
INTRODUCTION

Obesity leads to metabolic alterations that cause multiple organ 
dysfunction, manifesting as hepatosteatosis, increased hepatic glu-
cose production, and defects in insulin secretion by the pancreas 
[1, 2]. An imbalance between energy expenditure and intake leads 
to dysregulation of energy homeostasis in the brain [3]. Obesity-
induced disruption of crosstalk between the periphery and brain 
causes motor abnormalities [4, 5]. For example, both peripheral 
factors, including osteoarthritis and musculopathy, and a de-
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creased ability of neurocognitive functions to adapt to changes 
in walking in the context of obesity, aggravate movement impair-
ments [4-6]. However, it is not clear which brain areas are associ-
ated with obesity-related motor defects. 

Movement functionality is negatively correlated with body 
mass index (BMI) [7-9]. Mobility defects observed in obesity 
are affected by the abnormal distribution of body fat, which is 
concentrated in the abdomen [4, 8]. Motor control including grip 
strength, voluntary movement, and motor initiation are directly 
regulated by the dopamine system consisting of tyrosine hydroxy-
lase (TH)-expressing neuron that originate in the substantia nigra 
(SN) and ventral tegmental area (VTA) and project to the striatum 
and prefrontal cortex [10-13]. Defects in the dopamine system 
lead to Parkinson’s disease (PD), and Huntington’s disease [12, 14]. 
Recent study reported the correlation of dopamine with obesity 
[15, 16]. Dopamine D2- receptor knockout in striatum increased 
compulsive eating and access to palatable food [16]. However, the 
relevance between TH expression in dopamine neuronal system 
and obesity-related motor defect is still unclear. 

The mouse high-fat-diet (HFD)-induced obesity model exhibits 
features similar to the human obese condition [2, 14], including 
significantly reduced TH mRNA expression in the SN compared 
with controls, as confirmed by in situ hybridization [17]. The ex-
pression and activity of TH, a rate-limiting enzyme in dopamine 
biosynthesis that mediates the conversion of amino acids to L-
DOPA, are indispensable for the regulation of intracellular dopa-
mine levels [11, 12, 17]. There is also a correlation between an in-
crease in BMI and PD among the elderly [7]. Extreme body weight 
causes a deterioration in the mobility of PD patients compared 
with patients with a normal body weight [4, 5, 8, 18]. This decrease 
in the physical activity of PD patients has been assessed using in-
direct calorimetry, which revealed a substantial decrease in energy 
expenditure [7, 9, 19].

In the current study, we addressed the relationship between high-
calorie-intake–induced obesity and defects in movement caused 
by an associated decrease in TH. TH expression is regulated by 
SRY (sex-determining region Y), c-Jun N-terminal kinase (JNK), 
cAMP, and glucocorticoid signaling [20, 21]. JNK, which is ex-
pressed ubiquitously in neurons, is activated by phosphorylation 
in response to cellular stress and regulates cell death signaling in 
the nervous system [22, 23]. JNK is necessary for the modulation 
of neuron-specific synaptic plasticity and cytoskeletal reorganiza-
tion during neurodevelopment through regulation of proteins 
associated with microtubules [22-24]. As a neurodegeneration 
mediator, JNK is involved in the loss of TH caused by treatment 
with the neurotoxin, paraquat [25, 26]. However, cystatin C, a cys-
teine protease inhibitor, enhances TH gene expression in a JNK-

dependent manner [27]. In addition, JNK activation is necessary 
for ATF2 phosphorylation, which increases nicotine-induced TH 
gene expression [28]. On the basis of these reports, we postulated 
that chronic energy stress caused by HFD feeding affects move-
ment disorders through a decrease in TH expression and JNK 
activation in the SN and striatum. 

MATERIALS AND METHODS

Immunofluorescence staining 

At the conclusion of experiments, NCD- and HFD-fed C57BL/6 
mice were perfused with a 4% paraformaldehyde solution. Whole 
brains were removed, then stored in 4% paraformaldehyde for 3 
days. After transferring brains to a 30% sucrose solution, coronal 
sections (25 μm thick) were prepared, washed with PBS, and then 
blocked by incubating for 1 hour with 3% donkey serum (Dako, 
Glostrup, Denmark) and 0.3% Triton X-100 in the dark. There-
after, sections were washed with PBS and incubated overnight at 
4oC with anti-TH (1:500; Millipore, MA, USA) and anti-pJNK 
(1:500; Invitrogen, Carlsbad, CA, USA) antibodies, diluted in 
blocking solution. Sections were then washed with PBS and incu-
bated with fluorescently labeled secondary antibody for 1 hour at 
room temperature. Sections from SN was obtained through -2.60 
mm to -3.90 mm relative to bregma [39]. Sections from striatum 
was obtained through -1.08 mm to -0.84 mm relative to bregma 
[40]. TH and pJNK fluorescence (n=10 slides per condition, n=6 
each groups) were visualized using an IX70 confocal microscope 
(Olympus, Tokyo, Japan).

Animals

Male C57BL/6 mice, purchased from Harlan Teklad (Madison, 
WI, USA), were maintained at a temperature of 22oC with 12-h 
light-dark cycle. For HFD-induced obesity, 5-week-old C57BL/6 
mice were fed a 60% fat diet (Research Diets Inc., NJ, USA) and 
body weight was monitored (n=6, each group of feeding condi-
tion). Animal experiments were approved by the Institutional Ani-
mal Care and Use Committee of Chungnam National University 
(ethical approval number, CNU-00356).

Open-field test

Each mouse was placed in 40×40×40 cm box, and movement 
was recorded for 60 minutes. Movement distance of HFD- fed or 
NCD-fed mice (n=6, each groups) were analyzed using EthoVi-
sion XT 11.5 software (Noldus, Wageningen, The Netherlands).

Vertical grid test

The apparatus for the vertical grid test is an open box (8×55×5 
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cm) with a back wall made of 0.8×0.8 cm wire mesh. HFD and 
NCD-fed mouse (n=6, each groups of feeding) were adapted to 
the vertical grid test by placing inside the apparatus for 3 days 
and allowing them to turn and climb down. Experiments were 
performed by recording and analyzing time to climb, time to turn, 
time to climb down, and missteps [11].

Measurement of plasma leptin levels

The plasma leptin concentration in NCD- and HFD-fed mice 
(n=6, each groups) was measured using an ELISA kit (Enzo Life 
Science, Farmingdale, NY, USA).

Glucose tolerance test and insulin tolerance test 

For glucose tolerance tests, 6 of HFD- fed and NCD- fed mice 
were fasted for 24 hours and then administered 2 g/kg glucose 
by intraperitoneal injection. Blood glucose levels were measured 
using a glucometer (Roche, Basel, Switzerland). For insulin toler-
ance tests, mice were fasted for 6 hours and then injected with 0.75 
U/kg insulin (Eli Lilly, Indianapolis, IN, USA). Insulin tolerance 
was tested using a mouse insulin ELISA kit (ALPCO, Salem, NH, 
USA).

Statistical analysis

All results are presented as means ± standard error of the mean 
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Fig. 1. HFD-induced obesity in C58BL/6 mice and decrease of general and motor behavior in HFD-fed mice. (A) HFD-fed, 5-week-old C57BL/6 mice 
(n=6/group) showed a significant increase in body weight gain compared with NCD-fed mice. (B) Plasma leptin levels in NCD- or HFD-fed mice was 
measured by ELISA. (C) Traces of mouse movements during open-field tests are presented. (D) The total moved distance of HFD-fed mice decreased 
compared with that of NCD-fed mice. (E) Movement was analyzed as distance per time. (F~J) A mouse was placed 3 cm from the bottom of the appara-
tus and allowed to climb upward, turn around, and climb down during recordings. (F) Total time is the sum of time to climb, make turn and climb down. 
(G) Time taken for the mouse to turn. (H) Time taken for the mouse to climb before it turned. (I) During the climb down, the number of failed hindlimb 
steps was measured and converted to a percentage of total steps. (J) Time taken for the mouse to climb down after is turned. In HFD-fed mice, the 
time to climb and percentage of missteps increased. There were no differences in the total time, time to turn, or time to climb down. *p<0.05, **p<0.01, 
***p<0.001.
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(SEM) of triplicate experiments. Statistical analyses were per-
formed using Prizm version 5 software (GraphPad, San Diego, CA, 
USA). The significance of differences between two groups (n=6, 
each groups) was analyzed using a one-tailed Student’s t-test. A p-
value<0.05 was considered statistically significant. 

RESULTS

HFD leads to a general decrease in movement accompa-

nied by abnormal motor behavior

As an experimental model, we used HFD-induced obese mice, 
which exhibit increased adiposity and metabolic alterations [2]; 
mice fed a normal diet (NCD) were used as controls. As shown in 
Fig. 1A, HFD-fed mice showed a 14.5% greater body weight gain 
than NCD-fed mice after 5 weeks on the diet, and the difference in 
body weight between groups increased until 13 weeks (Fig. 1A). In 
obesity, plasma levels of leptin, which is produced by adipocytes, 
are elevated owing to increases in adipose tissue deposits [29-31]. 
Consistent with this, we found that the plasma leptin concentra-
tion, measured after 16 hours of fasting, was ~17.7 ng/ml in the 
HFD-fed group after 20 weeks, but only ~0.76 ng/ml in the NCD-
fed group (Fig. 1B). To verify peripheral metabolic alterations 
caused by HFD feeding, we performed intraperitoneal glucose 
tolerance (Table 1) and insulin tolerance (Table 2) tests. Impaired 
glucose tolerance and decreased insulin sensitivity were observed 
in the HFD group. These data suggest that consumption of a HFD 
for 20 weeks enhanced body weight gain predominantly by in-
creasing lipid deposits. 

Because obesity affects motor behaviors, such as walking, stand-
ing and grabbing an object while standing [5], we compared the 
movement of NCD-fed and HFD-fed mice. The distance moved 
by HFD-fed mice over the course of 60 minutes in an open-field 
test was approximately 60% that of NCD-fed mice (Fig. 1C~E). To 
further assess motor deficits, we subjected HFD- and NCD-fed 
mice to a vertical grid test, which measures time to climb up, turn 

and climb down, as well as missteps [11]. Although time to turn 
and total time were not different between NCD-fed and HFD-fed 
mice (Fig. 1F, G), the time to climb was ~2-times longer for HFD-
fed mice than for NCD-fed mice (Fig. 1H). Moreover, the percent-
age of missteps during the climb down increased by ~5-fold in 
HFD-fed mice (Fig. 1I). This latter finding indicates that HFD-
fed mice slipped more because their grip strength for grabbing the 
wire was reduced. This slippage increased the speed of the HFD-
fed mice as they climbed down, such that their descent time was 
only slightly longer than that of the NCD-fed mice even though 
their movement was substantially impaired (Fig. 1J). Taken to-
gether, these results show that HFD-induced obesity caused motor 
dysfunction and decreased overall movement.

Decreased TH in the SN and striatum of HFD-fed mice

Under conditions of obesity, mRNA expression of TH, a key 
enzyme in dopamine biosynthesis, is reduced in the SN region 
[17]. TH-positive dopaminergic neurons in the SN project to the 
striatum and modulate motor function and mobility [13, 32, 33]. 
Because behavioral defects, including delayed climbing time on 
the vertical grid test and decreased movement in the open-field 
test, was observed in HFD-fed mice (Fig. 1), we investigated TH 
expression in the SN and striatum region by immunohistochemis-
try. Consistent with the decrease in motor function, TH expression 
was significantly decreased (Fig. 2A). A count of the number of 
TH-positive neurons showed a ~26.3% decrease in the proportion 
of cells expressing TH in HFD-fed mice compared with NCD-fed 
mice (Fig. 2B). In the striatum, TH staining intensity in the HFD 
group was decreased by ~14.63% compared with the NCD group 
(Fig. 2C, D). By contrast, TH immunostaining in the nucleus ac-
cumbens (NAc) was comparable in HFD- and NCD-fed mice (Fig. 
2E). These data suggest that the loss of TH in the SN and striatum 
is predominantly responsible for the impaired motor function in 
HFD-fed mice. 

Table 1. Impaired glucose tolerance in intraperitoneal glucose tolerance 
tests

Time 
(min)

Blood glucose (mg/dL)

NCD HFD

Mean SD Mean SD

0
15
30
60
90

120

82.80
379.33
290.00
200.00
156.20
137.80

10.26
24.80
36.13
14.08
16.38
14.46

133.00
455.75
393.33
321.00
247.33
235.20

15.11
18.82
28.67
28.38
24.05
24.53

Table 2. Impaired insulin sensitivity, confirmed by insulin tolerance tests

Time 
(min)

% Initial glucose

NCD HFD

Mean SD Mean SD

0
15
30
60
90

120

100
47.51
33.48
24.56
25.54
29.24

6.11
2.68
3.01
1.92
1.97
1.2

100
60.5
41.83
29.5
31
34.17

7.2
4.26
3.04
1.88
2.02
2
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Decrease of phosphorylated JNK in HFD-fed mice

HFD feeding significantly reduced TH mRNA and protein 
levels in both the SN and striatum. It has also been reported that 
TH expression is modulated by JNK [27, 28, 34]. Because JNK is 
activated by phosphorylation [22, 23, 27], we hypothesized that the 
decrease in TH observed in HFD-fed mice was due, at least in part, 
to a decrease in activated, phosphorylated JNK (pJNK). To test 
this hypothesis, we performed double immunofluorescence stain-
ing for TH and pJNK in the SN of NCD- and HFD-fed mice. As 
shown in Fig. 3A, pJNK was detected in TH-positive neurons from 
control mice, which also exhibited a ‘halo’ of pJNK in the cytosol. 
By contrast, HFD-fed mice exhibited a decrease in the intensity of 
pJNK and TH staining and lacked the halo of pJNK immunore-
activity. pJNK intensity in TH positive neurons was decreased by 
~32.1% in HFD-fed mice compared with NCD-fed mice (Fig. 3B). 
In the striatum of HFD group, pJNK intensity was decreased by 

~11.21% compared with the NCD group (Fig. 3C, D). These results 
indicate that the decrease in TH in obesity was accompanied by a 
reduction in pJNK.

DISCUSSION

Movement, including walking and postural control, is defective 
in obesity relative to that in normal-weight individuals [4, 5, 9]. 
Indeed, as BMI increases, motor function and mobility decrease [5, 
8]. The dopamine system, composed of TH-expressing neurons 
that project from the SN to the striatum, is critical for the initiation 
and fine modulation of movement [13, 32]. TH plays a crucial role 
in dopamine biosynthesis such that, when dopamine is depleted 
owing to the loss of TH function, locomotor function is impaired; 
notably, these phenomena underlie the pathophysiology of PD [11, 
13]. Importantly, BMI is significantly correlated with PD risk [8]. 

Jang et al., Figure 2 
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Therefore, we focused on dopaminergic neuron-related behavioral 
changes by comparing NCD- and HFD-fed mice. 

We found that HFD feeding reduced TH levels in the SN by 
~21% compared with that observed in NCD-fed mice. We as-
sessed the impact of a chronic excess of energy on behavior, as 
well as SN and striatal expression of TH in HFD-fed mice, aged 4 
to 20 weeks, which corresponds to juveniles to adults in humans. 
We found that downregulation of TH in the SN and striatum 
was associated with defects in motor function such as missteps, 
reflecting the effect of the dopamine system on grip strength, and 
decreased movement distance, determined by performing vertical 
grid tests and open-field tests (Fig. 1C~J). The increased climbing 
time observed for HFD-fed mice was associated with an increase 
in abdominally concentrated body fat rather than a defect in the 
dopamine system, reflecting a change in the animal’s center of 

mass. These findings suggest that a reduction in TH in brain areas 
related to motor regulation underlie the movement defects that 
occur in HFD-fed mice. According to the report, C57BL/6 mice 
had acute MPTP administration showed ~80% decrease of stria-
tal dopamine level. This mice took 2.2 folds longer total time to 
climb down and 3.29 folds to make turn on the vertical grid test 
[11]. Unlike MPTP- injected mice, when we performed grid test of 
HF- fed mice, total time was comparable due to increase of miss 
steps. Slippage increased the speed of time to climb down and it is 
associated with a defect in grip strength. Therefore we suggest that 
high fat diet feeding decreased ~26.3% and ~14.63% of TH neuron 
in SN and striatum respectively, and this lower degree of TH loss 
than MPTP- injected mice resulted in mild movement disorder. 

We also investigated which signaling pathway led to the decrease 
in TH in HFD-induced obesity. It has been reported that TH ex-

Jang et al., Figure 3 
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pression is modulated by multiple signaling pathways, including 
JNK, cAMP, and SRY [20, 21, 35]. JNK is expressed in neurons and 
acts as a mediator of neurodegeneration following administration 
of neurotoxins [25, 26]. However, JNK activity is necessary for 
the induction of TH by nicotine or cystatin C [27, 28]. These ob-
servations imply that TH expression is differentially regulated in 
response to extracellular signals. We found that the decrease in TH 
was associated with a significant reduction in JNK phosphoryla-
tion in the SN and striatum. This suggests that loss of JNK activity 
contributes to the reduction in TH expression in the context of 
chronic energy excess, but not under normal energy status condi-
tions. There are several reports that the high glucose condition 
associated with Type 2 dibetes mellitus triggers dopaminergic 
neuronal degeneration and turn on the apoptotic cell death due 
to increase of reactive oxygen species (ROS) production, which 
called glucotoxicity. Although chronic obesity increase the blood 
glucose level, HFD mice have milder glucose intolerance and can 
be reversed by a low fat diet comparing with db/db mice [36, 37]. 
These researches supported that HFD mice model can induce the 
decrease of TH expression without neuronal cell death, but direct 
relevance need to further investigation. Another signal that could 
alter TH expression in HFD-induced obesity is leptin, reflecting 
that fact that plasma levels of leptin, which is produced by adipose 
tissue, increase as obesity progresses [10, 29, 38]. Notably, it has 
been reported in a human study that plasma leptin level and TH 
expression are negatively correlated; it has also been shown that 
TH-positive neurons in the SN and striatum express the leptin 
receptor [10, 38]. However, whether leptin signaling is involved 
in the reduction in TH observed in obesity remains to be deter-
mined. 

Collectively, our findings suggest that excess energy intake im-
pairs motor function by reducing TH via JNK downregulation. 
One implication of our results is that L-DOPA treatment might 
improve movement disorders in cases of extreme obesity. Clearly, 
strategies for modulating this signaling pathway to increase TH 
expression in obesity and enhance its efficiency in improving mo-
tor function will require further investigation.
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