum free energy surface to the explicit solvent free energy surface with 

free energy calculations used approximately the same amount of simulation time as the 

unrestrained simulation in explicit solvent. We can therefore compare the efficiencies of 

these calculations by comparing the approximate errors in the two estimates. For this system 

computing ΔG1,A→B by connecting the free energy surfaces was less efficient than simply 

calculating this free energy from an unrestrained simulation in water. This observation 

contrasts with what was found previously for alanine dipeptide, where computing the free 

energy difference between the αr and C7ax states by connecting implicit and vacuum free 

energy surfaces to the explicit water free energy surface was much more efficient than by 

analyzing the unrestrained trajectory in explicit water. Computing free energy differences by 

connecting free energy surfaces becomes more efficient when the switching time between 

the states is longer.

Using the ER method to compute ΔG0→1,a1 and ΔG0→1,b1 in Equation 2 reduced the 

computational time required to compute ΔG1,A→B by more than 95% (Table 2); this 

corresponds to more than a 25-fold speedup given the smaller errors with ER than with TI. 

The differences between the solvation free energies given by the ER method and those given 

by TI are ~10 kcal/mol and are larger than those observed for alanine dipeptide. Although 

the ER method has been employed for computing the solvation free energies of proteins with 

a few hundred residues in explicit solvent71–77, its predictions have only been compared to 

exact values for small molecules51–53. The values reported here for β-cyclodextrin constitute 

one of the largest TI calculations reported to date and may offer targets for further 

improvement of the ER functional. However, the difference between ΔG0→1,a1 and 

ΔG0→1,b1 given by the ER method is in good agreement with that given by TI. We therefore 

conclude that using the ER method and Equation 2 to compute conformational free energy 

differences is a promising approach to employ as the system size increases, one which can 

be further developed.

CONCLUSIONS

In a previous study4 we showed that computing conformational free energy changes for 

alanine dipeptide could be accelerated by performing the calculations on auxiliary free 

energy surfaces in vacuum or implicit solvent and connecting those free energy surfaces to 

Harris et al. Page 11

J Comput Chem. Author manuscript; available in PMC 2018 June 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



our target explicit solvent free energy surface. In the present paper we show that these 

calculations can be greatly accelerated by computing the free energies linking the auxiliary 

and target free energy surfaces in solution with free energy functional/endpoint methods. For 

β-cyclodextrin doing so reduces the cost of the calculation by more than 95%. The energy 

cycle is an attractive method to which to apply energy functional/endpoint methods, which 

approximate the solvation free energy of a molecule from simulations run at the endpoints of 

the transformation, because endpoint methods converge faster when the conformational 

degrees of freedom of the solute are restrained, and to perform the energy cycle we restrain 

the system to small patches in phase space in each basin. As mentioned above, in the method 

as presented there is a tradeoff between the desire to make the patches smaller to make the 

calculations of the linking free energies easier and the desire to make them larger to make 

the computation of the probabilities easier.

Additionally, we found that the thermodynamic cycle can be used even when the 

conformational distribution on the auxiliary free energy surface differs substantially from the 

distribution on the target free energy surface, as is the case for β-cyclodextrin for which the 

explicit solvent free energy surface contains two minima, whereas the vacuum surface 

contains only one. The conformational distributions on the two free energy surfaces do have 

to overlap in the collective variables of interest, but this overlap does not have to be large, as 

it was not here.
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APPENDIX

In this appendix, we show the explicit form of the free-energy functional in the energy-

representation (ER) method28,30,31. The target quantity of the method is the solvation free 

energy Δμ. It is computed with Equation 4, and the inputs for the computation are the three 

distribution functions ρe, , and  constructed from the instantaneous distribution 

(histogram) ρ̂e defined by Equation 3. To be more specific, ρe(ε) is obtained in the solution 

system of interest (state 1 of Equation 2) through

(6)

where 〈⋯〉 denotes the ensemble average at state 1, and  and  are calculated in 

pure solvent with the solute uncoupled (state 0) through

(7)
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(8)

where 〈⋯〉0 means the ensemble average at state 0 and is taken by test-particle insertions of 

the solute into pure solvent. When the pure solvent is homogeneous,  is equal to the 

(number) density of bulk solvent multiplied by the density of states for the solute-solvent 

pair potential. The solvent-solvent correlation at two-body level in pure solvent is further 

expressed by  over the coordinates introduced by the solute that is inserted as a test 

particle.

From the three distribution (correlation) functions given above, we also define two functions 

through

(9)

(10)

where ωe is the solvent-mediated part of the solute-solvent potential of mean force in the 

energy representation27–31. It vanishes when the solvent-solvent correlation is absent.  is 

also the solvent-mediated part of the response function of the solute-solvent distribution to 

the solute-solvent interaction in pure solvent. Using ωe and , Ωe of Equation 4 is expressed 

through combined HNC-type and PY-type approximations as

(11)

(12)

(13)
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(14)

where β = 1/kT. The first lines of Equations 12 and 13 refer to the PY-type approximations, 

and the second lines to the HNC-type. Equations 12 and 13 are the combined HNC- and PY-

type approximations expressed with ωe and , respectively, and are mixed with the 

weighting function α defined in Equation 14. Typically, ωe(ε) is well sampled in the 

favorable portion of the energy coordinate ε, and  is well sampled in the unfavorable 

portion. The weighting function was chosen to respect this numerical observation.

As noted in the “Alanine dipeptide” subsection within the Methodology section, the solute is 

inserted into pure solvent as a test particle to obtain  and  through Equations 7 and 8. 

The overlapping configurations of the inserted solute with solvent molecules then contribute 

to  and  at large energies and account for the excluded-volume effect in the solvation 

free energy. In numerical practice, the large-energy portion was logarithmically meshed 

through the procedure described in the Appendix of Ref.28. In the present work, 200 bins 

were prepared between 20 and 1011 kcal/mol, and the solute-solvent energy larger than 1011 

kcal/mol was counted in the largest-energy bin. With this scheme, each bin was well 

sampled since the inserted solute always overlaps with solvent; it should be noted that ε in 

Equation 3 is the pair energy between solute and solvent, and whenever the solute overlaps 

with solvent, the sample count for the overlapping ε increases.  appears to be small simply 

because it is given by the averaged count divided by the bin width, which is wide in turn in 

the large-energy portion. The effect of mesh size was further examined by summing the 

sample counts in consecutive bins and using the coarsely discretized  and  thus 

obtained. It was then observed that the resulting solvation free energy did not change by 

more than 0.1 kcal/mol, even when “coarse-graining” by 5 times. The value for the largest-

energy bin was also varied through the procedure presented in the Appendix of Ref.28, and 

no effect was seen within the margin of error. In fact, the large-energy portion is the “easy” 

part of applying Equations 7 and 8 since the inserted solute always overlaps with solvent and 

the solute-solvent overlap is “used” in obtaining the histogram through Equation 3. The 

numbers of test-particle insertions were described in the main text and were actually 

determined to achieve good statistics in the low-energy (attractive) tail of the solute-solvent 

pair energy, which is not necessarily sampled efficiently in test-particle insertions.
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Figure 1. 
Illustrations of the (a) open and (b) closed configurations of β-cyclodextrin. The black oval 

highlights the sugar whose COH2 group has rotated into the plane of the β-cyclodextrin.
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Figure 2. 
A figure showing the atom types used in the definition of Θ. The red spheres are the 7 

glycosidic oxygens that connect the sugars of the cyclodextrin ring, the blue sphere is the 

carbon joining the first ring to the previous ring, the gray sphere is the carbon joining the 

first ring to the next ring, and the orange atom is the carbon on the arm of the first ring.
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Figure 3. 
(a) Histograms of the probability density (f (Θ)) of Θ for β-cyclodextrin in vacuum and 

water. The vertical line marks the division between the open and closed states at Θ = −0.25. 

The arrows labeled “open” and “closed” identify the bins used for connecting the two free 

energy surfaces. (b) Potentials of mean force in Θ for β-cyclodextrin in vacuum and water. 

These curves were computed by calculating −kT ln (Pi) for each Θ bin i, where k is 

Boltzmann’s constant, T is the temperature, and Pi is the probability that the system is in bin 

i. The error bars on this curve represent the differences between the value of −kT ln (Pi) 
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obtained from the full simulations and from the first halves of the simulations. The vacuum 

data were taken from a 500 ns simulation, and the water data were taken from a 200 ns 

simulation.
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Figure 4. 
(a) A two-dimensional potential of mean force in Φ and Ψ for alanine dipeptide in water. 

This map was computed by calculating −kT ln (Pi) for each bin i, where k is Boltzmann’s 

constant, T is the temperature, and Pi is the probability that the system is in bin i. The map is 

in units of kcal/mol. The labels identify the basins in Table 1. (b) A one-dimensional 

potential of mean force in Φ for alanine dipeptide. The gap in the curve shows bins where no 

samples were obtained. The error bars on this curve represent the differences between the 
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value of −kT ln (Pi) obtained from the full simulation and from the first half of the 

simulation.
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Figure 5. 
(a) A time series of Θ as a function of time (t) for β-cyclodextrin in vacuum. The dashed line 

at Θ = −0.25 marks the division between the open and closed states. Only every 2500’th 

frame from the simulation is plotted. (b) The same as (a) but in water. Only every 1000’th 

frame from the simulation is plotted. (c) A convergence plot of the free energy (ΔG0,A→B) 

difference between the closed and open states in vacuum computed with Equation 1 using 
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only the data collected up to simulation time (t) as a function of t. (d) The same as (c) but in 

water.
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Table 1

A comparison of the data obtained with endpoint methods to those obtained with free energy methods for 

alanine dipeptide. The values in the 3rd and 4th columns were taken from our previous paper4. The simulation 

times are approximately the time that would be required to achieve the listed accuracy and are taken from our 

previous paper. For the calculations using thermodynamic integration (TI) and Equation 2, about 50 ns was 

used to compute ΔG0→1,a1 and ΔG0→1,b1, and about 20 ns was used to compute the curvature terms, 

 and . The computation time for each of ΔG0→1,a1 and ΔG0→1,b1 in the 

endpoint method corresponds to that for a single λ for TI. The results for the endpoint method are rounded to 

multiples to 0.1, and the errors are not shown when they are rounded to 0. All energies are in kcal/mol.

Equation 1 Equation 2
TI

Equation 2
free energy functional/end point methods

ΔG1,αR→C7ax 4.0±0.2 4.1±0.2 4.3±0.2

αR ΔG0→1,a1 −14.4±0.01 −12.8

ΔG0→1,b1 −9.4±0.02 −7.6±0.1

ΔG1,β→C7ax 4.8±0.2 4.8±0.2 5.4±0.2

β ΔG0→1,a1 −12.2±0.3 −11.0±0.1

ΔG0→1,b1 −9.4±0.02 −7.6±0.1

ΔG1,C5→C7ax 4.0±0.2 3.9±0.2 4.6±0.1

C5 ΔG0→1,a1 −10.9±0.3 −9.8

ΔG0→1,b1 −9.4±0.02 −7.6±0.1

ΔG1,C7eq→C7ax 3.2±0.2 3.2±0.2 3.4±0.1

C7eq ΔG0→1,a1 −9.2±0.3 −7.6±0.1

ΔG0→1,b1 −9.4±0.02 −7.6±0.1

Simulation time (ns) ~4000 ~70 ~22
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Table 2

Data to calculate the free energy difference (ΔG1,A→B) between the closed and open states of β-cyclodextrin 

in water by connecting the free energy surface in vacuum to that in water with both free energy calculations 

and endpoint methods. The times required to compute ΔG0,A→B, , and 

were significantly smaller than the times required to compute ΔG1,A→B, ΔG0→1,a1, and ΔG0→1,b1, as can be 

seen by observing the small sizes of the error bars on the first set of quantities. The time required to compute 

ΔG1,A→B was therefore dominated by the calculations of ΔG0→1,a1 and ΔG0→1,b1. The values for ΔG0,A→B, 

, and  are common between TI and the endpoint method. The 

computation time for each of ΔG0→1,a1 and ΔG0→1,b1 in the endpoint method corresponds to that for a single 

λ for TI.

Equation 1 Equation 2
TI

Equation 2
free energy functional/end point methods

ΔG1,A→B 1.0±0.1 1.0±0.8 1.2±0.2

ΔG0,A→B 3.12874 ±0.00007

−0.393±0.002

ΔG0→1,a1 −56.4±0.3 −46.6±0.1

−0.35±0.01

ΔG0→1,b1 −58.5±0.5 −48.5±0.1

Simulation time (ns) ~200 ~200 ~8
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