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Abstract

Teenage bhinge drinking is a major health concern in the United States, with 21% of teenagers
reporting binge-pattern drinking behavior in the last 30 days. Recently, our lab showed that
alcohol-naive offspring of rats exposed to alcohol during adolescence exhibited altered gene
expression profiles in the hypothalamus, a brain region involved in stress regulation. We employed
Enhanced Reduced Representation Bisulfite Sequencing as an unbiased approach to test the
hypothesis that parental exposure to binge-pattern alcohol during adolescence alters DNA
methylation profiles in their alcohol-naive offspring. Wistar rats were administered a repeated
binge-ethanol exposure paradigm during early (postnatal day (PND) 37-44) and late (PND 67-74)
adolescent development. Animals were mated 24h after the last ethanol dose and subsequent
offspring were produced. Analysis of male PND7 offspring revealed that offspring of alcohol-
exposed parents exhibited differential DNA methylation patterns in the hypothalamus. The
differentially methylated cytosines (DMCs) were distinct between offspring depending on which
parent was exposed to ethanol. Moreover, novel DMCs were observed when both parents were
exposed to ethanol and many DMCs from single parent ethanol exposure were not recapitulated
with dual parent exposure. We also measured mRNA expression of several differentially
methylated genes and some, but not all, showed correlative changes in expression. Importantly,
methylation was not a direct predictor of expression levels, underscoring the complexity of
transcriptional regulation. Overall, we demonstrate that adolescent binge ethanol exposure causes
altered genome-wide DNA methylation patterns in the hypothalamus of alcohol-naive offspring.
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Introduction

Binge alcohol consumption among adolescents is a major health concern in the United
States, with 21% of teenagers reporting binge-pattern drinking behavior in the last 30 days
(White & Hingson, 2013). Americans under the age of 21 consume over 90% of alcohol in
binge-like patterns, which is defined by the Centers for Disease Control as raising the blood
alcohol concentration (BAC) above 0.08% within 2 hours (CDC 2014) (Miller, Naimi,
Brewer, & Jones, 2007). This behavior is not only dangerous at the time, but can also lead to
various health problems in adulthood such as increased risk for developing depression, mood
disorders, alcohol dependence and neurodegenerative diseases (Allen, Rivier, & Lee, 2011;
Coleman Jr, He, Lee, Styner, & Crews, 2011; Vargas, Bengston, Gilpin, Whitcomb, &
Richardson, 2014).

Clinical studies have shown that children of alcoholics are at an increased risk for attention-
deficit/hyperactivity disorder and have a greater propensity for abusing alcohol throughout
life, but the root of these behaviors is confounded by child-rearing practices in homes of
alcoholics (Hairston et al., 2016; Hill, Tessner, & McDermott, 2011; Sundquist, Sundquist,
& Ji, 2014). However, experimental evidence from animal models suggests that molecular
inheritance mechanisms could underlie these clinical findings (Finegersh, Rompala, Martin,
& Homanics, 2015; Przybycien-Szymanska, Rao, Prins, & Pak, 2014). Data from our lab
and others have demonstrated ethanol-induced long-term changes in gene expression in the
hypothalamus as well as behavioral changes, such as increased preference for alcohol
drinking and dysfunctional stress responsiveness in alcohol-naive offspring (Finegersh &
Homanics, 2014; Govorko, Berkdash, Zhang, & Sarkar, 2012; Przybycien-Szymanska, et al.,
2014; Rompala, Finegersh, & Homanics, 2016). The hypothalamus has been investigated for
its vulnerability to binge alcohol exposure as it has central importance in regulating the
stress response (Przybycien-Szymanksa, Rao, & Pak, 2010). Together, these studies raise the
possibility that epigenetic inheritance is one mechanism by which adolescent alcohol
exposure can affect naive offspring (Finegersh, et al., 2015; Shukla et al., 2008).

DNA methylation is a heritable epigenetic mark that is relatively stable but varies throughout
development and can be influenced by environmental factors (Carone et al., 2010; Jones,
2012). Aberrant DNA methylation is implicated in many cognitive disorders such as
schizophrenia, depression, and addiction (Gavin, Chase, & Sharma, 2013; Grayson &
Guidotti, 2012; Manzardo & Butler, 2013). In the brain, DNA methylation is intimately
involved in cellular differentiation as well as synaptic plasticity (Tognini, Napoli, &
Pizzorusso, 2015). Therefore, proper patterning of the epigenetic landscape is necessary for
neuronal function. Environmental factors are known to cause differential methylation of the
brain during early development, which is a potential mechanism for lifetime adaptation. For
example, early life stress through maternal deprivation can alter methylation of genes
involved in mediating the physiological stress response and these methylation marks are
persistent throughout adulthood (Chen et al., 2012). Exposure to adverse environmental
factors and drugs of abuse during adolescence has also been demonstrated to have
transgenerational consequences (Carone, et al., 2010; Minnes et al., 2014; Ost et al., 2014;
Weyrich et al., 2016). For example, paternal cocaine exposure during puberty has been
shown to alter DNA methylation and behavior in offspring (Killinger, Robinson, &
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Stanwood, 2012). Paternal preconception exposure to alcohol has also been associated with
increased anxiety and depression in offspring (Liang et al., 2014). However, there have been
very few studies to examine the effects of maternal preconception exposure to drugs of
abuse on offspring (Vassoler, Byrnes, & Pierce, 2014).

Methylation occurs primarily at cytosine residues in the context of CpG dinucleotides,
although other modified bases have recently been reported (Schiibeler et al., 2011). CpG
islands (CGls) are GC-rich regions of the genome, an average of 1,000 bp in length, that are
often close to transcription start sites (TSS) and tend to be unmethylated, which allows for
active gene transcription (Jones, 2012; Schiibeler, 2015). Methylated DNA found in
promoter regions is thought to inhibit gene transcription by encouraging heterochromatin
formation, therefore preventing binding of transcriptional activators, as well as recruiting
repressive proteins to inhibit transcription of downstream genes (Jones, 2012; Schiibeler,
2015; Smith & Meissner, 2013). Less is known about the role of methylation in other genic
and intergenic regions, although it has been suggested that methylated DNA in coding
regions of a gene can promote gene expression and/or alternative splicing (Maunakea,
Chepelev, Cui, & Zhao, 2013).

We employed Enhanced Reduced Representation Bisulfite Sequencing (ERRBS) as an
unbiased approach to test the hypothesis that preconception parental exposure to binge-
pattern alcohol consumption during adolescence alters DNA methylation in the
hypothalamus of alcohol-naive male offspring. Our experimental design also allowed us to
compare between the discrete maternal vs. paternal contributions to altered DNA
methylation in offspring. This is the first study of this scope to analyze genome-wide
changes in DNA methylation of offspring as a result of adolescent binge alcohol exposure of
both parents.

Materials and Methods

Animals and Tissue Preparation

Male and female Wistar rats were purchased from Charles River Laboratory (Wilmington,
MA\) at post-natal day (PND) 23 and were allowed to acclimate for 7 days. Then, animals
were handled by experimenters for 5 minutes once daily for 7 days to control for non-
specific handling stress. Animals were pair-housed within the same treatment group. Food
and water were available ad /ibitum and animals were kept on a 12:12 light/dark cycle, with
lights on at 7:00 AM and handling/treatment began at 10:00 AM. Animal procedures were
approved by the Loyola University Medical Center Institutional Animal Care and Use
Committee (permit #2012021). All measures were taken to minimize pain and suffering.

Beginning at PND37, which is defined as peri-puberty in the rat (Ketelslegers, Hetzel,
Sherins, & Catt, 1978), animals were exposed to a repeated binge-pattern alcohol paradigm
(Fig. 1). This 8-day paradigm has been used previously by our lab and others and is designed
to mimic the reported drinking patterns of adolescents (Lauing, Himes, Rachwalski,
Strotman, & Callaci, 2008; Przybycien-Szymanksa, et al., 2010; Przybycien-Szymanska, et
al., 2014). This pattern of alcohol consumption raises the blood alcohol concentration (BAC)
to 150-180 mg/dl in males and 210-240 mg/dl in females without altering body weight or
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normal growth patterns (Przybycien-Szymanksa, et al., 2010; Przybycien-Szymanska, et al.,
2014). Animals were given food grade alcohol (Everclear, Luxco) diluted in tap water at a
dose of 3g/kg body weight (20% v/v solution), or an equal volume of vehicle (water) via oral
gavage. Treatment was given once per day for 3 days, followed by 2 days tap water and
another 3 days alcohol (Fig. 1). Control groups received tap water for all 8 days. Animals
were then left undisturbed until PND67, which is considered late puberty, when they
underwent the same 8-day treatment.

For mating, pairs consisted of all combinations (maternal vehicle x paternal vehicle,
maternal ethanol x paternal vehicle, maternal vehicle x paternal ethanol, maternal ethanol x
paternal ethanol). Animals were paired for mating 24 hours following last gavage treatment,
with 2-3 pairs of each treatment group. After 7 days, females were single-housed in order to
properly nest and males were returned to pair-housing with previous cage-mate. There was
no difference in litter size, pup weight, or sex ratio between treatment groups (Table 1).
Maternal care was assessed based on gathering pups into the nest, crouching over pups to
facilitate suckling, active licking/grooming, and growth rates of pups (indicative of
nutritional status). Twice daily observations showed no apparent differences in maternal care
between groups, although these observations were not scored for quantitative analysis.
Within 1 hour of birth, litters were culled to 10 pups per dam (5 pups of each sex) and pups
were raised by their biological mother until PND7. Pups were anesthetized on ice and
euthanized by rapid decapitation. Brains were immediately removed and whole
hypothalamus was microdissected on ice before flash freezing. Tissue was stored at —80°C
until isolation of genomic DNA with phenol/chloroform extraction and RNA with TRIzol
reagent (Life Technologies), according to manufacturer instructions.

Methylation Sequencing and Statistics

Enhanced Reduced Representation Bisulfite Sequencing (ERRBS) was performed at the
University of Michigan Epigenomics Core, as described by Grimes et al. (2012). For
ERRBS, genomic DNA from 3 male pups of each treatment group, with at least one from
each mating pair, were used (12 total pups). Previous work using this paradigm has shown
larger changes in gene expression of male offspring, therefore we chose to perform ERRBS
analysis on only males (Przybycien-Szymanska, et al., 2014). Tissue from remaining male
pups was used for mMRNA expression analysis and female offspring were used for
subsequent experiments.

We employed FASTQC (version 0.11.3) to assess the overall quality of each sequenced
sample and identify specific reads and regions that may benefit from trimming (“http://
www.bioinformatics.bbsrc.ac.uk/projects/fastqc/,”). TrimGalore (version 0.4.0) was used to
trim low-quality bases (quality score lower than 20), adapter sequences (stringency 6) and
end-repair bases from the 3" end of reads (“http://www.bioinformatics.babranam.ac.uk/
projects/trim_galore/,”). For alignment and methylation calling we employed Bismark
(version 0.14.3), an integrated alignment and methylation call program that performs
unbiased alignment (by converting residual cytosines to thymines prior to alignment in both
reads and reference) (Krueger & Andrews, 2011). Briefly, we aligned reads to the reference
genome (UCSC rn6 from iGenomes, (“https://support.illumina.com/sequencing/
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sequencing_software/igenome.html,”) using Bowtie2 (Langmead & Salzberg, 2012)
(version 2.2.1) with default parameters settings, except for maximum number of mismatches
in seed alignment (N) set to 1, and length of seed substrings (L) set to 20. Methylation calls
were reported for all nucleotides with a read depth of at least 10.

We used the methylSig R package (0.3.2) to assess the overall quality of methylation calls
and coverage (Park, Figueroa, Rozek, & Sartor, 2014). We then employed it to identify
differentially methylated positions by tiling the methylation data across windows of 25
bases. In addition, we used information from nearby CpG sites to improve variance
estimates (local window size of 200 bases). For each pairwise comparison methylSig uses a
beta-binomial approach to calculate differential methylation statistics, accounting for
variation among replicates within each group. We adjusted the p-values for multiple testing
using the FDR approach, and considered sites to be differentially methylated when they had
a percent change in methylation of at least 20% and a g value < 0.05.

Finally, we annotated sites and regions using UCSC Genome Browser’s annotations for CpG
islands, promoters and other genic regions (Rosenbloom et al., 2015). CpG shores were
defined as the regions outside CpG islands but within 2,000 bp of a CpG island. CpG
shelves were defined as the regions within 2,000 bp of a CpG shore. When regions
overlapped, the priority was CpG island, followed by CpG shore. Gene promoters were
defined as 1,000 bp upstream of reported transcription start sites.

All reported data passed QC analysis. In any given cell, any given cytosine is either
methylated or not. Thus looking at a population of cells should yield a pattern where many C
positions have high methylation and many C positions have low methylation. Percent
methylation histograms should therefore have two peaks at either end, which we observed
for all samples (Sup. Fig. 1). Histogram analysis of CpG coverage demonstrated the absence
of a right-shift secondary peak, indicating that there was no PCR duplication bias in our
samples (Sup. Fig 2). Differences in methylation at individual cytosine residues were
analyzed, as this is a strength of the ERRBS technique. The base-pair resolution of ERRBS
allows us to identify the exact residues which are susceptible to modification by parental
binge alcohol exposure.

MRNA expression of differentially methylated target genes in offspring hypothalamus was
measured using reverse transcription quantitative PCR (n=7-10/group). Total RNA (1.0 pg)
was reverse transcribed using High Capacity Reverse Transcription Kit (Applied
Biosystems) according to manufacturer instructions. FastStart SYBR Green Master Mix
(Roche) was used for all RT-gPCR reactions, adding 2ul of cDNA and final primer
concentrations of 0.25 uM for each gene (primer sequences listed in Table 2). RT-qPCR data
were analyzed using the AACt method comparing to 18S RNA expression of each sample.
Data were compared using one-way ANOVA to determine differences in expression between
all treatment groups with Tukey’s Post-hoc analysis. P-value < 0.05 was considered
significant.
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Results

Parental ethanol exposure induces differentially methylated cytosine residues in the
hypothalamus of male ethanol-naive offspring

We used a rat model of pubertal binge alcohol treatment previously established in our
laboratory to determine intergenerational changes in DNA methylation patterns associated
with parental adolescent exposure to binge alcohol (Fig. 1) (Przybycien-Szymanska, et al.,
2014). Genome-wide DNA methylation in the hypothalamus was compared between male
offspring of control x control mating pairs and all other combinations (maternal ethanol
only, paternal ethanol only, both parents ethanol). Genomic DNA of three pups per treatment
group, but from different litters, was analyzed with an average of 113,445,354 reads
generated for each sample. Both pre-trimming and post-trimming QC reports indicated that
the read data passed basic quality control, with exceptions following the expected patterns in
ERRBS experiments. Alignment efficiencies and conversion rates were typical of ERRBS
experiments and consistent across samples (Table 3). Raw methylation files will be
deposited for public access upon publication.

In general, we found more instances of hypermethylation in all groups compared to control
and differentially methylated cytosines (DMCs) were distinct for all treatment groups with
very little overlap; only 4 hypermethylated DMCs were common to all three groups (Fig. 2).
The largest number of hypermethylated residues was found when both parents were exposed
to ethanol (Fig. 2). Specifically, dual parent preconception ethanol exposure resulted in 168
hypermethylated DMCs. We also examined the differences in offspring DNA methylation
when only one parent was exposed to binge ethanol preconception (the other parent received
water), since both maternal and paternal gametes can affect offspring methylation patterns.
We observed 95 hypermethylated DMCs in offspring where only the mother was exposed to
ethanol and 54 hypermethylated DMCs when there was only paternal ethanol exposure (Fig.
2). Several genes were associated with more than one hypermethylated DMC, such as
Rn5-8s, Bmp3 and Atg5 (Fig. 2; boldface type).

There were also a large number of hypomethylated DMCs among all groups with only 5
hypomethylated DMCs shared between all treatments (Fig. 3). In offspring where both
parents were exposed to ethanol there were 105 hypomethylated DMCs compared to
offspring from water-treated parents (Fig. 3). In maternal ethanol treated offspring, there
were 79 hypomethylated residues compared to 47 hypomethylated residues when only the
father was exposed to ethanol (Fig. 3). There were also multiple genes associated with more
than one DMC, for example Exo5 was hypomethylated on multiple residues in both
maternal ethanol and paternal ethanol offspring (Fig. 3; boldface type).

Differentially methylated cytosines were distributed across all chromosomes and the
extent of hypo-versus hypermethylation was dependent on parental ethanol exposure

Overall, there were discrete yet robust changes in DNA methylation across the genome and
we did not observe clustering of DMCs on a particular chromosome or region of the genome
(Fig. 4). In addition, there were no ethanol-induced global changes in DNA methylation and
ethanol exposure to both parents did not have an additive effect on DMCs for individual
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chromosomes (Fig. 4). For example, maternal ethanol exposure caused hypomethylation of
cytosine residues on chromosome 11, whereas paternal ethanol exposure had no effect (Fig.
4A, B). By contrast, ethanol induced a combination of both hypo- and hypermethylated sites
on chromosome 11 when both parents were exposed (Fig. 4C). As another example, the X
chromosome was hypomethylated in the offspring of both maternal-only ethanol and
paternal-only ethanol exposed animals (Fig. 4A, B), but the X chromosome was
hypermethylated when both parents were treated (Fig. 4C). Similarly, the Y chromosome
had hypermethylated DMCs only when the father was ethanol exposed (Fig. 4B). These
examples underscore the lack of an additive effect from dual parental exposure and the
complexity of offspring DNA methylation.

In addition to genome-wide changes in methylation, we examined the percentage differences
in methylation at each residue. Residues with the greatest percent difference in methylation
were ranked for hyper- and hypomethylation and the top 5 hypermethylated and 5
hypomethylated DMCs for each group are listed in Table 2. The same cytosine on
chromosome 2, upstream of Hmox-ps1, was the most hypermethylated residue in maternal
ethanol and paternal ethanol offspring, but was not changed in offspring of maternal and
paternal ethanol exposure (Table 4).

DMCs were primarily observed outside of CpG islands and in intergenic regions

The distribution of DMCs throughout the genome can have important functional
implications for their role in gene expression.1® Therefore, we identified the relationship
between DMC location and the defined functional genomic region for each treatment group.
Fig. 5 (A-C) shows the percentage of differentially methylated residues that fall within the
defined classes of CpG rich regions. Interrogation was similar between CpG islands and
InterCGl regions in all samples (48% and 40%, respectively), but the majority of DMCs
were found outside of CpG islands. The priority analysis for functional overlapping
elements was gene promoter, coding DNA sequence (CDS), noncoding region, 5"UTR, and
then 3"UTR. Fig. 5 (D-F) shows the distribution of differentially methylated residues that
fall within defined genic elements according to RefGene. The majority of DMCs were found
at nucleotides outside genic regions (intergenic), as well as in the introns of coding genes,
regardless of parental ethanol exposure (percent DMCs in intergenic + introns = maternal
86%; paternal 88%; dual parent 89%; Fig. 5D—F). The functional role of methylation in
intergenic regions is not completely understood, but these might mediate the activity of
distant enhancer elements and non-coding RNAs, or modulate overall chromatin structure
(Schiibeler, 2015). The other chromosomal regions had very low incidence of ethanol-
induced DMCs and were similar between treatment groups (Fig. 5).

Methylation of gene promoter regions is considered to have the greatest potential impact on
transcriptional gene activity (Jones, 2012). Our data revealed that 35-45% of all annotated
promoters were interrogated with sufficient depth in each sample to detect reliable
differences. Of those interrogated, only 10 genes had DMCs in their promoter regions (Fig.
5, Table 5). Residues found in the promoters of Fam110a and Esam were hypermethylated
and OIr286 was hypomethylated in offspring of mating pairs with only maternal exposure to
ethanol. The same hypermethylated cytosine was found in the Esam promoter with only
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paternal exposure, and this was the only instance of differential promoter methylation in
these offspring (Table 5). Unexpectedly, the Esam promoter was not differentially
methylated in offspring where both parents were exposed. Instead, adolescent ethanol
exposure of both parents induced hypermethylation of cytosine residues in the offspring
gene promoters of Arrdcl, Ephb3, and miR6216. Conversely, this same treatment induced
hypomethylation in the gene promoters for Goltlb, Gpankl, and Sparcll (Table 5).

MRNA expression of differentially methylated genes is altered in the hypothalamus

Next, we measured the hypothalamic mMRNA expression of several genes associated with
DMC:s that are known to have functions in the nervous system in order to determine if the
gene methylation status correlated with gene expression. Genes harboring differential
promoter methylation were expected to show a reduction in gene expression, however four
genes with differential promoter methylation were excluded because they have not been well
characterized (Fam110a, OIr286, Mir6216, Golt1b). Several genes associated with coding or
intergenic differential methylation were also measured as they are related to neuro-
development or function, with uncertainty as to the effect of methylation at these positions
on their mMRNA expression.

Hypermethylation of arrestin domain containing protein 1 (Arrdcl), a gene involved in
vesicle formation, correlated with a 50% reduction in mRNA expression in offspring where
both parents were exposed to alcohol (Table 6). The modified methylated cytosine residue
was located within the promoter region (736 bp upstream of the TSS), suggesting that
promoter hypermethylation of Arrdcl reduced downstream gene transcription. However,
there was little correlation between gene expression and DMCs for the other genes we
tested, suggesting that the relationship between DNA methylation and gene expression may
be more complex (Table 6). For example, Ephrin-type B receptor (Ephb3), a receptor
tyrosine kinase thought to inhibit synaptic stability, had a hypermethylated residue in the
promoter region, 863 bp upstream of the TSS, in offspring in which both parents were
exposed to alcohol, yet there were no changes in Ephb3 gene expression (Table 6).

Discussion

The results from this study revealed three novel findings and highlight the potential for both
maternal and paternal preconception binge-like alcohol abuse during adolescence to alter the
epigenetic landscape of first-generation offspring. First, there was a lack of global DNA
methylation changes in offspring as a result of parental preconception exposure to binge
ethanol treatment, suggesting that ethanol mobilizes distinct molecular machinery that
confers specificity to DNA methylation sites within the genome. This observation would
also support the conclusion that intergenerational ethanol effects are not due to broad
ethanol-induced dysfunction in the gametes. Second, the modes of epigenetic inheritance are
more complex than that of classical genetic inheritance, and do not necessarily reflect equal
contributions of both parents. Unexpectedly, genes that were differentially methylated with
either maternal or paternal ethanol exposure (i.e. Esam, See Table 5), were not differentially
methylated when both parents were exposed. These results suggest that recombination
events during early conception may mask or redefine individual parental epigenetic marks.
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Third, there was a high prevalence of intergenic, non-promoter methylation in the genome
and, methylation of gene promoter regions did not always correspond to changes in gene
expression. The stringent analysis parameters used along with our mild animal paradigm
underscore the remarkable nature of our results, showing preconception exposure of either
parent to just a few episodes of binge-pattern alcohol consumption can cause differential
methylation in the hypothalamus of offspring.

To our knowledge, this is the first report of a genome-wide approach examining DNA
methylation patterns in ethanol-naive offspring of parents exposed to binge ethanol
treatment during puberty. Previous work examining adult brain tissue reported that repeated
adolescent ethanol treatment reduces the function of enzymes involved in epigenetic
patterning, including DNA methyltransferases and histone deacetylases (Sakharkar et al.,
2014). Therefore, it could be predicted that epigenetic marks as a whole would be reduced in
all tissues following ethanol exposure. Instead, our results showed that adolescent binge
ethanol exposure had specific consequences at particular residues within the genome for first
generation offspring. The lack of global changes in DNA methylation of the hypothalamus
in these animals suggests that alcohol does not cause a deficiency in the epigenetic
machinery as a whole, especially in the gametes of these exposed animals. Rather, our
results suggest that there might be a wide range of nucleotide residues in gametes that are
susceptible to alcohol-induced modifications, but the underlying molecular basis for
vulnerability at these cytosine residues requires further research. Additionally, further
research into the epigenetic changes in specific nuclei of the hypothalamus, such as the
paraventricular nucleus, may reveal more noticeable changes in methylation patterns as each
nucleus has distinct gene expression patterns and functional outputs.

Our experimental design allowed us to differentiate between the maternal and paternal
contributions to offspring methylation patterns, providing some insight into sex-specific
mechanism(s) by which epigenetic marks are transmitted to offspring. DNA methylation was
altered in the hypothalamus of alcohol-naive offspring regardless of which parent was
exposed. However, very few of the detected DMCs were common to all treatment groups
and there were very few DMCs that could be attributed to maternal and paternal exposure,
separately, that were then combined in offspring when both parents were treated.
Additionally, the differentially methylated residues fall outside regions of known parental
imprinting. These results highlight the complexity of epigenetic inheritance and also allow
us to speculate about the epigenetic vulnerabilities of gametes to binge alcohol exposure.
One possibility is that offspring methylation is reflective of changes in parental gamete
methylation that are simply passed on to offspring. Alternatively, it is possible that the
gametes of both parents transmit dysfunctional epigenetic machinery to the offspring,
preventing proper epigenetic patterning. For example, hypermethylated residues that we
observed in alcohol naive offspring might have escaped demethylation during normal
embryogenesis, while hypomethylated residues were skipped during remethylation
processes. Another possibility is that post-natal treatment of offspring by the mother is
changed when either parent is exposed to alcohol, as has been a suggested mechanism in
other preconception treatment experiments (Mashoodh, Franks, Curley, & Champagne,
2012). Our experimental design precludes determining which of these possibilities
represents the mechanistic basis for sex-specific contributions of offspring methylation
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patterns following preconception alcohol use. Future studies that include maternal cross-
fostering and quantification of gamete methylation prior to conception will further refine our
understanding.

Based on published literature, we can speculate that site specific changes to methylation
patterns, such as the ones observed in this study, would require protein or nucleic acid
“guides” that would direct these epigenetic events to specific cytosine residues in the
genome. Putative molecular candidates for this process include non-coding RNAs, which
can be transmitted via gametes to the embryo and are known to be critical for embryonic
development (A. B. Rodgers, Morgan, Bronson, Revello, & Bale, 2013; Ali B. Rodgers,
Morgan, Leu, & Bale, 2015). Recently, mechanisms demonstrating that non-coding RNAS
can mediate DNA methylation were described and this process has been hypothesized to
effect transgenerational epigenetic inheritance (Holoch & Moazed, 2015; Matzke & Mosher,
2014; Peschansky & Wahlestedt, 2013; Yan, 2014). Similarly, previous work in our lab
demonstrated that adolescent binge ethanol treatment can alter the long-term expression of
microRNAs in the hypothalamus, and these small non-coding RNAs could also dictate
changes in offspring gene expression (Prins, Przybycien-Szymanska, Rao, & Pak, 2014).
Taken together, the emerging evidence supports the hypothesis that adolescent exposure to
binge alcohol alters the expression of non-coding RNA in both the sperm and egg and those
RNAs can direct a different epigenetic landscape in multiple organ systems in the offspring.

This study revealed that a large percentage of discrete changes in DNA methylation were
located in different functional regions of the genome, with the highest prevalence in
intergenic regions as well as in introns and coding regions. One possible conclusion is that
the intergenic methylation sites correspond to enhancer regions, which may influence gene
expression of proximal or more distal genes. The current analysis only examined the
relationship of DMCs to the nearest downstream gene and further work needs to be done to
test the possibility of their interaction with distant elements. Differential methylation within
the coding region of a gene has been previously shown to have case-dependent impacts on
gene expression. Some reports have shown that gene body methylation can increase
transcription, while others have shown that it might inhibit transcription (Jones, 2012;
Watson et al., 2015). Still others have shown that intron methylation may cause alternative
splicing of the transcript (Maunakea, et al., 2013). In this study we did not measure a direct
relationship between the methylation status and expression pattern for all of the select genes
we investigated, however, it is important to carefully interpret the causal relationship
between methylation and gene expression (Birney, Smith, & Greally, 2016).

Many biological systems have shown that differential methylation at an individual residue
can impact gene transcription, mainly through altering interactions of transcription factors
with the genome (Wyatt et al., 2013). However, recent studies have demonstrated that the
relationship between hypermethylation of promoters and gene expression is both gene- and
tissue-specific (Birney, et al., 2016; Jones, 2012). Therefore, the reported methylation marks
in the young offspring could lead to altered hypothalamic development and/or predispose
them for adverse responses to alcohol or other stressors later in life. The DNA may be
“poised” for further environmental influence, which could manifest as more pronounced
phenotypic differences in adulthood. Alternatively, these methylation marks could represent
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evolutionary adaptation to environmental toxins and will confer resilience in the offspring.
For example, a recent study in Wild guinea pigs found that exposure of fathers to high heat
causes adaptive responses in offspring via DNA methylation and differential expression of a
key thermoregulation gene, Stat3 (Weyrich, et al., 2016).

Preconception use of other common drugs such as nicotine, opioids and marijuana has been
a focus of several previous studies, but this study is the first of our knowledge to examine the
effects of maternal preconception exposure to alcohol on offspring (Vassoler, et al., 2014).
Our results are consistent with a recent report on the use of marijuana and the
intergenerational effects of its active ingredient tetrahydrocannabinol (THC) (Watson, et al.,
2015). In that study, DNA methylation profiles from the nucleus accumbens brain region of
drug-naive offspring revealed discrete, yet genome-wide, changes with some correlating
with altered gene expression when both parents were treated with THC throughout pubertal
development (Watson, et al., 2015). Taken together these results provide evidence that there
is epigenetic vulnerability to drugs of abuse that extend beyond the exposed individual.

In conclusion, this study provides the first genome-wide interrogation of the
intergenerational effects of adolescent binge-pattern alcohol consumption in rats.
Remarkably, we demonstrated that there were altered DNA methylation patterns in alcohol-
naive male offspring, regardless of which parent was exposed to alcohol. These changes
were at discrete residues throughout the genome and differed between maternal and paternal
ethanol exposure, underscoring the complexity of epigenetic inheritance. Additionally,
DMCs were mostly found in intergenic, intronic and coding functional regions and did not
directly correlate with gene mRNA expression. These results provide insight into the
mechanism of intergenerational epigenetics and the potential vulnerability of offspring to
both maternal and paternal preconception binge-pattern alcohol consumption.
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Highlights
Adolescent binge alcohol abuse impacts male offspring DNA methylation

Naive male offspring harbor genome-wide, yet discrete changes in DNA
methylation

Maternal and paternal preconception alcohol cause distinct methylation marks
Differential methylation is found in intergenic and coding regions of DNA

DNA methylation did not predict gene expression of all downstream genes
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Figure 1. Adolescent binge alcohol exposure paradigm
An 8-day treatment paradigm was administered to male and female Wistar rats where

animals received 3 g/kg body weight of ethanol (20% v/v in water) via oral gavage once per
day. Starting at PND 37 (peri-puberty), ethanol-treated animals received 3 days ethanol, 2
days tap water, and 3 days ethanol, whereas control animals received tap water only for all 8
days. Animals were then left undisturbed until PND 67, when they underwent the same 8
day treatment. 24 hours after last ethanol dose, animals were mated (n=2-3 pairs/treatment)
and offspring were born approximately 23 days later. Litters were culled to 10 pups per dam
at PND 0 and animals were euthanized at PND 7.
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Statistically significant differentially methylated cytosine (DMC) residues between
treatment groups were associated with the nearest downstream gene for hypermethylated
cytosines. Genes are listed in alphabetical order for each treatment group. Gene names
underlined in bold face type indicate that more than one cytosine was differentially

methylated near that gene.
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Figure 3. Annotated genes associated with hypomethylated residues vary between treatment
groups

Venn diagram describing bioinformatics results using UCSC Genome Browser for analysis.
Statistically significant differentially methylated cytosine (DMC) residues between
treatment groups were associated with the nearest downstream gene for hypomethylated
cytosines. Genes are listed in alphabetical order for each treatment group. Gene names
underlined in bold face type indicate that more than one cytosine was differentially
methylated near that gene.
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Figure 4. Distribution of differentially methylated cytosines across chromosomes
Histogram analysis of differentially methylated cytosines (DMCs) on each chromosome in

(A) offspring from maternal ethanol-exposed, (B) offspring from paternal ethanol-exposed,
and (C) offspring from both maternal and paternal ethanol-exposed. Blue region indicates
number of hypomethylated DMCs and red region indicates number of hypermethylated
DMCs on each chromosome.
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Figure 5. Location of differentially methylated cytosines within CpG and functional regions of
the genome
Pie charts represent the percentage of DMCs found in each region as defined by CpG status

in pups from (A) maternal ethanol, (B) paternal ethanol, and (C) dual parent exposure. Bar
graphs representing the number of DMCs detected in each defined genic regions in (D)
offspring from maternal ethanol-exposed, (E) offspring from paternal ethanol-exposed, and
(F) offspring from both maternal and paternal ethanol-exposed. UTR = untranslated region;
CDS = coding DNA sequence
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Preconception binge alcohol exposure did not alter litter size, sex ratio or offspring growth.

Table 1

Litter Total Pups | Sex Ratio | Average PNDO Weight (g) | Average PND7 Weight (g)
Control 1 15 8M:7F 6.50 17.81
Control 2 14 6M:8F 6.11 14.54
Control 3 13 5M:8F 5.80 14.44
Maternal Exposure 1 | 15 9M:6F 6.09 14.86
Maternal Exposure 2 | 11 AM:TF 6.86 14.28
Paternal Exposure 1 15 5M:10F 6.84 17.37
Paternal Exposure 2 8 5M:3F 6.93 15.09
Paternal Exposure 3 15 5M:10F 6.09 17.59
Both Exposed 1 13 5M:8F 6.47 14.47
Both Exposed 2 13 6M:7F 5.73 13.13
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RT-gPCR Primer Sequences

Gene Name Sequence (5" to 3")

F | GATGGGCAGCGATCAGTCTTC
Begain

R | AGCTTCTCCAACTTGTGCGT

F | GGACTCCCTGCTTGTTTGCT
Rtndipl

R | ATTGCTACTGTGCTCCCCAC

F | TACTCCGCTCTGCGACACTA
NPY

R | TGGGGGCATTTTCTGTGCTT

F | ATGCGCGGTTGGTAGGAGTG
Grm4

R | CAGCGCAGGTTCAGTAATGC

F | TCACAGCCACTCTCTGCACT
FGFR1

R | GTGATGCGTGTACGGTTGCT

F | CGGGGATTGTCATTTGTGCG
Acvr2a

R | TCCAGGGTCCTGAGTAGGAA

F | TGCAACTCTGTCATCGACCC
MC3r

R | CCATTGCAACCGCAGAGAAT

F | CTCCATGGACTTAGAGCGCC
Fzd10

R | TGGTGTTGTAGCCGATGTCC

F | CCAGCTTACTGCGGGTTTTG
Esam

R | GATGAAGACTCCTCCCGTGC

F | ACTACCCTTCCGAGCTATCCG
Arrdcl

R | TGAAGTAGCTCTCCTCCACCA

F | TGAGGGACTTAGGTCGGGTGT
Gpankl

R | GGACATGGCTCAGGTTAGCG

F | AAGTTCGGGGGAGAACCCTA
Ephb3

R | TGAAGAGGTTTGGGGCACAC

F | CGCAGTGCCCACCTATGCTC
AVP

R | AGGAAGCAGCCCAGCTCGTC

F | CATTCGAACGTCTGCCCTAT
18S

R | GTTTCTCAGGCTCCCTCTCC
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Table 5
Genes associated with differential promoter methylation for each treatment group

Those with significant hypermethylation compared to control are in red rows, with significant
hypomethylation in blue rows.

Maternal Ethanol | Paternal Ethanol | Maternal + Paternal Ethanol
Esam Esam Arrdcl
Fam110a Ephb3
Olr286 Mir6216
Gpankl
Goltlb
Sparcll
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