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1. ETS family of transcription factors

The 28 mammalian ETS (for E-26 transformation specific) transcrip-
tion factors share a highly conserved 85 amino acid DNA binding do-
main (ETS domain) that binds to a DNA core consensus motif 5’
GGA(A/T)3’ [72]. Further specificity in binding is defined by the flanking
bases; however the precise mechanisms that control ETS factor/DNA
binding specificity are still unclear. This is a key question, given that
multiple ETS factors can be expressed by the same cell at the same
time. Another conserved domain shared by a number of ETS factors is
the ~80 amino acid pointed domain (PNT), which has been shown to
function as a site of interaction with kinases and transcriptional co-reg-
ulators, and is involved in dimerization with other ETS transcription fac-
tors [51,86,89]. The ability of ETS factors to act in concert with other
transcription factors is exemplified by the presence of composite DNA
binding sites, including FOXC/ETS and AP-1/ETS sites on target genes
[18,67].

ETS factors can act as transcriptional activators, repressors or both,
depending on the target gene or post-translational modifications [55,
89]. Some ETS factors are expressed in a distinct temporal window of
development, such as ETV-2 [108]; some, such as ERG, first appear dur-
ing development and are maintained through adulthood (see below);
others, such as ETS-1, are expressed in response to signals promoting in-
flammation or cell growth [61,97,114]. Some ETS factors, such as ELK-1,
are ubiquitous [39] and mediate diverse cellular functions including cell
growth, differentiation, proliferation, survival, cell-cell and cell-matrix
interactions (reviewed in Ref. [72]). Others, such as ETS-1, ERG and
FLI-1, have a restricted profile of expression and are important in the
regulation of tissue-specific processes that include haematopoiesis, an-
giogenesis and vascular inflammation. Several ETS factors including
ETS-1, ETS-2, PU-1 (SPI1), FLI-1, ERG and TEL (ETV6) can act as proto-
oncogenes and have been implicated in the pathogenesis of different
types of cancer (reviewed in Ref. [88]).

2. ETS factors in the endothelium

At least 19 ETS factors have been shown to be expressed in human
endothelial cells (EC) at some point during development (reviewed
in Ref. [79]). ETS factors are central to the transcriptional systems
controlling EC gene expression, as all characterized endothelial pro-
moters and enhancers contain ETS DNA-binding motifs, which can
be bound by multiple ETS family members [19]. Several studies
have shown that ETS factors are required to drive endothelial-specif-
ic gene expression. Functional ETS binding motifs have been identi-
fied within the promoters of endothelial-restricted genes, including
vascular endothelial growth factor receptor (VEGFR)-1, VEGFR-2,
TIE1, TIE2, endothelial nitric oxide synthase (eNOS) and VE-cadherin
(also see Section 9.1). Many ETS factors are expressed in the vascula-
ture of several organisms during development; both gain and loss-
of-function studies in mice and zebrafish have shown a key role for
ETS proteins during vascular development ([98,109,112,124];
reviewed in Ref. [79]).

3. The ETS related gene ERG: genomic structure and isoforms

The ETS related gene (ERG) gene maps to the reverse strand of chro-
mosome 21 (21q.22.2) [73,80] and spans 282 kb with up to 12 potential
exons. The human ERG gene has at least 3 recognized proximal pro-
moters [100,123]. Additionally, a region 85 kb downstream of the

transcription start site has been identified as an ERG enhancer, which
is active during normal haematopoiesis and in T-cell acute lymphoblas-
tic leukaemia cells. ERG has been shown to positively regulate its own
expression via the + 85 enhancer in these cells [100].

A study carried out by Zammarchi et al. identified over 30 ERG
isoform variants, leading to the potential production of at least 15
polypeptides, the longest of which encodes a protein of 486 amino
acids with a molecular mass of 54.6 kDa [123]. Expression of the
ERG isoforms is dependent on alternative exon splicing and on the
use of alternative polyadenylation sites and translation initiation co-
dons (Fig. 1A). Of the alternative ERG transcripts previously identi-
fied, ERG1, ERG2, ERG3 (p55), ERG4 (p49), and ERG5 (p38) encode
for functional proteins that bind DNA [25,77,82]. ERG7 and ERG8
are predicted to form functional proteins as they have open reading
frames; however both variants lack the C-terminal ETS DNA-binding
domain [73]. Interestingly, a recent study identified a conserved nu-
clear localization sequence in the ERG ETS domain and showed that
ERGS, which lacks the ETS domain, was unable to bind DNA and
was mainly localized to the cytoplasm [38]. Although lacking tran-
scriptional activity itself, ERG8 was shown to interact with other
ERG isoforms to inhibit their transcriptional activity [38,81]. Further-
more, knockdown of ERG8 in EC results in upregulation of endoge-
nous ERG transcriptional activity, suggesting that ERG8 functions as
an inhibitor of ERG's active isoforms [38]. Reverse transcriptase-
PCR analysis using isoform-specific primers indicates that ERG3
and ERGS5 are constitutively expressed in quiescent EC [36], with
ERG1 and ERG8 expressed at much lower levels [38].

4. ERG DNA binding activity and functional domains

Analysis of deletion mutants has led to the characterization of ERG
protein domains mediating DNA binding and transcriptional activation
[92]. The ETS domain is located in the C-terminus of ERG (Fig. 1B), and
as with other ETS factor family members, is essential for DNA binding.
Multiple studies have investigated the ERG DNA binding consensus se-
quences flanking the core (GGAA/T) DNA consensus motif. Early studies
using electrophoretic mobility shift assays (EMSA) identified specific
ERG consensus sequences as (C/G)(C/a)GGAA(G/a)T [68] or (A/
C)GGAAG [25]. Further genome-wide studies using chromatin immuno-
precipitation coupled with high-throughput DNA sequencing (ChIP-
seq) characterized the sequences AGGA(A/t)(G/A) [115] or (C/a/g)(A/
C)GGAA(G/A/c) [113] as specific ERG consensus sequences. Interesting-
ly, a recent study has shown that ERG DNA-binding is allosterically reg-
ulated by autoinhibitory regions both N- and C-terminally adjacent to
the ETS domain [83].

ERG also possesses a second structured domain known as the point-
ed (PNT) domain (Fig. 1B), which is conserved in ten other ETS factors
(ETS-1, ETS-2, FLI-1, GABPa, TEL (ETV6), TEL-2 (ETV7), ESE-1 (ELF3),
ESE-2 (ELF5), ESE-3 (EHF) and PDEF (SPDEF)) [49]. The ERG PNT do-
main comprises four a-helices and a short a-helix [40]. Carrere et al.
suggested a role for the PNT domain in mediating protein-protein inter-
actions and homo/hetero-dimerization [16]. Deletion of the PNT do-
main has been shown to cause a 70% decrease in ERG2 transcriptional
activity using a reporter assay in NIH3T3 cells [92]. ERG contains a C-ter-
minal transcriptional activation (CTA) domain, which is also conserved
in FLI-1; the transcriptional activation function of the CTA domain is re-
pressed by a negative regulatory transcriptional activation (NRT) do-
main [92].



A.V. Shah et al. / Vascular Pharmacology 86 (2016) 3-13 5

A P1___P2 P3
pal-=fisHz{s-={reHa s HeH7Hzel-s-{sHio-{a e 7]

71 23 102 86 111 218 152 204 81 72 69 57 48 (521)3897 (10) 388 bp
Isoform Name NCBI Accession Exon alianment Amino Molwt.  Uniprot

number acids (kDa) accession
ERGH NM_ 001243420 9] [2][3] 5] [e] [7] [8] [o] [io] [MF7] 362 41 Pp11aos2
(ERG-1b.A4A7b)
ERG2 %
ERER NM_004449 [1a] [2][3 [4] [5] [e] [7] (8] [o] [10] [1a] ] 462 52 P1130e-1
FEF;%Z:EI; NM_001136154 E] 3 [4] [s] [&] [] [me] [e] [o] [10] [1a] | 4ss s5 Pi1308s3
ERG3/p55 NM_182918 m [4] [5] [s] 0] [8] [9] J1o] IIII 479 54 P11308-4
(ERG-1c)
ERG4 NM_001136155 1¢] 5] [e] 70| [&] [o] [1o] [1a] ] 387
(ERG-1c.04)
ERG5/p38 4] [s] [e] [8] [s] [ro] [ad] ] 400 3s
ERG7 3 %
e NM_0012243432 E [4] [s] [e] [7] [w] [8] [o] [1o] [12] |317 35 P11308s

P11308-6

ERGS
(ERG-1b.7b-pA)

NM_001291391 El 3 (4] |s] J&] [7] [l [12) ] 325 a7

|:| Exon I:I Non-coding == Promoter region Start codon I Stop codon

673 814 918

1 18 236 388 582 745 87 1,440 bp

I/ | | | I | |

I 4 [ 5 1 6 [ 7 7ol 819 hof 11 |

B

I - s -

1 113 199\ 311 391 479 aa
S215

Fig. 1. Structure of the human ERG gene and isoforms. (A) The major ERG exons are shown with their size in base pairs (bp) below each exon; numbers in parentheses indicate nucleotides
within the open reading frame of the alternatively spliced exons 11 and 12. The three alternative promoters (P1, P2, P3) are indicated in red. Eight reported ERG isoforms are listed below
along with their respective NCBI accession numbers (if available). The name for each isoform follows the commonly used nomenclature; in parentheses are the names proposed by
Zammarchi et al. [123]. The predicted number of amino acids, predicted size in KDa, and Uniprot (Universal Protein Resource) accession numbers are shown to the right of the exon
alignment. (B) The ERG3/p55 exon structure and nucleotide length (in base pairs) is aligned with the predicted protein sequence showing the amino acid position of the main protein
domains. PNT (pointed domain), ETS (ETS DNA-binding domain). The phosphorylated serine residue at position 215 is indicated by an arrow. (Modified from Refs. [110,123].)

5. ERG binding partners and functional partners

ERG appears to functionally and/or physically interact with several
transcription factors; a list of ERG known binding and functional part-
ners is shown in Table 1. Carrere et al. reported that the ERG proteins
can form homo and hetero-dimeric complexes in vitro [16]. The authors
identified 2 domains involved in ERG dimerization: the ETS domain and
aregion within the amino-terminus of the protein containing the point-
ed domain. Furthermore, they showed that ERG can also form heterodi-
mers with other ETS factors, including FLI-1, ETS-2 and PU-1 [16]. The
ERG ETS domain also mediates the interaction with activator protein 1
(AP-1), a heterodimeric transcription factor composed of FOS and JUN
proteins [15,16,103].

A yeast two-hybrid screen performed using the full-length Xenopus
ERG protein as bait identified three binding partners: the homeobox
transcription factors Xvent-2 and Xvent-2B and the small nuclear RNP
Cprotein [22]. Yang et al. screened a yeast two-hybrid cDNA library con-
structed from mouse haematopoietic cells using the amino-terminal re-
gion of ERG as bait [117]. This study showed that ERG interacted with
UBC9, a ubiquitin-conjugating enzyme and with ESET (ERG associated
protein with a suppressor of variegation, enhancer of zest and trithorax
domain), a histone H3-specific methyltransferase [117], which also in-
teracts with the transcriptional co-repressors histone deacetylase 1
and 2 (HDAC1/2) and mSin3A/B [118]. Co-immunoprecipitation studies
on tagged proteins expressed in COS-7 cells have shown that ERG is able
to associate with the transcription factor KLF2 [63]. Transactivation
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Table 1
ERG binding and functional partners.

ERG is able to associate with a wide variety of binding partners which will have functional implications for regulating cellular responses. In most cases, interactions involving nuclear pro-
teins modulate transcriptional activity of either ERG or the associated protein. ERG also has a number of functional interaction partners, where no direct binding data has been provided.

Binding partner Methods References
ETS factors ERG GST pull down, co-immunoprecipitation [16]

ETS-2

FLI-1

ER81

PU-1
Other transcription factors AP-1 GST pull down, co-immunoprecipitation, fluorescence resonance energy transfer microscopy (FRET) [15,16,103]

KLF2 Co-immunoprecipitation [63]

RUNX1 Co-immunoprecipitation [115]

Xvent2 Yeast two-hybrid screen, GST pull down [22]

Xvent2B
Nuclear receptors AR GST pull down, co-immunoprecipitation [119]
DNA damage repair proteins/Co-factors DNA-PKcs Mass spectrometry, co-immunoprecipitation [13]

Ku70

Ku80

PARP1
Histone methyltransferase ESET Yeast two-hybrid screen, GST pull down, co-immunoprecipitation [117]
Ubiquitin ligases UBC9

SPOP Co-immunoprecipitation [2,30]
Deubiquitinase enzyme USP9X GST pull down, co-immunoprecipitation, mass spectrometry [111]
Serine threonine kinase ERK-2 Microscale thermophoresis [87]
Splicing factor RNP C Yeast two-hybrid screen, GST pull down [22]
Functional partner Methods References
Transcription factors P65 Chromatin immunoprecipitation, electrophoretic mobility shift assay, transactivation reporter assay [24]

SCL Chromatin immunoprecipitation with high-throughput DNA sequencing [115]

LYL1

LMO2

GATA2
Transcriptional co-activators P300 Transactivation reporter assay [44]
Nuclear receptors ERa Transactivation reporter assay [106]

studies in HeLa cells also suggest a functional interaction between ERG
and the transcriptional co-activator p300 [44].

In prostate cancer cells, ERG was shown to physically interact with
the enzymes poly(ADP-ribose) polymerase 1 (PARP1) and the catalytic
subunit of DNA protein kinase (DNA-PKcs), which play a role in ERG-in-
duced transcription in vCaP prostate cancer cell-line overexpressing the
TMPRSS2:ERG fusion protein (see Section 10.3.2) [13]. ERG also forms a
complex with the Ku70 and Ku80 subunits of the DNA repair enzyme
Ku, in a DNA-dependent manner [13].

Like many transcription factors, ETS proteins control gene expres-
sion by combinatorial interaction between transcription factors and
their binding motifs on DNA. Wilson et al. carried out a genome-wide
analysis of the binding sites of ten key regulators of blood stem/progen-
itor cells and identified a combinatorial functional interaction between
a heptad of transcription factors, including ERG (Table 1; [115]); the
study also reported a direct physical interaction between ERG and
Runt-Related transcription factor 1 (RUNX1) [115]. Dryden et al. identi-
fied a novel nuclear factor (NF)-<B/ETS consensus site involved in ERG-
dependent repression of pro-inflammatory genes [24]. The authors
showed that ERG blocks NF-«B p65 binding to the promoters of intercel-
lular adhesion molecule (ICAM)-1, interleukin (IL)-8 and cellular inhib-
itor of apoptosis (cIAP)-2 in resting human umbilical vein endothelial
cells (HUVEC); inhibition of ERG expression resulted in p65 binding to
DNA and induction of NF-B target gene expression.

A similar repression mechanism of interference was observed in
prostate cancer cells, where Yu et al. found that ERG disrupts androgen
receptor (AR) signalling by binding to and repressing AR downstream
targets at gene-specific loci [119]. Co-immunoprecipitation assays dem-
onstrated a physical interaction between the AR and ERG proteins in
vCaP cells as well as prostate cancer tissues [119]. ERG also inhibits nu-
clear oestrogen receptor (ER)-a-dependent transcription; conversely,
the transcriptional activity of ERG has been shown to be repressed by
ERa, demonstrating a mutual repressive functional interaction between
the two proteins [106]. In adult human endothelial cells, direct

interaction and functional antagonism between ERG and ETS-2 has
been reported, in which ERG interaction with ETS-2 inhibits the ability
of ETS-2 to transactivate the matrix metalloprotease 3 (MMP3) promot-
er [14].

Recent studies have shown ERG's association with proteins that me-
diate its post-translation regulation (see also Section 7). Selvaraj et al.
showed a high affinity interaction between ERG and ERK2 using micro-
scale thermophoresis [87]. Wang et al. demonstrated that ubiquitin-
specific peptidase 9, X-linked (USP9X), a deubiquitinase enzyme,
binds ERG in VCaP prostate cancer cells expressing TMPRSS2-ERG and
deubiquitinates ERG in vitro [111]. Furthermore, co-immunoprecipita-
tion assays showed that endogenous ERG associates with speckle-type
POZ protein (SPOP) ubiquitin ligase in LNCaP prostate cancer cells [2,
30] (Table 1; see also Section 7).

6. ERG expression and localization

In the developing mouse embryo, ERG is expressed from embryonic
day (E)8.5 in mesodermal tissues, such as the endothelium, myocardi-
um, pre-cartilage and haematopoietic tissues, but not in the epithelium
or lymphocytes [65,84,104,105]. ERG expression progressively de-
creases in the developing zebrafish vasculature; however in the
mouse and human ERG remains highly expressed in EC of most adult
tissues [6,26,36,105,120]. Genomic studies on EC from multiple origins
have shown that ERG is the most highly expressed ETS factor in differ-
entiated quiescent EC, with no major differences in levels between
large arterial, venous and microvascular endothelium [9,39].

Comprehensive characterization of ERG subcellular localization has
shown that ERG is localized in the nucleus of endothelial cells [12]; in-
deed, many studies use ERG as nuclear marker for EC in mouse retinal
vasculature [12,28,50]. Most studies have been carried out using anti-
ERG antibodies which recognize epitopes within the C-terminus of the
protein. The recently described N-terminal mouse monoclonal anti-
ERG antibody (clone 9FY; [29]) can also detect ERGS, the isoform



A.V. Shah et al. / Vascular Pharmacology 86 (2016) 3-13 7

which lacks the nuclear localization sequence and which, in over-ex-
pression studies, has been shown to be localized in the cytoplasm (see
Section 3; [38,81]). Future studies using this and other tools will be
able to investigate expression and subcellular localization of ERG8 in
the endothelium.

7. Regulation of ERG expression and activity

The activity of many ETS factors is regulated by signal transduction
cascades, which alter their sub-cellular localization, DNA binding activ-
ity, and/or transcriptional activity through post-translational modifica-
tion. Little is known about the post-translational modifications of ERG
in endothelial cells. In myeloblast cells, ERG is phosphorylated on a ser-
ine residue by an activator of the protein kinase C pathway [68], where-
as in VCaP cells ERG is phosphorylated on serine residues at positions 81
and 215 (S81, S215), by both IkB and Akt kinases [93]. Recently, a study
using arterial EC has indicated that ERG transcriptional activity can be
regulated by VEGF/Mitogen-activated protein kinase (MAPK)-depen-
dent signalling. Wythe et al. demonstrated that VEGF-mediated MAPK
signalling drives expression of the Notch signalling pathway genes
DIl4 and Notch4 by promoting ERG binding to their gene regulatory re-
gions [116]. The differential ERG occupancy was not mediated by chang-
es in total ERG levels or subcellular localization, and was inhibited by a
MAPK inhibitor, suggesting that VEGF/MAPK signalling enhances the
DNA binding activity of ERG in this context. Interestingly, several ETS
family members are phosphorylated by MAPKs ([37]; [75,69]) and
these modifications are known to affect their interaction with other
transcription factors as well as their binding to DNA [40]. Indeed, recent
data from Selvaraj et al. using an in vitro cell-free screening assay re-
vealed that ERG is predominantly phosphorylated at S215 by ERK2 ki-
nase and that ERG phosphorylation was necessary for an
overexpressing ERG retrovirus to drive migration of prostate epithelial
cells [87]. These authors further demonstrated that ERK2-dependent
phosphorylation increased ERG-dependent binding and transactivation
of genes involved in epithelial cell migration. We have found that in qui-
escent, confluent HUVEC, ERG is also phosphorylated at serine residues,
including S215 (S. Martin Almedina & A.M. Randi, unpublished data).
The functional significance of ERG phosphorylation in EC is presently
unknown.

Two recent studies have suggested that dysregulation of the SPOP
ubiquitin ligase complex in ERG-overexpressing prostate cancer cells
reduces ERG ubiquitination, and that stabilized ERG was responsible
for the enhanced migration and invasion activities of cells carrying
SPOP mutations [2,30]. Whether this ubiquitin ligase system functions
to regulate physiological ERG levels in endothelial cells is unknown. A
role for ERG ubiquitination in prostate cancer cells was also demonstrat-
ed by Wang et al. who showed that the enzyme USP9X, which is highly
expressed in ERG-positive prostate tumours, mediates ERG
deubiquitination and thus its stabilization [111].

8. ERG-dependent gene targets and pathways in the endothelium

ERG regulates the expression of multiple EC genes with roles in key
cellular functions such as survival, junction stability and cell migration;
acting as a key regulator of endothelial homeostasis. A summary of ERG
target genes and their role in endothelial cell function and homeostasis
is shown in Table 2.

8.1. VEGF, Notch and arterial differentiation

Wythe et al. described a role for ERG in arterial specification, by
demonstrating that ERG mediates VEGF-dependent expression of arte-
rial D114, the earliest Notch ligand gene expressed in arterial precursor
cells, during vascular development [116]. The Notch receptor Notch4
was also regulated by this VEGF/MAPK/ERG pathway. The authors re-
ported increased ERG expression in arterial-derived EC in vitro;

Table 2
Endothelial ERG target genes.

Genes activated by ERG

Functional Gene Name References
categories
Endothelial homeostasis
APLNR  Apelin receptor [52]
NOS3 Endothelial nitric oxide synthase (eNOS) [53]
NOTCH4 Notch 4 [116]
DLL4 Delta-like ligand 4 [116]
ENG Endoglin [76]
HMOX1 Haem oxygenase 1 [22]
SNAI1 Snail family zinc finger 1 [104]
SNAI2 Snail family zinc finger 2 [104]
Endothelial cell-cell junctions
CDH5 Vascular endothelial (VE)-cadherin [10,33]
CLDN5  Claudin-5 [122]
ICAM2  Intercellular adhesion molecule 2 [61]
Angiogenesis
FLK1 Vascular endothelial growth factor [63]
receptor 2 (VEGFR2)
FLT1 Vascular endothelial growth factor [107]
receptor 1 (VEGFR1)
FzZD4 Frizzled class receptor 4 [12]
EGFL7 EGF-Like protein 7 [54]
Cytoskeleton dynamics; cell migration
HDAC6 Histone deacetylase 6 [11]
RHOA Ras homolog family member A [62]
RHOJ Ras homolog family member | [121]
Extracellular matrix
MMP1  Collagenase 1 [14]
SPARC  Secreted protein acidic and cysteine rich  [62]
TSP1 Thrombospondin [62]
Haemostasis/thrombosis
VWF Von Willebrand factor [62,85]
Genes repressed by ERG
Functional Gene Name References
categories
Apoptosis
BIRC3 Cellular inhibitor of apoptosis 2 [24]
(cIAP2)
Vascular inflammation
CD44 CD44 [120]
CXCL8 Interleukin-8 (IL8) [120]
ICAM1 Intercellular adhesion molecule 1 [24,95]
MMP3 Stromelysin 1 [14]
SERPINE1 Plasminogen activator inhibitor 1 [120]
(PAIT)
VCAM1 Vascular cell adhesion molecule 1 [95]
Extracellular matrix degradation
PLAU Plasminogen activator, urokinase [120]

however, this is not in line with multiple studies on ERG mRNA and pro-
tein expression, in adult human and mouse tissue, as well as the embry-
onic and retinal mouse vasculature, showing that ERG is strongly
expressed in all EC, with no detectable difference between arteries
and veins [9,12,39,52].

8.2. VE-cadherin, claudin-5, ICAM-2: cell permeability and junction
integrity

ERG plays a key role in maintaining junction integrity through its
transcriptional regulation of multiple junction molecules. ERG binds
and transactivates the promoters of the endothelial junctional adhesion
molecules VE-cadherin [10], claudin-5 [122] and ICAM-2 [61]. Inhibition
of ERG expression in HUVEC results in a marked decrease in EC barrier
function, which was partially rescued by adenoviral overexpression of
claudin-5 [122]. Interestingly, over-expression of ERG could reduce
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permeability of VEGF-induced neovessels in vivo [12]. ERG is required
for EC survival, partly via a pathway involving VE-cadherin and endo-
thelial junction integrity [10]. In vivo, endothelial-specific deletion of
ERG also results in reduced VE-cadherin expression in the postnatal ret-
ina [12].

8.3. Wnit/B-catenin signalling and vessel stability

Canonical Wnt signalling promotes EC survival, junction stabiliza-
tion, proliferation and pericyte recruitment and is essential for vessel
stability ([17]; reviewed in [20,27]). The balance between VE-cadherin
and Wnt-dependent signals controls [3-catenin cellular localization
and activity. Birdsey et al. showed that ERG controls the Wnt/3-catenin
pathway by promoting 3-catenin stability through transcriptional con-
trol of both VE-cadherin and the Wnt receptor Frizzled-4 [12]. The
study also showed that ERG controls cell survival, proliferation, angio-
genesis and vessel stability through 3-catenin. Activation of Wnt signal-
ling with lithium chloride, which stabilizes B-catenin levels, rescued
sprouting and proliferation of ERG-deficient HUVEC in vitro and
corrected vascular defects in endothelial-specific Erg-knockout embryos
in vivo [12].

8.4. HDAC6 and Rho] in migration and cytoskeletal dynamics

Transcriptome profiling of ERG-deficient EC identified ~80 genes in-
volved in cell migration as candidate ERG targets, including many regu-
lators of the small GTPase Rho family [11]. Phalloidin-staining of ERG-
deficient HUVEC revealed a marked alteration of both cell shape and
actin stress fibre alignment [11,122]. Additionally, in vitro scratch-
wound migration assays and single cell imaging showed that inhibition
of ERG decreases the speed and distance at which HUVEC migrate and
results in a reduction of lamellipodia formation [11].

ERG has been shown to regulate the endothelial cytoskeleton
through the activity of histone deacetylase-6 (HDAC6) [11] and the
small GTPase RhoJ [121]. Inhibition of HDAC6 results in
hyperacetylation of cortactin and a-tubulin (a marker of microtubule
stabilization) leading to reduced EC migration and defects in in vitro
and in vivo angiogenesis [45,56]. Birdsey et al. showed that ERG drives
constitutive HDAC6 expression in EC; following ERG inhibition the
down-regulation of HDAC6 led to a dramatic increase in acetylated mi-
crotubules in HUVEC [11]. This observation was confirmed in vivo using
ERG-siRNA in the Matrigel plug angiogenesis assay in mice; inhibition of
ERG resulted in a reduction in endothelial HDAC6 expression, which co-
incided with increased tubulin acetylation compared to controls [11].
RhoJ is a GTPase belonging to the Cdc42 subfamily, which has been
shown to be required for EC migration [46]. Yuan et al. identified Rho]
as a direct transcriptional target of ERG; using in vitro and in vivo tube
formation assays, they also demonstrated a role for ERG and RhoJ during
neovessel lumen formation [121].

9. Roles of ERG in the vasculature
9.1. ERG controls endothelial differentiation and reprogramming

ERG drives the expression of genes that define the endothelial line-
age, such as VE-cadherin [10,33], vWF [62,85], endoglin [76] and eNOS
[53]. Early studies in Xenopus showed a role for ERG in endothelial dif-
ferentiation, where ectopic expression of the Xenopus homolog of ERG
drove ectopic endothelial differentiation in the ventral region of
Xenopus embryos [6].

A further line of evidence for the key role ERG plays in endothelial
differentiation comes from developmental studies of differentiation of
embryoid bodies, which show that ERG is required for the differentia-
tion of embryonic stem cells along the endothelial lineage [71]. Interest-
ingly, a recent study has shown that constitutive expression of ERG and
FLI-1 in combination with TGF3 pathway inhibition is sufficient to

reprogramme non-vascular amniotic cells into stable vascular endothe-
lial cells [31]. A recent study by Batta et al. demonstrated that both em-
bryonic and adult somatic fibroblasts can be efficiently reprogrammed
to haematopoietic progenitors by concomitant ectopic expression of
ERG and other haematopoietic transcription factors (GATA2, LMO2,
RUNX1c and SCL; [8]). Furthermore, Morita et al. demonstrated that ec-
topic expression of the ETS factor ETV2 induces expression of ERG in
human fibroblasts and consequently ETV2-expressing fibroblasts con-
vert into functional EC [66].

9.2. Regulation of vascular development by ERG

The role of ERG in vascular development has been demonstrated in
multiple in vivo models. In the developing Xenopus embryo, ERG tran-
scripts are detected in the vitelline veins, posterior cardinal veins,
blood vessels of the head, along with strong ERG expression in the
intersomitic blood vessels [6]. Over-expression of ERG in the Xenopus
embryo resulted in developmental defects and ectopic endothelial dif-
ferentiation. In zebrafish embryos, ERG antisense morpholino caused
defective intersomitic vessel patterning and haemorrhage in the head
[57]. However, combinatorial knockdown of ERG and other ETS factors,
FLI-1 or ETV2, was required to cause severe vascular defects, suggesting
a synergistic role for these ETS factors during zebrafish vascular devel-
opment [26,57].

Two recent studies have used genetic lineage-specific ERG deletion
in mice by crossing Erg floxed mice with Tie2-Cre mice [12,34]. Constitu-
tive homozygous deletion of endothelial Erg in the mouse embryo (Erg-
EC-K0) caused embryonic lethality between E10.5 and E12.5, with
severe disruption to the cardiovascular system, associated with defec-
tive vascular remodelling and haemorrhaging (Fig. 2A; [12,34]). Impor-
tantly, Birdsey et al. showed that ERG controls vascular development in
a Wnt/R-catenin-dependent manner, as in vivo LiCl treatment rescued
the yolk sac vascular defects in the Erg®®“*© mice ([12], also see
Section 8.3).

The vascular defects due to constitutive endothelial-specific deletion
of ERG are in line with the study by Vijayaraj et al., where global deletion
of a subset of ERG isoforms, shown to have predominantly endothelial
expression, also resulted in cardiovascular defects and embryonic le-
thality at E11.5 [104]. The cardiac defects in these embryos were associ-
ated with a failure in endocardial-mesenchymal transition (EndMT)
during cardiac valve morphogenesis, possibly linked to the ERG-depen-
dent regulation of members of the Snail family of transcription factors
[104].

Interestingly, a previous transgenic model where ERG's function was
disrupted by a mutation in the DNA binding ETS domain (ErgM!42/Mld2)
caused embryonic lethality at a later stage (E13.5) [58] and did not ap-
pear to display early vascular defects, suggesting that ERG's functions in
the vasculature are not exclusively mediated by its DNA binding activity.
Instead, inhibiting ERG transactivation showed multiple defects in de-
finitive haematopoiesis and a failure to sustain self-renewal of
haematopoietic stem cells, pointing to an additional regulatory role for
ERG during murine haematopoiesis ([58,99], also see Section 10.1).

Surprisingly, a study by Lathen at al. [52] reported a distinctly differ-
ent phenotype caused by Cre-mediated global deletion of ERG. In con-
trast with three separate studies which, using different genetic
strategies, showed that deletion of endothelial ERG results in severe
vascular defects and embryo lethality between E10.5 and E12.5 (see
above, [12,34,104]), Lathen et al. reported that Cre-mediated global de-
letion of ERG caused delayed embryonic lethality, from E16.5 to
3 months of age. Vascular defects occurring after E14.5 were apparent
in some ERG mutants, with oedema and subcutaneous haemorrhage
[52]. Interestingly, mice with global deletion of ERG appear to develop
pulmonary hypertension due to the onset of pulmonary veno-occlusive
disease (PVOD). The discrepancies in the phenotypes between the glob-
al ERG-deficient mouse line and the multiple endothelial-specific lines
reported are puzzling and could be due to technical variation;
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Fig. 2. In vivo evidence of the role of ERG in the vasculature. (A) Light microscopy of the yolk sac surrounding E10.5 embryos reveals a decrease in yolk sac vascularization in Er

EC-KO

embryos, compared to Erg’” controls. (B) Isolectin B4 staining of postnatal day 6 retinas show a reduction in (i) the overall extent of the vascular plexus and (ii) the number of

vascular branches in Erg’®<K0

mice compared to controls. (C) Staining for VE-cadherin (green), ERG (red) and isolectin B4 (IB4, blue) in Erg®*° and Erg"/" PG retinas. Scale bar, 50 um;

zoom, 20 pm. A marked reduction in VE-cadherin expression and junctional localization is observed in the retinal vasculature of Erg’®“X mice. (D) Collagen IV (Coll IV; green) and
isolectin B4 (IB4, red) staining of Erg'®*° and Erg"" P6 retinal vessels. The capillary plexus in Erg'®“* retinas show a greater number of empty collagen IV sleeves (arrows), indicating
increased vessel regression. (E) NG2-positive pericytes (green) associated with isolectin B4 labeled retinal vessels (red) from Erg®“*° and Erg™ mice shows that pericyte recruitment

was significantly decreased along Erg™
significantly reduced in adult Erg®*©

alternatively, global loss of ERG might result in compensation mecha-
nisms that reduce the severity of vascular function during early devel-
opment. More studies on global ERG deficiency will be required to
clarify these discrepancies.

9.3. ERG is required for physiological and pathological angiogenesis

Studies using an inducible endothelial-specific ERG knockout mouse
(Erg’®X%) have demonstrated that postnatal deletion of ERG results in
defective retinal angiogenesis (Fig. 2B; [12]). ERG deficiency in retinal
endothelial cells leads to reduced VE-cadherin expression (Fig. 2C),

mouse vessels. (F) Representative images of BI6F0 tumours from adult Erg’
mice (images reproduced from Ref. [12], under the Creative Commons BY license; http://creativecommons.org/licenses/by/3.0/).

iEC-KO and Erg" mice. Scale bar, 2 mm. Tumour size was

increased vessel regression (Fig. 2D) and reduced pericyte recruitment
(Fig. 2E), in agreement with a role for ERG in the control of vascular sta-
bility during physiological angiogenesis [12].

Although aberrantly expressed ERG fusion proteins are associated
with a number of different cancers (see Section 10.3), little information
exists on the role of ERG in regulating tumour neovascularization. Re-
cently, using a xenograft tumour model, Birdsey et al. demonstrated
that deletion of endothelial ERG in the adult mouse significantly re-
duced the size of B16 melanoma tumours (Fig. 2F) and this was accom-
panied by a significant reduction in tumour blood vessel density and
pericyte coverage of blood vessels [12].
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9.4. ERG as a repressor of vascular inflammation

In line with its role in promoting vascular homeostasis, ERG expres-
sion is down-regulated by inflammatory stimuli such as tumour necro-
sis factor (TNF)-q, lipopolysaccharide (LPS) and interleukin-1( (IL-1(3)
[47,61,95,120]. Moreover, ERG expression was lost from the endotheli-
um overlaying the shoulder regions of human coronary plaques, known
to be associated with inflammatory infiltrate and endothelial activation
[95]. The modulation of ERG expression by pro-inflammatory stimuli
suggests that its regulation may be critical during inflammatory pro-
cesses. Indeed, several studies have described the role of ERG in
repressing vascular inflammation. ERG has been shown to act as a gate-
keeper to maintain the endothelium in an anti-inflammatory state, by
repressing expression of pro-inflammatory molecules such as I[CAM-1,
vascular cell adhesion molecule (VCAM), plasminogen activator inhibi-
tor (PAI)-1 and interleukin (IL)-8 [24,95,120]. ICAM-1 repression by
ERG was due to inhibition of NF-kB p65 binding to the ICAM-1 promot-
er, suggesting a direct mechanism of interference [24]. Gene set enrich-
ment analysis of ERG- and NF-kB-dependent genes identified by
microarray analysis revealed that this mechanism is common to other
pro-inflammatory genes, including IL-8 [24]. Functionally, ERG was
able to inhibit in vitro leukocyte adhesion [95,120] and transmigration
(N. Dufton & A. Randi, unpublished data). In vivo, the functional rele-
vance of ERG's anti-inflammatory role was demonstrated using a mu-
rine model of TNF-a-dependent acute inflammation, where over-
expression of ERG in the mouse paw decreased TNF-a-induced paw
swelling [95].

10. Physiological and pathological non-vascular roles of ERG
10.1. Haematopoiesis

Endogenously expressed ERG is found in megakaryocytes [78],
chondrocytes [41] and premature T and B-lymphocytes [3]. ERG is tran-
siently expressed during the early stages of T and B cell differentiation
but is silenced permanently after T and B cell lineage commitment [3].
ERG is also required for definitive haematopoiesis, adult haematopoietic
stem cell function, normal megakaryopoiesis and the maintenance of
peripheral blood platelet numbers [58,70,99].

10.2. Bone and cartilage development

A role for ERG in limb skeletogenesis has been described. Dhordain
et al. provided the initial evidence that ERG is expressed at sites of future
synovial joint formation in chick embryo limbs [23]. Since then, studies
have shown that ERG is selectively expressed in articular chondrocytes
during mouse and chicken bone development [41-43]. ERG is induced
by the bone morphogenetic protein Gdf5 and is highly expressed in re-
gions of the articular cartilage that express lubricin [41]. Interestingly,
overexpression of ERG in developing chick limbs effectively blocks
chondrocyte maturation and endochondral ossification by maintaining
the entire limb chondrocyte population in an immature state [41].
Vijayaraj et al. have shown that a subset of ERG isoforms, which share
a common translational start site encoded by exon 3, are enriched in
chondrocytes [104].

10.3. Cancer

Accumulating evidence points to ERG as a lineage-determining tran-
scription factor; therefore its ectopic expression can be detrimental. In-
deed, ERG ectopic expression has been linked to the pathogenesis of
multiple cancers.

10.3.1. Ewing sarcoma and leukaemias
Chromosomal translocations that result in the expression of
oncogenic ERG fusion proteins have been identified in multiple

malignancies. In Ewing sarcoma and acute myeloid leukaemia, chromo-
somal translocations result in fusion of ERG with the RNA binding pro-
teins EWS and FUS, respectively, producing chimeric proteins [74,90,
91,94]. The EWS and FUS genes are closely related and contain con-
served domains [21]. The most common fusions in Ewing sarcoma actu-
ally occur between EWS and FLI-1 (85%), while the EWS:ERG fusion has
a 5-10% occurrence rate. In Ewing sarcoma, ERG fusions result in re-
placement of the C-terminus of EWS by the DNA-binding domain of
ERG resulting in loss of endogenous ERG promoter activity, causing dys-
regulation of ERG and its target genes [7]. High expression of ERG is a
poor prognostic indicator in both acute myeloid leukaemia and acute
lymphoid leukaemia [5,60] and increased ERG mRNA expression has
been observed in acute myeloid leukaemia patients with complex kar-
yotypes and abnormal chromosome 21 [4]. ERG maps to the Down's
syndrome critical region of chromosome 21, where an increase from
diploid to triploid gene dosage has been implicated in Down's syn-
drome-associated megakaryocytic leukaemia [70,78].

10.3.2. Prostate cancer

More than 50% of all prostate cancers harbour a chromosomal trans-
location that results in the fusion of the androgen receptor-regulated
gene promoter of transmembrane protease serine (TMPRSS)-2 and
ERG [102]. This translocation leads to aberrant overexpression of nearly
the entire ERG protein, including the DNA-binding domain, in the pros-
tate epithelium. In addition, over-expressed TMPRSS2:ERG fusion pro-
tein is able to induce expression of native ERG through activation of
one of the three native ERG promoters [59]. How the fusion products
regulate prostate cancer remains unclear, although it has been observed
that an increased incidence of the TMPRSS2:ERG fusion protein in pros-
tate epithelial cells correlates with increased cell invasiveness, poor
prognosis and higher rates of malignancy [101]. In combination with
deletion of the Phosphatase and Tensin Homolog (PTEN) or up-regula-
tion of the oncogenic serine/threonine protein kinase Akt, ERG overex-
pression induces progression to prostate cancer [96]. The role of ERG-
fusion proteins in prostate cancer has been reviewed in detail elsewhere

[1].

10.3.2.1. microRNAs and prostate cancer. Several studies have examined
correlation between ERG and micro-RNAs (miRNAs) in prostate cancer.
Hart et al. showed that miR-145, which is down-regulated in prostate
cancer, inhibits ERG expression by directly targeting its 3’UTR [35].
Thus, loss of miR-145 may provide a TMIPRSS2-ERG gene fusion-inde-
pendent means to up-regulate ERG expression in prostate cancer. Anal-
ysis of prostate cancer samples also showed that miR-221 is down-
regulated in patients with TMPRSS2-ERG gene fusion-positive tumours
compared to ERG fusion negative samples [32]. By integrating ERG ChIP-
seq data with miRNA profiling data in ERG-fusion positive prostate can-
cer cells, Kim et al. identified miR-200c as a putative downstream
miRNA regulated by ERG. The authors also demonstrated that miR-
200c is a direct target of ERG and is repressed in ERG fusion-positive
prostate cancer. In addition, they showed that miR-200c loss mediates
ERG-induced epithelial-to-mesenchymal transition and cell motility
[48].

10.3.3. Vascular malignancies

ERG has been shown to be both a sensitive and specific marker
for endothelial cells in vascular malignancies, including
angiosarcoma, haemangioma, lymphangioma, Kaposi sarcoma,
and haemangioendothelioma [64]. Whether ERG plays an oncogen-
ic role in vascular tumours is unknown.

11. Concluding remarks
The study of the role of ERG in vascular development and angiogen-

esis has had an upsurge in recent years. It is now clear that ERG is essen-
tial for differentiation and maintenance of the endothelial lineage, and
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therefore for the development and maintenance of healthy vasculature.
This is in striking contrast with its role in promoting oncogenesis when
ectopically expressed. Although substantial progress in understanding
the function of ERG has been made, much remains to be discovered. Up-
coming areas of study will include the identification of binding partners
that regulate ERG activity, the regulation of ERG function by post-trans-
lational modifications and by upstream signals. Understanding the ho-
meostatic function of ERG in endothelial cells will provide insight into
novel approaches to promote vascular health, as well as possible thera-
peutic options to selectively target the oncogenic function of ERG in
cancer.
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