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Factors related to monitoring during admission of acute patients
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Abstract Understanding the use of patient monitoring

systems in emergency and acute facilities may help to

identify reasons for failure to identify risk patients in these

settings. Hence, we investigate factors related to the uti-

lization of automated monitoring for patients admitted to

an acute admission unit by introducing monitor load as the

proportion between monitored time and length of stay. A

cohort study of patients admitted and registered to patient

monitors in the period from 10/10/2013 to 1/10/2014 at the

acute admission unit of Odense University Hospital in

Denmark. Admissions with at least one measurement were

analyzed using quantile regression by looking at the impact

of distance from nursing office, number of concurrent

patients, wing type (medical/surgical), age, sex,

comorbidities, and severity conditioned on how much

patients were monitored during their admissions. We reg-

istered 11,848 admissions, of which we were able to link

patient monitor readings to 3149 (26.6 %) with 50 % being

monitored\1.4 % of total admission time. Distance from

nursing office had little influence on patients monitored

\10 % of their admission time. But for other patients,

being positioned further away from the office reduced the

level of monitoring. Higher levels of severity were related

to higher degrees of monitoring, but being admitted to the

surgical wing reduce how much patients were monitored,

and periods with many concurrent patients lead to a small

increase in monitoring. We found a significant variation

concerning how much patients were monitored during

admission to an acute admission unit. Our results point to

potential patient safety improvements in clinical proce-

dures, and advocate an awareness of how patient moni-

toring systems are utilized.

Keywords Emergency departments � Computerized

decision support � Patient monitoring

1 Background

Patients of all sorts and with a wide range of diagnoses are

treated in emergency departments (ED) around the world

every single day. Keeping track of such a diverse group of

patients challenges both clinicians and systems. To cope

with this, several health information systems have been

developed specifically for managing the flow and treatment

of patients. Still, a substantial number of acutely admitted

patients deteriorate during their admission with an

increased risk of adverse outcomes [1]. There is wide-

spread consensus that the risk of such deterioration can be
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reduced by a more frequent and rigorous approach to

monitoring of patient vital signs [2]. However, the decision

to continuously monitor a patient’s vital signs can still be a

result of multiple causes; e.g., raised patient concern, or to

optimize working procedures by not having to attach sen-

sors repeatedly on patients requiring frequent registrations.

Or perhaps also as a mean for boosting situational aware-

ness in high load periods [3]. As such, monitoring can be

viewed as an important part of the afferent limb as it

provides feedback needed to initiate interventions [4]. The

notion that an increased rate of vital sign registrations

reduce the risk of adverse events has spurred a surge in

quality assurance programs worldwide, despite concerns

about the effectiveness of routinely measured vital signs

have been raised [5]. Partly because the process of vital

sign registrations is associated with both human and

machine related errors [6]. Evidently, there exists a gap

between the clinical reality and the vital sign registration

procedures defined by guidelines [7, 8], and as most

research on automated monitoring has been conducted in

the settings of intensive care units (ICU) [9] we in this

work focus instead on monitoring in acute settings.

We expect very sick patients to be monitored more than

the less sick; and, it has been documented that clinicians

are prone to skip vital sign registrations of less severe

patients [8]. This can potentially lead to dire consequences

for these patients as the risk of deterioration is present

across all severity levels [10]. Understanding the utilization

of patient monitoring systems in the dispersed and shared

working environments of EDs and acute wards may help to

identify some of the reasons for failure to rescue patients

[11].

Although increased levels of automated monitoring may

improve the detection of patient deterioration, several

factors may influence the extent to which a patient is being

monitored. The purpose of this paper is to investigate the

use of automated monitoring of patients admitted to an

acute admission unit by analyzing how much the effects of

distance from the nursing office, number of concurrently

admitted patients, wing type (medical/surgical), age, sex,

comorbidities, and severity change conditioned on how

much patients are monitored during admission.

2 Methods

Our work is based on a cohort study conducted at the acute

admission unit at Odense University Hospital, a 1000 bed

teaching hospital serving as a primary hospital for a local

population of 280,000 citizens. After initial assessment in

the ED, admitted patients projected for short-term stays of

up to 48 h are transferred to the admission unit. Patients

can be transferred to intensive care on clinical indication. If

deemed necessary, an intensive care consultant is contacted

and need and relevancy for transfer has to be acknowl-

edged by both parties. The ward is structured into three

wings, one wing for surgical patients (12 beds), and two

wings for medical patients (18 and 16 beds).

The processing and management of patients in this ED

has been documented in an earlier field study conducted by

the first author [12]. In relevance to this paper, the most

important aspects are the department’s reliance on a 5-level

triage and observation regimen system which defines a

baseline level of clinical alertness for each level (Blue,

Green, Yellow, Orange, Red), and that the bedside ward is

structured into three distinct wings, with a nurse office in

the center of each wing. Each bed on every wing is

equipped with its own vital signs monitoring unit. The

degree of monitoring for each patient is defined by the

attending physician based on the observation regimen, and

in some cases adjusted by nurses afterwards. The assigned

observation regimen is registered in the patient’s electronic

medical record.

2.1 Data description

All vital signs from all monitors at the ward in the period

from 10th of October 2013 to 1st of October 2014 are

captured in a research database using a customized appli-

cation written in Java. The department relies on Philips

IntelliVue MP30/50 monitors in a networked setup as

monitoring information from beds are aggregated on Phi-

lips IntelliVue Information Centers in each nursing office.

When a patient is attached to a monitor our system receives

a packet containing vital sign information at different

intervals. Every minute we register heart rate and respira-

tion rate from 3-lead ECG, pulse rate and peripheral oxy-

gen saturation (spO2) measured via pulse oximetry.

Depending on the clinical assessment of the patient, sys-

tolic and diastolic blood pressures are registered in inter-

vals from 5 to 60 min using cuffs. In this project, nurses are

asked to enter patient identification into the Philips moni-

tors by personal identification number (PIN) and name,

thus enabling us to link the vital signs from a given bed

location to a specific patient. Apart from this, the data

collection instills no further change to existing clinical

practice. We include all patients registered on the monitor

with at least one measurement. However, not all patients

get their information entered into the monitors, and con-

sequently our system holds an amount of vital values which

we cannot associate with specific patients. The character-

istics of the not-identified patients are included in our

analysis to enable between-group comparisons.

Using the PIN, we link the collected data with supple-

mental information from population based national patient

registries. Arrival, admission, and discharge information
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are retrieved from the Danish National Patient Registry

[13, 14].

2.2 Analysis

We aim to describe patient and department related factors

and their relationship to how much patients are monitored.

During their admission, patients will be intermittently

attached to bedside vital sign monitors. We use the extent

to which a patient is monitored as our point of interest by

defining monitor load as the proportion between time

attached to monitor and length of stay. A monitor load

percentage of 100 % means that the patient is being con-

tinuously monitored throughout their entire admission;

which in the study settings translates to 1 automatic reading

per minute.

Table 1 provides an overview of the exposure variables

used in the model. Categorical variables are automatically

converted to dummy variables. Concurrent patient load is

calculated based on the number of active beds in the wing

during each patient’s admission period. The analysis

includes exposures relating specifically to each individual;

age, observation regimen, Charlson comorbidity index

[15], and sex. And external factors; distance from nursing

office, concurrent load, and wing type. The relationship

between monitor load and each of the exposure variables

are investigated via scatter or box-plots. We focus specif-

ically on the relationship between distance from nursing

office and monitor load using univariate linear regression

analysis, and investigate how the relationship between

these variables change conditioned on what quantile of

monitor load we look at. All variables are combined in a

multivariate model to examine the partial effects of each

variable when controlling for all others [17–19]. We apply

QR for the quantiles s = (0.10, 0.25, 0.50, 0.75, 0.90) and

linear multiple Ordinary Least Squares regression.

We correct for multiplicity using the Holm–Bonferroni

method, and investigate issues with multicollinarity

between exposure variables using the variance inflation

factor (VIF) [20]. Finally, we test for differences in

regression coefficients between the quantiles using the

ANOVA method.

Between group comparison for distribution of triage

categories as severity, and comorbidities between patients

registered on the monitors, and not-registered patients are

evaluated using Chi squared tests.

The preprocessing and regression analysis is conducted

in R (version 3.1.1) using the quantreg package [21]. The

data is preprocessed by calculating the all the aggregated

exposure variables such as distance, comorbidity and

concurrent load.

Access to the registry of patient data was approved by

the Danish Data Protection Agency (Datatilsynet—J.nr.

2013-41-2238), and the Danish Health and Medicines

Authority (Sundhedsstyrelsen—J.nr. 3-3013-518/1). The

study has been presented to the Research Ethics Committee

of Southern Denmark, but as this is a non-interventional

study an approval was not needed according to Danish law.

3 Results

During the data collection period there were 11,848

admissions to the acute ward representing 35,727 days. Of

these we are able to link monitor use to 3149 admissions

(26.6 %) for 10,844 days (30.4 %), representing 1031 fully

monitored days. Patient monitor utilization was also reg-

istered for patients who we could not identify on their

monitors, equating to 1271 fully monitored days. Patients

in our dataset are on average admitted to the ward for

3.3 days, compared to 2.9 days for not-included patients.

115 of the patients admitted to monitors in the dataset

Table 1 Overview of exposure variables

Independent variable Type Values Description

Comorbidity Index (CI)

[15]

Ordinal A, B, C, D A: CI = 0, B: CI = 1; C: CI = 2; D: CI[ 2

Severity Ordinal Regimen levels

(1–5)

See [16]

Age Ordinal 15 - x

Sex Nominal Female/male

Distance Ordinal 0 - x Distance in meters from office on each wing

Wings Nominal MAU1, Surgial,

MAU2

MAU1-2: (Medical Admission Unit) wings

Concurrent load Ordinal 1 - x Average number of patients admitted to the wing per day during the admission

period of the patient

J Clin Monit Comput (2017) 31:641–649 643

123



experienced respiratory distress, seven patients suffered

strokes, and one patient had both respiratory and heart

related deterioration during admission. Table 2 summa-

rizes data for patients identifiable from the monitors, and

from patients not registered to monitors.

While the differences in proportions for both comor-

bidities and triage between patients identifiable on the

monitors, and other patients, are statistically significant,

there are no substantial clinical differences between these

factors. We do however observe that a lower percentage of

surgical patients are identifiable on the monitors.

In Fig. 1, we observe the highly skewed distribution of

how much patients are monitored. 50 percent of all the

admissions have a monitor load of less than 0.014; meaning

that half of all the cases are monitored less than 1.4 percent

of their admission. Moving upwards, 70 percent of all

admissions are monitored less than 28 percent of their total

admission length. Thus, as the distribution of monitor load

is heavily right skewed, standard Ordinary Least Squares

regression cannot provide plausible insight. However,

applying a QR approach enables us to analyze the rela-

tionship between the different exposure variables and

monitor load conditioned on monitor load.

Figure 2 exemplifies this by showing the linear regres-

sion line of the relationship between distance from nursing

office and monitor load in Fig. 2a, and quantile regression

lines based on the 0.20, 0.50 (the median) and 0.80 quan-

tiles in Fig. 2b. From the regression coefficients, we

observe that the association between monitor load and

distance from nursing office grows stronger for the upper

quartiles of monitor load. Online Supplement 1 (Figure 4)

shows the individual relationships between each exposure

variable (age, sex, comorbidity group, triage, wing type,

and the number of other patients treated during admission)

and monitor load.

The results of the multivariate QR results are shown for

all exposures in Fig. 3 as quantile process plots from the

0.10th up to the 0.90th quantile. The solid horizontal line

for each variable indicates the Ordinary Least Squares

regression coefficient, and the dotted horizontal lines show

the confidence interval. Similarly the QR regression results

at each quartile are marked with the regression coefficient

of the exposure variable, and the confidence interval as the

grey band. E.g., we find that distance from nursing office

has the strongest influence for patients who are monitored a

lot (i.e., admissions in the upper quantiles of Fig. 1). For

Table 2 Exposure characteristics

Admitted to monitor Not admitted to monitor

Number of admissions 3149 8699

Number of patients 2815 4104

Male [n (%)] 1526 (48.4) 4314 (49.6)

Mean age

Male 63.8 years, SD = 18.5 years 60.9 years, SD = 21.1 years

Female 66.8 years, SD = 20.9 years 63.8 years, SD = 22.6 years

Comorbidity (Charlson Score (CS)) [n (%)]

(A) CS = 0 1124 (35.7) 3481 (40.0)

(B) CS = 1 641 (20.3) 1643 (18.9)

(C) CS = 2 498 (15.8) 1297 (14.9)

(D) CS[ 2 886 (28.2) 2278 (26.2)

Triage [n (%)]

Missing 514 (16.4) 1554 (17.9)

Blue 7 (0.2) 27 (0.3)

Green 431 (13.7) 1341 (15.4)

Yellow 1301 (41.3) 3333 (38.3)

Orange 842 (26.7) 2315 (26.6)

Red 54 (1.7) 129 (1.5)

Average number of registered vital signs/admission 408 registrations, SD = 633 –

Wing [n (%)]

Surgical 809 (25.7) 3948 (45.4)

MAU1 1015 (32,2) 4751 (54.6) [both medical wings]

MAU2 1325 (42.1)
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observation regimens, we find that Orange classes have a

stronger influence across the quantiles of monitoring load,

but also that its impact decreases for highly monitored

patients.

Table 3 in Online Supplement 2 conveys the results of

both regression approaches. Our multiple linear regression

model has an adjusted R2 of 0.1719, and are thus compa-

rable to those of [22], and the model is overall statistically

significant. The VIF is below 1.62 for all exposure vari-

ables, and we thus dismiss issues of multicollinarity. The

Holm–Bonferroni adjustment changes the significance of

several exposure variables, but the ANOVA finds that all

QR coefficients are significantly different from one

another.

An example of how to interpret the results from Table 3

in Online Supplement 2 and Fig. 3 is provided in Online

Supplement 3.

3.1 Sensitivity analysis

To address and investigate the potential impact of missing

values in the dataset, we reran the analysis with missing

Fig. 1 Quantile plot for the

response variable—illustrating

the distribution of monitor load

by its quantile distribution

Fig. 2 Univariate regression plot of Distance from nursing office and registered Monitor load. a Ordinary Least Squares (mean ased) linear

regression. b Mean linear regression, Median (Q50), 20th Quantile and 80th Quantile linear regression
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values removed. This had little impact on the distribution

of the remaining triage coefficients, and did not substan-

tially alter the exposure coefficients or their significance.

4 Discussion

We find that distance from nursing office has little influ-

ence on patients monitored less than 10 % of their

admission time. But for other patients who are monitored

more than this, distance from nursing office becomes has

more impact in reducing the degree of monitoring. We also

note that higher levels of observation regimens have a

significant impact on monitoring load. Being admitted to

the surgical wing greatly reduces how much patients are

monitored, and periods with a high amount of concurrent

patients have little effect on the degree of monitoring.

The increased focus on identification of deteriorating

patients can be seen in the body of published work on Early

Warning Scores [23], Track & Trigger systems [24, 25],

and Rapid Response Teams [26]. Although few of the

existing deterioration detection systems in use have been

rigidly validated [27, 28], the need to identify efficient

means for keeping an eye on multiple patients is evident as

the pressure on EDs is ever increasing. However, simply

decreeing more monitoring of patients, does not necessarily

reduce the proportion of patients with adverse events [29].

Vital sign readings are often used to support clinical intu-

itive hunches, and less as objective points of Ref. [30].

Even so, little research on what determine frequency of

vital sign registrations have been published [22]. Since

most assessment systems rely on intermittent or spot-driven

observations, continuous monitoring in its current state

may simply yield excessive amounts of data which can

only be utilized fully through integration into clinical

decision support systems. Also, the risk of more monitoring

leading to alarm fatigue and habituation has to be factored

in by careful consideration of calibrating the alarm

thresholds [31, 32].

Recent studies have rectified the assumption that

deviance from protocol is solely due to clinical misjudg-

ments, and instead taken a more holistic approach to the

problem by investigating several factors such as day of

week, time of day, and characteristics of both patients and

clinicians [33, 34]. In this study, we find evidence for

adherence to observation regimen protocols through insight

into how much patients are actually monitored during

admission. Along these lines it is problematic that patients

on the surgical wing are monitored much less than medical

wing patients given that adverse events are also associated

Fig. 3 Quantile regression process plots for exposures—showing the regression coefficients for the quantiles of exposure variables and the

intercept when controlling for all factors
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with post-surgical situations [35, 36]. This is probably a

combined effect of differences in working procedures,

culture between specialties as mobilization of post-surgical

patients is considered important by surgical nurses, and the

fact that many pre-surgical patients are unaffected until

surgery, and that many orthopedic patients are admitted

with minor surgical problems.

Quantifying the extent to which a patient is being

monitored, may be an aid to bridge the current gap between

usage of automated and manual monitoring as clinical

work will continue to depend on tacit knowledge and

intuition [37, 38]. Since the use of monitoring is increasing

in all types of hospital departments, and as technology

becomes more pervasive, the insight from this paper may

provide guidance for system designers and clinicians a like.

Cabled monitoring as found in the settings of this study

has several downsides; immobilization of patients, patient

induced stress due to perceived severity, and loss of data

during out of bed activities [39]. Consequently, much

research effort has been put into the potential of wireless

monitoring, but several practical obstacles such as battery

life and poor communication networks still persist [40–42].

However, given that wireless monitoring could support

temporary storage of vital signs on the device, would

enable a smoother transition between hospital departments

and reduce loss of information in out-of-bed periods. In this

scenario, all patients could achieve a monitoring load of

100 %, thereby enabling more complete representation of

their states and trajectories.

Interestingly, the decreasing impact of the most influ-

ential coefficients in our statistical analyses for patients

who are continuously monitored, indicate that factors not

included in our model prompt higher degrees of monitor-

ing. Seeking to capture the complexity of patient moni-

toring in just seven exposure variables yields a very

simplified model at best, and shows that patient monitoring

is a complex and subjective endeavor. In this perspective, it

would be interesting to include staff specific features such

as clinical experience, department seniority, team compo-

sition, and clinical concern in future work. An important

aspect we intentionally left out of the analysis is temporal

influences. As both clinical work, and the vital signs of

patients follow a circadian rhythm, these aspects may

reveal valuable insight for the evaluation of existing clin-

ical protocols.

5 Limitations

This study was influenced by a number of limitations. The

most important being our limited ability to link monitor

utilization to specific patients, thus the study only includes

patients deliberately registered to the bedside monitors by

nurses. The percentage of patients who were identifiable by

the monitors was highest in the early phases the data

acquisition stage, and then gradually decreased. The

monitor registration identification eventually plateaued,

indicating that a dedicated subset of nurses persisted in

registering patients to the vital sign monitors for us. This

naturally induces a permutation of selection bias that is

difficult to overcome in this kind of project. This selection

bias is also evident as identifiable patients are slightly

older, have longer hospital stays, are sicker, and are

deemed in need of more frequent observations (Table 2).

Although, the identifiable admissions in our analysis only

account for 27 % of the total admissions in the entire

period, the linked vital signs account for 45 % of all vital

signs registered in the same period. This may either be a

sign of issues with linking the vital signs accurately to

admissions, but is also likely a seasonal indicator as the

first 6 months had the highest inclusion rate, and took place

during Q4-2013 till Q1-2014.

Another limitation is missing data, and inaccurate date

and time values in the coupled registries. Issues with

timestamps in data retrieved from Patient Administration

Systems are well known in the scientific community. Also,

the observation regimen classes originate from the triage

classes assigned at arrival time, generally there is a direct

mapping between triage and observation regimen for

patients admitted to the acute admission unit, but not

necessarily for all admissions. Finally, external validity of

our findings may be challenged by the single site nature of

our study. Yet, assessing the monitor load of patients may

be of value to similar studies, and the design of future

patient monitoring systems.

6 Conclusion

As expected, there is significant variation concerning the

how much patients are monitored during their admission to

an acute admission unit, but the effect of the investigated

factors varies depending on how much patients are moni-

tored. We confirm that patients assigned to more severe

observation regimen categories, are monitored more, but

also show that both distance from the wing’s nursing office

influence monitoring for most patients. Number of simul-

taneously admitted patients has a small effect across all

levels of monitoring. Finally, we find a big difference

between the extent to which monitoring is utilized at

medical and surgical wings.

The results point to potential improvements in clinical

procedures, and advocate an awareness of how patient

monitoring systems are utilized. Formalizing the extent of

monitoring can be utilized to assess the reliability of data

from patients, and as a metric for expressing severity and
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clinical concern. The relationship between monitor load

and patient specific outcomes such as medical emergency

team activation or mortality is left for future studies to

examine.
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