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Summary

Pest insects lead to excessive agricultural and there-
fore economical losses on crops worldwide. These
insects have to withstand toxic molecules that are
inherent to plant defences, as well as those that are
produced and introduced by humans in the form of
insecticides. In recent years, research on insect–mi-
crobe symbioses has recognized that microbial sym-
bionts may play a role protecting against these
toxins, leading to a form of defensive symbiosis
between the pest insect and different types of
microorganisms that we term detoxifying symbioses.
In this minireview, we will highlight well-character-
ized and emerging insect model systems of detoxify-
ing symbioses and assess how the microorganisms
influence the host’s success.

Introduction

Insects are very successful eukaryotic life forms on earth
and have evolved into a stunning diversity of lineages.
In agriculture, many insects are beneficial because they
pollinate crops, disperse seeds or prey on herbivores
(Dillon and Dillon, 2004). On the other hand, there are
also detrimental insects that feed on crops and chal-
lenge food security worldwide, and are therefore
regarded as pest insects. Less than 0.5% of the known
species of insects are considered pests, yet several esti-
mates of worldwide losses caused by insects indicate a
staggering 7.9–15.1% of the world’s annual crop

production (Oliveira et al., 2014). To summarize which
insect species are the most harmful is a futile task as
the pest status is highly variable, dependent on year,
weather, geography and insect biology and ecology. Fur-
thermore, the monitoring and evaluation of damage
caused by pest insects is poorly documented on a world-
wide scale, and estimates of losses often have to be
made based on limited data. With this in mind, we exem-
plify economic losses reported in Brazil in 2014, where
greatest crop losses due to insects per area were
observed for apples (4281 $/ha), tomatoes (3806 $/ha),
tobacco (2729 $/ha), garlic (2655 $/ha), peanut (1679 $/
ha), rubber (1242 $/ha) and grapes (1004 $/ha) (Oliveira
et al., 2014).
There are several mechanisms known for counteract-

ing pest insects, e.g. sterile insect techniques (SIT), crop
rotation, chemical insecticides or biological pest control
exploiting predators and parasitoids (Douglas, 2007).
The former employs the release of male insects that are
not able to produce fertile offspring, yet mate with female
wild-type insects, yielding a reduced amount of pest
insects in the next generation. The use of chemical
insecticides has been under debate in the past decades
as many insecticides have harmful effects on humans
(Costa et al., 2007), ecosystems and non-target insects
(Pimentel, 2005). Release of parasitoids is now a com-
mercially available biocontrol strategy with varying suc-
cess (Smith, 1996; Bokonon-Ganta et al., 2013). A
largely untapped resource that may be used in pest
management is the manipulation of microorganisms that
live in symbiosis with insects. It has been recognized for
a long time that microorganisms play key roles in bio-
geochemical element cycles (Rousk and Bengtson,
2014), ecosystem functioning (Graham et al., 2016), host
nutrition (Hacquard et al., 2015) and human health (Sun
and Chang, 2014). Microbial symbionts provide an espe-
cially diverse range of benefits in insect nutrition, e.g. by
providing essential amino acids (Douglas, 1998), diges-
tive enzymes (Brune, 2014) or vitamins (Salem et al.,
2014). One field that has received less attention is the
roles that microbes play in protecting insects from toxic
plant compounds and insecticides. This is despite the
fact that it is known that many microorganisms contain
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enzymatic degradation mechanisms for a variety of plant
secondary metabolites such as terpenes (Marmulla and
Harder, 2014), caffeine (Summers et al., 2012, 2015),
nicotine (Brandsch, 2006; Li et al., 2010), cocaine (Nara-
simhan et al., 2012), isothiocyanates (Fan et al., 2011)
and even phosphorus- or sulfur-containing insecticides
(Kertesz et al., 1994). Oftentimes the interactions
between microbe and insect are difficult to disentangle,
and the relative contribution of insect versus microbial
defence mechanisms is not yet known. In this minire-
view, we will focus on hitherto described pest insects
where symbiotic microorganisms may play a crucial role
in detoxifying detrimental compounds for their respective
hosts, and touch upon possible routes for pest insect
management strategies.

Defining detoxifying symbiosis

The ecological definition of a symbiosis is broad,
encompassing commensalism, parasitism and mutual-
ism between any two dissimilar organisms. In
insect–microbe interactions, the bacterial counterpart is
generally referred to as ‘symbiont’ and the insect as
‘host’. As studies in microbe–insect interactions often-
times also include the involved physiology of the plant
that hosts an herbivorous insect, the plant may be
referred to as ‘plant host’ or ‘host diet’. Symbionts can
be distinguished as primary or secondary, which was
particularly useful during the early days of research on
the now well-studied symbiosis between aphids and
their primary symbionts Buchnera aphidicola. Primary
symbionts that are important for proper functioning of
the host are generally maternally transmitted and have
remained unculturable even with modern culturing tech-
niques. This fastidious nature is caused by drastic

reduction in genome size (Moran and Bennett, 2014).
Generally, this type of symbiosis, involving reduced
symbiont genomes, is reserved for nutritional sym-
bioses, but recent findings indicate that some primary
symbionts may also have a defensive function in psyl-
lids and stinkbugs (Hosokawa et al., 2006; Nakabachi
et al., 2013). Primary symbionts are indispensable for
both partners, resulting in perfect host infection rates.
These symbioses, where essential nutrients are synthe-
sized by an intracellular endosymbiont with a highly
reduced genome, are particularly widespread in aphids,
tsetse flies and psyllids (Douglas, 1998; Nikoh et al.,
2011; Jing et al., 2014).
Secondary symbionts are generally ubiquitous in many

types of insects. They show less fidelity towards one
specific host, and not all individuals of a population nec-
essarily carry the symbiont. Loss of a secondary sym-
biont by an insect is a common occurrence, especially in
lab-reared cultures where the natural driving force
behind a sustained symbiosis may be inevitably or inad-
vertently removed (Kellner, 1999; Rani et al., 2009;
Estes et al., 2012). The biological effects of most faculta-
tive symbionts are unknown, but findings regarding their
defensive capabilities imply that their roles will be under-
standable only in the context of complex natural environ-
ments (Moran et al., 2008). Examples of defensive
symbionts conferring beneficial traits include, but are not
limited to; increased thermal tolerance, production of
antipredator toxins and protection against pathogens
(Fl�orez et al., 2015). Many insect–microbe symbioses
were recently extensively reviewed by several authors
(Douglas, 2013, 2015; Hansen and Moran, 2014), but
one aspect in particular has not yet been well evaluated,
namely symbiont-mediated detoxification (Fig. 1). As the
definition of a defensive symbiosis does not fully capture

Detoxification of plant antiherbivory compounds Detoxification of  insecticides

Host diet toxin
Terpenes
Terpenes
Isotiocyanates
Oxalate
Oleuropein
Caffeine

Host
Pine weevil, H. abietis
Mountain pine beetle, D. ponderosae 
Cabbage root fly, D. radicum 
Bean plataspid, M. punctatissima
Olive fly, B. oleae
Coffee borer beetle, H. hampei 

Symbiont
Pseudomonas sp.*
Serratia marcescens*
Pectobacterium sp.**
Ishikawaella capsulata
Erwinia dacicola
Pseudomonas fulva

Insecticide
Fenitrothion (Organophosphate)
Indoxacarb (Oxadiazine)
Acephate (Organophosphate)

Host
Alydid stinkbug, R. pedestris
Diamondback moth, P. xylostella
Diamondback moth, P. xylostella

*      Detoxification expected by Pseudomonas, Rahnella, Stenotrophomonas, Serratia, Pantoea, Erwinia and Burkholderia spp.
**   Detoxification by Serratia, Pectobacterium, Acinetobacter,  Providencia spp.
*** Detoxification by Enterobacter asburiae and Pantoea agglomerans.

Symbiont
Burkholderia sp.
Bacillus cereus
Bacillus cereus***

Fig. 1. An overview of emerging models for symbiont-mediated detoxification in pest insects.
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the concept of symbiont-mediated detoxification, we sug-
gest the term ‘detoxifying symbiosis’ for this type of
mechanism, where insect-associated microorganisms
are the main factor responsible for the detoxification of
plant toxins or insecticides. It should be kept in mind that
categories like ‘nutritional’, ‘defensive’ or ‘detoxifying’
symbiosis are not mutually exclusive for any given sym-
biosis and refer to only one elucidated or hypothesized
aspect of a complex partnership. Recent developments
in the field are providing increasingly more evidence for
the natural occurrence of gut-associated microorganisms
that aid or possibly are crucial to detoxification. Here, we
compile recent studies that indicate microbial compo-
nents involved in the detoxification of toxic plant metabo-
lites and man-made insecticides (Adams et al., 2013;
Ben-Yosef et al., 2014; Ceja-Navarro et al., 2015;
Berasategui et al., 2016; Welte et al., 2016a).

Detoxifying symbionts confer resistance to plant
allelochemicals

As a result of their sessile lifestyle, plants have devel-
oped an impressive arsenal of defensive mechanisms,
even when disregarding physical defences such as tri-
chomes, prickles or thorns. They have evolved to pro-
duce a multitude of antiherbivorous compounds to deter
feeding insects that we will simply refer to as allelochem-
icals. Many herbivorous insects specialize on one or just
a few closely related host plants and thus have to over-
come the defensive compounds that these plants pro-
duce. In many cases, defence against allelochemicals is
an intrinsic part of insect physiology, mediated by insect-
produced enzymes like cytochrome P450 enzymes, glu-
tathione S-transferases or esterases (Douglas, 2015). In
other cases, the mechanism with which an insect copes
with the toxicity of its diet has remained unclear. In this
chapter, we discuss studies that suggest that microbial
symbionts aid their hosts in the detoxification of antiher-
bivorous compounds and supply limited economic
context for these pest insects.

Detoxifying symbionts of legume pests

Plataspids (or kudzu bugs, Megacopta spp.) are a notori-
ous pest of peas, soya beans and other legumes, and
received international notoriety after spreading from Asia
to the United States in 2009 (Ruberson et al., 2012).
Data on economic losses caused by the plataspid are
scarce. However, occasional soya bean yield losses of
up to 50% have been reported in China, and large infes-
tations are now consistently found in the U.S.A., where
smell and sheer number of plataspids can cause public
annoyance (Ruberson et al., 2012). Plataspidae are
known to vertically transmit their obligate Candidatus

Ishikawaella capsulata symbiotic microbes by depositing
brown symbiont-containing capsules with their eggs that
are ingested by newborn nymphs (Nikoh et al., 2011).
Sequencing of Ca. I. capsulata revealed an ode gene

on one of its plasmids (Hosokawa et al., 2006; Nikoh
et al., 2011). The ode gene codes for oxalate decarboxy-
lase, which can break down oxalate; a plant secondary
metabolite that provides defence against herbivory (Fran-
ceschi and Nakata, 2005). Soluble oxalic acid is a strong
acid and is toxic to animals, while the crystallized cal-
cium oxalate is reported to serve as a mechanical
defence, as they have a striking abrasive effect on the
mandibles of chewing insects (Korth et al., 2006). Feed-
ing-choice tests have shown that beet armyworms (Spo-
doptera exigua) avoid calcium oxalate containing wild-
type Medicago truncatula leaves in the presence of
mutants that lack calcium oxalate. Breakdown of oxalate
was already reported in gut bacteria found in humans,
pigs and sheep (Allison et al., 1985). Future studies on
the plataspid symbiont should consider the possibility of
a similar detoxifying role for this insect. Nikoh and col-
leagues (Nikoh et al., 2011) thus suggested that Ca. I.
capsulata may be giving not only nutritional but also pro-
tective benefits to its host.
Ca. I. capsulata shows remarkable resemblance to the

Buchnera and Wigglesworthia genera that are found in
obligate nutritional symbiosis with aphids and tsetse
flies, respectively. A genetic analysis on the Ca. I. cap-
sulata symbionts of pest plataspid Megacopta punctatis-
sima revealed that the symbionts have a highly reduced
genome (~746 kb) that contains genes involved in amino
acid metabolism, indicative of obligate symbionts of sap-
feeding insects. Just like aphids, the stinkbug M. punc-
tatissima feeds on phloem sap that contains little amino
acids and its diet is supplemented by microbes that pro-
vide essential amino acids (Nikoh et al., 2011). It thus
seems that Buchnera and Ishikawaella symbionts serve
similar purposes for their respective hosts, but Ca. I.
capsulata is not an endosymbiont. Instead, it can be
found extracellularly in an enlarged portion of the poste-
rior midgut of the adult stinkbug (Hosokawa et al., 2006).
It is still considered an obligate symbiont because the
experimental removal of Ca. I. capsulata from the insect
caused retarded growth, a higher mortality rate and
increased sterility, among other negative effects. Inter-
estingly, when two species of plataspids with high and
low pest status (M. punctatissima and Megacopta cri-
braria, respectively) had their obligate symbionts experi-
mentally exchanged, their performances on a crop
legume were also reversed (Hosokawa et al., 2007).
This finding is particularly interesting with regard to pos-
sible insect control methods involving symbiotic microor-
ganisms; if the pest status of an insect depends critically
on symbiont genotype, this would provide a basis for
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identifying and/or selecting for genotypes geared
towards specific pest management priorities. The next
important (yet long outstanding) question is whether this
type of selection is feasible with low-tech management
strategies like manipulation of the nutrition or abiotic fac-
tors experienced by insect pests (Douglas, 2007).

Detoxifying symbionts of pine pests

Pine plantations are heavily impacted by mountain pine
beetles (Dendroctonus ponderosae) and pine weevils
(Hylobius abietis), two serious pests in the cultivation of
pine seedlings and conifers causing losses of up to 80%
(Petersson and €Orlander, 2003; Boone et al., 2013).
Beetles attempting to colonize living conifers will encoun-
ter a diverse array of toxic terpenes, produced by the
tree for protection (Hamberger et al., 2011). Bacteria
associated with D. ponderosae were first shown to be
able to reduce concentrations of terpenes (Boone et al.,
2013), and subsequent metagenomic sequencing of the
microbiome of D. ponderosae revealed that its bacterial
community is highly enriched in genes contributing to
terpene metabolism (Adams et al., 2013). Recently, a
study by Berasategui and co-workers (Berasategui et al.,
2016) found that the gut microbiome of pine weevils is
also highly similar to closely related weevils and bark
beetles feeding on similar food sources, raising the
question whether those terpene-degrading bacteria
enable the pine weevil to overcome host plant defences
(Berasategui et al., 2016). Similarly, a Rhodococcus
species isolated from the generalist gypsy moth (Lyman-
tria dispar) was closely related to the Rhodococcus ery-
thropolis DCL14 that produces an enzyme responsible
for monoterpene degradation (Broderick et al., 2004).

Detoxifying symbionts of olive pests

The olive fly Bactrocera oleae is a major pest insect
found on olive trees worldwide. In the Mediterranean
basin, where 98% of olive trees are found, the pest has
occurred for over 2000 years. In heavily infested regions,
the olive fruit fly can cause crop losses of up to 100%
for table olives and up to 80% for olive oil variants due
to lower quality requirements (Zalom, 2009; Hamdan,
2016). Yearly economic losses caused by the olive fruit
fly are estimated at 800 million $, despite a yearly
investment of 100 million $ combating olive tree pests
(El-Hadi, 1996). Recent efforts for finding effective bio-
control strategies included screening for wild parasitoids
in Himalayan Asia (Bon et al., 2016), and the braconid
wasp Psyttalia ponerophaga shows favourable results in
experimental setups (Sime et al., 2007). Currently, the
primary control method employed by olive growers in
California entails intensive spraying of spinosad

insecticides (Vossen et al., 2004). Unripe olives are rich
in oleuropein, a bitter tasting phenolic glycoside that is
the main secondary metabolite of the unripe fruit. When
activated by glycosylation, it cross-links foliar proteins
into high molecular weight aggregates and binds lysine
residues, effectively reducing the nutritional value of diet-
ary protein in the affected plant (Konno et al., 1999).
Olive fly larvae have to overcome this defence strategy,
and one possible mechanism is the association with
symbiotic microorganisms. Several recent studies (Estes
et al., 2009; Ben-Yosef et al., 2014, 2015; Andongma
et al., 2015) highlighted the possible involvement of bac-
teria even though they do not provide definitive proof of
bacterial detoxification of the oleuropein secondary
metabolite. When olive flies with and without (aposymbi-
otic) the bacterium Ca. Erwinia dacicola were reared on
unripe olives, aposymbiotic larvae did not develop
beyond the second instar. Conversely, oleuropein con-
centration is drastically lower in ripe olives, and aposym-
biotic larvae were able to complete their development to
adulthood on these fruits, although it took significantly
longer and the larvae were significantly lighter than their
symbiotic counterparts (Ben-Yosef et al., 2015). Flies
commonly associate with free-living, rot-inducing bacteria
like those of the genus Erwinia that can be inoculated
into the fruit by ovipositing females, subsequently
enhancing larval nutrition with proteins and essential
nutrients. These bacteria can usually grow on fruits inde-
pendently of the host insect (Ben-Yosef et al., 2015).
The olive fly symbiont Ca. E. dacicola, however, has so
far not been obtained in pure culture but has been stud-
ied by a variety of culture-independent methods. The
association of the olive fly with Ca. E. dacicola combines
characteristics that were once thought to be exclusive
for either obligate or facultative symbionts (Moran et al.,
2008). Its genome size and GC-content are not repre-
sentative of classical primary endosymbionts and are
more indicative of free-living or phytopathogenic bacteria.
On the other hand, Ca. E. dacicola is vertically transmit-
ted and shows a clear history of co-evolution with its
host like classical primary endosymbionts (Capuzzo
et al., 2005). Ca. E. dacicola was found in all life stages
and in all wild populations of B. oleae in both the New
and Old World sampled over 2 years with a significant
difference in relative abundance across life stages
(Estes et al., 2012). Abundances were highest in
ovipositing females and low in eggs and pupae (Estes
et al., 2009). It was hypothesized that the high abun-
dance of symbiotic Ca E. dacicola in ovipositing females
causes a higher chance of vertical transmission to pro-
geny and may possibly provide dietary supplementation
during the nutritionally demanding period of oviposition.
The association of Ca. E. dacicola with all olive fly life
stages suggests that these bacteria can persist through
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metamorphosis and dietary changes. About 10% of the
adult population appeared to lack the bacterium, so even
though Ca. E. dacicola is tightly associated with the olive
fly it may either not be obligate in terms of host survival
or was present below the detection limit of the chosen
method. Larvae void their intestine prior to pupation and
might therefore contain a very low amount of symbiotic
gut bacteria, leading to too low amounts of template
DNA to detect the symbiont with 16S rRNA gene target-
ing methods (Estes et al., 2009). Ca. E. dadicola is
maintained extracellularly in the adult host microbiome in
the gut lumen, the gastric caeca (Ben-Yosef et al., 2015)
and intracellularly in the midgut epithelial cells of larvae
(Estes et al., 2009). A significant nutritional role has
been demonstrated for this bacterium, as it provides the
capacity to utilize non-essential amino acids and urea as
a nitrogen source (Ben-Yosef et al., 2014). The studies
have indicated that it enables the olive fly to overcome
plant defences, and it is implied that detoxification of
plant oleuropein constitutes a major part in this defen-
sive mechanism. Whether Ca. E. dacicola is the respon-
sible element for the detoxification of oleuropein should
be further investigated. The exact mechanism remains
elusive and is difficult to validate without cultivation of
Ca. E. dacicola, but hypotheses include symbiotic excre-
tion of proteins that degrade, bind, or are resistant to
polyphenols. The study further emphasizes the added
value of being able to isolate a symbiotic bacterium for
experimental purposes, which is still a major hurdle in
many symbiotic models.

Detoxifying symbionts of cabbage pests

Another fly species that may make use of detoxifying bac-
terial symbionts is the cabbage root fly, Delia radicum. It
feeds on plants of the Brassicaceae family to which many
well-known vegetable crops belong like cabbages, cauli-
flower or brussels sprouts, as well as oilseed rape used
for the production of vegetable oil and biodiesel. Although
exact numbers are scarce, economical losses inflicted by
D. radicum include crop losses of up to 80% but are highly
dependent on the host plant and crop rotation. Yield
reduction in three consecutive years of canola production,
for example, amounted to economic losses of approxi-
mately 292–377 Can$/ha/year, mainly due to D. radicum
infestation (Dosdall et al., 2012). Insecticide treatments
using the organophosphate insecticide chlorpyrifos can be
effective, but are banned in several countries. Cruciferous
plants employ a common defence mechanism where toxic
isothiocyanates (ITC) are produced by the breakdown of
glucosinolates as catalysed by the plant enzyme myrosi-
nase, as a response to insect damage. Most insect herbi-
vores that specialize on glucosinolate-containing plants
avoid the production of ITC altogether (Winde and

Wittstock, 2011). Infestation of the cabbage root fly, how-
ever, does lead to the emittance of ITC by plant roots
(Crespo et al., 2012). Cabbage root fly larvae appear to
lack any of the known avoidance mechanisms observed
in other cabbage pests, such as phloem sucking to avoid
glucosinolate disruption or enzymatically guided glucosi-
nolate breakdown towards less toxic epithionitriles as an
end product instead of ITC (Wittstock et al., 2003). A
recent study shows that cabbage root fly larvae harbour
gut bacteria capable of detoxifying the ITC themselves
(Welte et al., 2016a). Four Gammaproteobacterial isolates
(Serratia, Providencia, Pectobacterium and Acinetobac-
ter) from the gut were able to degrade the ITC to less
harmful compounds. Genome sequencing of these four
isolates results in the assembly of several near-identical
plasmids recurring in the different genera, suggesting hori-
zontal gene transfer. More specifically, the presence of tra
genes indicates the occurrence of conjugation events.
One plasmid, designated as Drgb3, contains the gene
saxA (Fan et al., 2011) that encodes a novel ITC hydro-
lase (Welte et al., 2016b) which hydrolyses several aro-
matic ITC. The respective bacterial species were
dominant players in the gut microbial community as
judged by a metagenome analysis, and may therefore
reduce the levels of toxic isothiocyanate in the host gut,
benefiting host fitness.

Detoxifying symbionts in coffee pests

The coffee borer beetle or coffee berry borer (Hypothene-
mus hampei) is the primary pest for coffee bean farmers
across the world. Over 20 million coffee-growing families
are economically affected by this pest, and infestation
levels are particularly high in plantations in Tanzania
(90%), Malaysia (50–90%), Uganda (80%), Colombia
(60 %), Mexico (60%) and Jamaica (58–85%; Jaramillo
et al., 2006). Yearly losses have been estimated at
500 million $ worldwide, but accumulative approximations
of economic loss per country indicate that this is a very
conservative estimate (Vega et al., 2015). Caffeine is an
important substance that gives coffee its stimulating
effects, but in an ecological context coffee beans use caf-
feine as a protective alkaloid allelochemical against her-
bivory. The coffee borer beetle overcomes the toxicity of
caffeine using its gut microbes for caffeine degradation as
demonstrated by Ceja-Navarro et al. (2015). Beetles with
an intact gut flora were able to fully deplete the caffeine in
their diet, whereas beetles that had their gut flora dis-
rupted with an antibiotic treatment lost their ability to
degrade caffeine. Interestingly, the researchers were able
to reinstate the caffeine degradation in H. hampei by
transferring a pure culture of Pseudomonas fulva into the
gut via inoculum of the beetles’ artificial diet. This P. fulva
had beforehand been isolated from the digestive tract of
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H. hampei and showed strong caffeine degrading capabil-
ities of its own. Although many of the core microorganisms
from H. hampei were able to subsist on caffeine, only
P. fulva isolates yielded positive amplification of the ndmA
gene which codes for an enzyme that catalyses the first
step in caffeine degradation (Summers et al., 2012). This
gene was also expressed in situ, further implying the
importance of the role of P. fulva in detoxifying caffeine for
its host.
The study of Ceja-Navarro et al. provides excellent

insight into the importance of bacteria in the detoxification
of plant secondary metabolites. However, like many stud-
ies in this field, it also raises several new questions. For
instance, out of over 100 isolates over 12 different bacte-
rial species that were able to subsist on caffeine as their
sole carbon and nitrogen source, only P. fulva contained
the ndmA gene that is associated with caffeine break-
down. What are the metabolic pathways of the others?
And even though infecting H. hampei with pure P. fulva
was enough to reinstate caffeine degradation, the abun-
dance of other species in natural core microbiomes sug-
gests additional unknown functions for these bacteria.

Symbiont-mediated insecticide resistance

Plant-produced toxins are not the only dangerous chemi-
cals that insects encounter. Insecticides are employed to
increase crop yields and control hygienic pests, con-
tributing to worldwide agriculture, economy and health
(Kikuchi et al., 2012). The rapid development of insecti-
cide resistance by diverse organisms has raised concern
and should be further investigated. Multiple mechanisms
for insecticide resistance have been attributed to host-
level physiology (Kasai et al., 2000; Temeyer et al.,
2008; Tabashnik and Carriere, 2010), but in recent
years, some scientists argue that certain insecticide
resistances may be attributable to detoxifying symbionts.
Isolates of insect fungal symbionts have long been
shown to be promising sources of detoxifying enzymes
that target toxic allelochemicals as well as insecticides
(Shen and Dowd, 1991; Dowd, 1992; Shen and Dowd,
1992). Evidence of insecticide resistance conferred by
symbiont-level physiology is still scarce, but particularly
convincing results regarding a notorious Asian legume
pest were recently put forward and will be discussed in
the next paragraph.

Insecticide resistance in the Japanese legume pest
Riptortus pedestris

The broad-headed bugs of the Alydidae family, particu-
larly Riptortus spp. and Leptocorisa spp., are major
pests on soya beans and other legumes in parts of east-
ern Asia, including Japan. Riptortus clavatus houses a

dense population of Burkholderia symbionts in their mid-
gut crypts, which are acquired from the environment in
every generation, rather than the ‘conventional’ method
of vertical maternal transmission (Kikuchi et al., 2007).
The symbiotic Burkholderia are able to degrade the
insecticide fenitrothion, a prevalent organophosphorus
agent in agriculture (Kikuchi et al., 2012). Moreover, indi-
vidual bugs of Riptortus pedestris readily establish a
symbiosis with fenitrothion-degrading Burkholderia sym-
bionts and subsequently show much higher survival
rates on plants dipped in fenitrothion than bugs with
non-degrading Burkholderia symbionts (Kikuchi et al.,
2012). Application of fenitrothion to a field results in a
relative increase of fenitrothion-degrading bacteria in the
soil, which is hypothesized to affect the dynamics of
transmission of symbiotic degrading Burkholderia from
the soil to stinkbugs (Tago et al., 2015). These findings
suggest that insecticide resistance might develop in a
field even in the absence of pest insects, which could
then quickly establish in a single insect generation (Kiku-
chi et al., 2012). The established Riptortus pedestris
model provides a good opportunity for studying bacterial
symbiotic factors at a molecular level, as the Burkholde-
ria symbionts are cultivable and genetically manipulable
(Kim et al., 2015). Development of an ecological insecti-
cide by utilizing gut symbionts is one of the long-term
research goals in the field. The studies regarding feni-
trothion may only represent the proverbial tip of the ice-
berg and could thus be applicable to many as of yet
undiscovered mechanisms of insecticide resistance.

Insecticide breakdown by diamondback moth-associated
symbionts

The diamondback moth Plutella xylostella (sometimes
also called the cabbage moth, not to be confused with
Mamestra brassicae) is a major global pest of crucifer-
ous crops, estimated to cost approximately 4 billion
euros per year in lost production and management
(Zalucki et al., 2012). Unlike the aforementioned
D. radicum, P. xyolostella produces an enzyme that pre-
vents formation of dietary isothiocyanates (Ratzka et al.,
2002). P. xylostella is not only able to overcome host
defences, but it has even been shown to be highly resis-
tant to a large variety of chemical insecticides and it is
one of the only three insect species to have developed
resistance to Bacillus thuringiensis-based insect control
methods (Furlong et al., 2013). The rapid development
of highly resistant phenotypes of P. xylostella is at least
in part attributed to the insect’s own physiology, and
includes altered target sites for carbamates and
organophosphates, metabolism of parathion via glu-
tathione S-transferases and detoxification of pyrethroids
via microsomal P-450 monooxygenases (Ramya et al.,
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2016). Isolated Bacillus cereus colonizing the moth’s gut
were able to break down the insecticide indoxacarb for
use in metabolism and growth (Janmaat and Myers,
2003; Ramya et al., 2015). Another insecticide, ace-
phate, was also readily broken down by bacteria isolated
from the gut of the diamondback moth. These findings,
combined with findings on symbiont-mediated insecticide
resistance in stinkbugs (Kikuchi et al., 2012), indicate
that bacteria may play a larger role in insect resistance
to insecticides than previously thought. However, in vivo
breakdown of either insecticide by P. xylostella gut bac-
teria has not yet been demonstrated, so cause and
effect remain unclear. Even if detoxifying symbiosis does
not play a role in this association, further study can still
be fruitful because organophosphorus-degrading bacteria
by themselves may prove of value in ecological and
industrial applications (for an overview we refer to the
review of Singh, 2009).

Conclusions and outlook

In agriculturally important pest insects, the microbiome
offers potential for improvement of current methods in
pest management. Primary opportunities include the pre-
diction of host traits and thereby the efficacy of control
strategies, targeting of the microbiome for direct pest
control or targeting the microbiome to reduce the vector
competence of the pest (Douglas, 2015). Even though
many studies speculate on the contribution of microor-
ganisms in detoxifying symbiosis it is – even with the
current advances in culture-independent microbiological
techniques – still challenging to unravel specific contribu-
tions of microbial players in the complete metabolism.
Many detoxifying symbioses are specific to a certain
type of insect lifestyle, including the specialization to a
host plant producing toxic allelochemicals. Microbes are
known to break down a large array of allelochemicals
and insecticides which offers many opportunities for
insects to establish detoxifying symbioses. Evolution in
microorganisms proceeds at a faster pace than in
insects, which might lead to quick adaptation of pest
insects to insecticides by the use of symbiotic microor-
ganisms (Kikuchi et al., 2012). Insects are furthermore
able to rapidly acquire novel metabolic functions and to
invade new ecological niches by engaging in symbiotic
relationships with microbes that already possess com-
plete, well-attuned metabolic pathways (Hosokawa et al.,
2016).
An increased demand for novel insect pest manage-

ment created by growing human populations and global
climate change is anticipated, and symbiotic microorgan-
isms offer one potential route to meet this demand (Dou-
glas, 2007). Of the symbiont-based pest control
strategies, only sterile insect technique is currently

routinely used, and developments in paratransgenesis
are ongoing but require genetic modification, making it
difficult to apply in agricultural systems. Further research
efforts into (detoxifying) symbiosis may lead to environ-
mentally friendly and sustainable methods to control
major pest insect populations. For example, if insect pest
status depends critically on symbiont genotype, it would
provide a basis for identifying and/or selecting for geno-
types geared towards specific pest management priori-
ties, ideally using low-tech management strategies.
Isolation of detoxifying symbionts could lead to applica-
tions in bioremediation or treatments for insecticide poi-
sonings. In this minireview, we have assembled relevant
studies regarding detoxifying symbioses in agriculturally
important pest insects and how they were investigated,
thereby providing an array of experimental strategies to
learn more about microbes and their role in detoxifying
symbiosis.
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