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Abstract

Isoprostanes (IsoPs) are prostaglandin-like molecules generated independent of the 

cyclooxygenase (COX) by the free radical-induced peroxidation of arachidonic acid. The first 

isoprostane species discovered were isomeric to prostaglandin F2α and were thus termed F2-IsoPs. 

Since the initial discovery of the F2-IsoPs, IsoPs with differing ring structures have been identified 

as well as IsoPs from different polyunsaturated fatty acids, including eicosapentaenoic acid and 

docosahexanenoic acid. The discovery of these molecules in vivo in humans has been a major 

contribution to the field of lipid oxidation and free radical research over the course of the past 25 

years. These molecules have been determined to be both biomarkers and mediators of oxidative 

stress in numerous disease settings. This review focuses on recent developments in the field with 

an emphasis on clinical research. Special focus is given to the use of IsoPs as biomarkers in 

obesity, ischemia-reperfusion injury, the central nervous system, cancer, and genetic disorders. 

Additionally, attention is paid to diet and lifestyle factors that can affect endogenous levels of 

IsoPs. This article is part of a Special Issue entitled “Oxygenated metabolism of PUFA: analysis 

and biological relevance”.
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1. Introduction

January 2015 marks the 25th anniversary of the first report by Morrow and Roberts on the 

discovery of the isoprostanes (IsoPs), prostaglandin-like molecules generated in vivo in 

humans independent of the cyclooxygenase (COX) by the free radical-induced peroxidation 

of arachidonic acid [1]. Over the course of the past 25 years, more than 3800 articles have 

been published in the field of IsoP research by numerous investigators around the world. 

Numerous excellent reviews have been written describing the formation, chemical synthesis, 

and biological activities of the IsoPs as well as their potential use as biomarkers of disease. 
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This review will provide a brief historical perspective on the discovery of the IsoPs with the 

primary focus on recent clinical research in the field.

2. Historical perspective

2.1. Discovery and formation of isoprostanes

Oxidative stress is characterized by the inability of the body’s natural antioxidant defenses 

to detoxify and protect against pro-oxidant, and often pro-inflammatory, species. Production 

of reactive oxygen species (ROS), typically free radicals, is a hallmark of oxidative stress. 

Overproduction of ROS has been implicated in a variety of diseases yet much remains to be 

understood about mechanisms of oxidant injury in humans. Polyunsaturated fatty acids 

(PUFAs), such as arachidonic acid, are one target of free radical insult during oxidative 

stress. In the mid-1970s, it was shown that prostaglandin (PG)-like compounds could be 

formed in vitro by the non-enzymatic peroxidation of purified PUFA; however, this work 

had never been carried out beyond in vitro studies [2].

In the 1980s, a study showed that PGD2 derived from COX is primarily metabolized in vivo 
in humans to 9α,11β-PGF2α by the enzyme 11-ketoreductase [3]. In aqueous solutions, 

however, PGD2 is an unstable compound that undergoes isomerization of the lower side 

chain and these isomers can also be reduced by 11-ketoreductase to yield isomers of 9α,

11β-PGF2α [4]. In studies undertaken to further characterize these compounds utilizing mass 

spectrometry, it was found that when plasma samples from normal volunteers were 

processed and analyzed immediately, a series of peaks were detected possessing 

characteristics of F-ring PGs. Interestingly, however, when plasma samples that had been 

stored at −20 °C for several months were reanalyzed, identical chromatographic peaks were 

detected but levels of putative PGF2-like compounds were up to 100-fold higher [1]. In 

addition, base-catalyzed hydrolysis of plasma lipids also yielded significant amounts of the 

PGF2-like compounds. Antioxidants and reducing agents suppressed the formation of these 

compounds and CCl4, a toxic agent known to generate free radicals in the liver through 

metabolism to the CCl3•, dramatically increased the formation of these compounds in rats 

[1,6]. These experiments confirmed that the observed PGF2-like compounds were generated 

in vivo, not by a COX-derived mechanism, but rather non-enzymatically by autoxidation of 

arachidonic acid. Morrow and Roberts termed this new class of compounds F2-isoprostanes 

(IsoPs) because they were isomeric to PGF2α [5,6].

A mechanism to explain the formation of the F2-IsoPs from arachidonic acid is outlined in 

Fig. 1 [7]. Following abstraction of a bisallylic hydrogen atom and the addition of molecular 

oxygen to arachidonic acid to form a peroxyl radical, the peroxyl radical undergoes 5-exo 
cyclization and a second molecule of oxygen adds to the backbone of the compound to form 

PGG2-like compounds. These unstable bicycloendoperoxide intermediates are then reduced 

to the F2-IsoPs. Based on this mechanism of formation, four F2-IsoP regioisomers, each of 

which is comprised of eight racemic diastereomers, a total of 64 compounds, are generated. 

The four regioisomer classes are named according to the carbon number on which the side 

chain hydroxyl group is attached (Fig. 1). This nomenclature system has been approved by 

the Eicosanoid Nomenclature Committee, which is sanctioned by JCBN of IUPAC [8]. An 

alternative nomenclature system for the IsoPs has been proposed by FitzGerald and 
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colleagues in which the abbreviation iP is used for isoprostane, and the regioisomers are 

denoted as III–VI (Fig. 1) [9]. It is important to note that 5- and 15-series regioisomers are 

formed in significantly greater abundance than the 8- and 12-series regioisomers as 8- and 

12-series regioisomers readily undergo further oxidation [10].

In addition to F2-IsoPs, various classes of IsoPs that differ in regards to the functional 

groups on the prostane ring have been discovered; the structures of these different 

compounds are summarized in Fig. 2. The compounds are named based upon the structure 

of the functional groups on the cyclopentane ring in a manner analogous to the 

prostaglandins. Like F2-IsoPs, multiple isomers of these compounds are formed. E2-/D2-

IsoPs that are isomeric to PGE2 and PGD2, are formed competitively with F2-IsoPs from the 

isomerization of the arachidonyl endoperoxide intermediate 1 (Fig. 2) [11]. Depletion of 

cellular reducing agents, such as glutathione (GSH) or α-tocopherol, favors the formation of 

E2/D2-IsoPs over that of F2-IsoPs, which is formed via reduction of the endoperoxide 1 (Fig. 

2) [12]. E2/D2-IsoPs, however, are not terminal products of the IsoP pathway. These 

compounds readily dehydrate in vivo to yield A2/J2-IsoPs, which are also known as 

cyclopentenone IsoPs because they contain an α,β-unsaturated cyclopentenone ring 

structure [13,14]. A2/J2-IsoPs can be further metabolized, through rearrangement and 

dehydration, to yield deoxy-A2 and deoxy-J2-IsoPs [15]. Hardy and colleagues have shown 

that 15-deoxy-Δ12,14-PGJ2 (15-d-PGJ2), a highly studied molecule originally identified as a 

metabolite of PGD2, can also be generated non-enzymatically during free radical-induced 

oxidation and is one of the deoxy-J2-IsoP isomers [15]. Finally, in addition to the molecules 

described above, compounds isomeric to the COX-derived thromboxane B2, termed 

isothromboxanes are products of the free radical-catalyzed peroxidation of arachidonic acid 

[16].

Besides IsoPs, another group of related compounds are also generated from the peroxidation 

of arachidonic acid via a similar mechanism. IsoPs are formed when the indicated carbon-

centered radical undergoes 5-exo-cyclization to form the cyclopentane ring, as shown in Fig. 

3. Alternatively, this carbon-centered radical could react with a molecule of oxygen to 

generate oxidized products of a different structure (Fig. 3) [17]. These products have a 

substituted tetrahydrofuran ring and thus have been named isofurans (IsoFs). A total of eight 

regioisomers are formed that are comprised of 16 racemic diastereomers for a total of 256 

compounds [18].

2.2. Isoprostane metabolism

In contrast to COX-derived PGs that are generated from free arachidonic acid, IsoPs are 

initially formed from arachidonic acid in situ on lipids [5,19]. Molecular modeling of IsoP-

containing phospholipids reveals them to be remarkably distorted molecules. IsoPs can be 

released from the phospholipid backbone as free acids by phospholipase action. Platelet 

activating factor-acetylhydrolase (PAF-AH) has also been shown to release F2-IsoPs from 

phospholipids [20].

Free F2-IsoPs are found circulating in plasma, are further filtered in the kidney, and appear 

in the urine [21,22]. F2-IsoPs can also undergo metabolism in the liver to yield a variety of 

metabolites (Fig. 4) [23–29]. In humans, two major urinary metabolites of 15-F2t-IsoP (also 
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referred to as 8-iso-PGF2α or iPF2α-III), one of the most abundant endogenous F2-IsoPs, 

have been identified to be 2,3-dinor-15-F2t-IsoP and 2,3-dinor-5,6-dihydro-15-F2t-IsoP 

[24,26,27]. Metabolism studies of eight different 15-series F2-IsoP stereoisomers have also 

been conducted in isolated rat hepatocytes, an accepted model of metabolism [28]. In 

addition to 2,3-dinor- and 2,3-dinor-5,6-dihydro metabolites, 13,14-dihydro-15-keto- and 

2,3,4,5-tetranor- derivatives of 15-F2t-IsoP were identified (Fig. 4) [28]. Taurine conjugates 

of 15-F2t-IsoP and its various metabolites were also observed (Fig. 4) [28]. In human clinical 

trials, different F2-IsoP stereoisomers, including 5- and 15-F2t-IsoP, as well as 2,3-dinor-15-

F2t-IsoP and 2,3-dinor-5,6-dihydro-15-F2t-IsoP have been used as biomarkers of IsoP 

formation in vivo.

Importantly, Yan and colleagues have proposed that F2-IsoPs are excreted in the urine 

conjugated with glucuronide [29]. The structure of the glucuronide metabolite(s) has not 

been directly confirmed (proposed structure in Fig. 4), but the authors noted that levels of 

urinary F2-IsoPs were significantly increased after treatment of the urine with β-

glucuronidase (0.43 ± 0.02 vs. 0.61 ± 0.03 nmol/mmol Cr) [29]. Typically, glucuronide 

conjugates are formed by reaction with free hydroxyl groups or carboxylic acid groups. Due 

to the similarity in structure between 15-F2t-IsoP and the 2,3-dinor- and 2,3-dinor-5,6-

dihydro- metabolites, it is possible that glucuronide conjugates of 2,3-dinor-15-F2t-IsoP and 

2,3-dinor-5,6-dihydro-15-F2t-IsoP could exist but these compounds have not been studied to 

date. Glucuronidation thus represents another route of F2-IsoP metabolism that needs to be 

considered when measuring these compounds in urine.

The metabolism of D2/E2-IsoPs is less well studied. As discussed above, it is known that 

these compounds dehydrate in vivo to yield A2/J2-IsoPs [13,14] and that A2/J2-IsoPs can be 

further metabolized, through rearrangement and dehydration, to yield deoxy-A2 and deoxy-

J2-IsoPs [15]. The metabolism of cyclopentenone IsoPs has been studied in HepG2 cells, a 

cell line derived from human hepatocytes, as well as in the rat [30,31]. These molecules are 

rapidly metabolized by glutathione transferase enzymes yielding water-soluble modified 

glutathione conjugates. The metabolism of isothromboxanes and isofurans has not been 

studied.

3. Isoprostanes as biomarkers of oxidative stress in human disease

A major impediment in the field of free radical research has historically been the lack of 

specific and sensitive methods to assess endogenous oxidative damage. Over the course of 

the past 25 years, F2-IsoPs have been shown to be a reliable biomarker of endogenous lipid 

peroxidation because they are ubiquitous in the body and are chemically stable in biological 

fluids when stored correctly. Both animal and clinical studies have tested the reliability of 

this biomarker. An NIH-sponsored study, termed the Biomarkers of Oxidative Stress Study 

(BOSS), found that plasma F2-IsoPs are increased in a time- and dose-dependent manner in 

rats administered carbon tetrachloride, a toxic agent known to systematically generate free 

radicals in the liver [32]. Il’yasova and coworkers then conducted a follow-up study to the 

BOSS trial in humans using doxorubicin-based chemotherapy as the model because this 

drug is known to generate hydroxyl radicals at pharmacological doses [33]. Several 

commonly measured indices of oxidative stress were examined in 23 women newly 
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diagnosed with breast cancer undergoing standard chemotherapy. F2-IsoPs, as well as the F2-

IsoP metabolite 2,3-dinor-15-F2t-IsoP, were significantly increased in the urine 1 h following 

treatment and returned to baseline levels 24 h following treatment. Together these findings 

confirm that F2-IsoPs are reflective of endogenous lipid peroxidation following free radical 

production.

A multitude of papers have been published describing different analytical methods for the 

quantification of F2-IsoPs in biological fluids [34–58]. Three primary techniques are used to 

measure these compounds: (1) gas chromatography–mass spectrometry, (2) liquid 

chromatography–mass spectrometry, and (3) immunoassays (ELISAs). Mass spectrometric-

based assays are widely accepted as the most accurate methodologies as the results of 

immunoassays could be confounded due to the structural similarities between F2-IsoPs and 

COX-derived prostaglandins as well as other related molecules [59–62]. F2-IsoPs can be 

measured in plasma, urine, any tissue, cerebral spinal fluid, exhaled breath condensate, 

amniotic fluid, and saliva. Measurement in plasma and urine is most common in humans as 

these fluids are the least invasive. Caution must be taken, however, when collecting and 

storing plasma for F2-IsoP analysis as these molecules can be generated from ex vivo 
oxidation of arachidonic acid in the plasma. In a recent commentary by Barden and 

colleagues, it is recommended to collect blood into tubes containing the anticoagulant EDTA 

and the antioxidants butylated hydroxytoluene (BHT) and GSH to min-imize artifactual 

elevation of F2-IsoPs [63]. All samples should be stored at −80 °C, not −20 °C, upon 

collection because autoxidation can occur at −20 °C leading to artifactual generation of F2-

IsoPs ex vivo.

In addition to the collection and storage of the samples, there are several factors that are 

important to consider when measuring F2-IsoPs as a biomarker of oxidative stress in disease. 

These factors include choosing the appropriate sample matrix, the timing of sample 

collection, and considerations regarding the hydrolysis, metabolism, and excretion of these 

compounds [64]. In plasma, most clinical studies have quantified F2-IsoPs as free fatty 

acids; however, as mentioned previously, F2-IsoPs are found esterified in phospholipids in 

the plasma. Base hydrolysis of plasma lipids prior to analysis provides a measure of total F2-

IsoPs in the plasma. In urine, the use of F2-IsoPs as a biomarker of systemic oxidative stress 

is even more complex as these molecules can be directly excreted or, as discussed above, 

metabolized to yield a variety of different compounds, the formation of which is regulated 

by numerous enzymes. In a recent commentary, Halliwell and Lee propose that in order to 

obtain a clear picture of F2-IsoP formation in vivo it is best to measure total F2-IsoPs (both 

molecules esterified in phospho-lipids and those which are unesterified) in plasma along 

with free and metabolized F2-IsoPs in urine [64].

Numerous excellent reviews have been written on F2-IsoPs as biomarkers of oxidative stress 

in human health and disease [65–94]. In the coming sections, we will highlight several 

recent human studies that have examined the formation of endogenous F2-IsoPs and 

explored their applications as biomarkers of oxidative stress.
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3.1. Isoprostanes and obesity

The marked increase in the incidence of overweight and obese persons is recognized as 

perhaps the most serious public health issue in the United States. It is estimated that 69% of 

American adults over age 20 are either overweight or obese. Additionally, the incidence of 

overweight and obesity in children and adolescents is rising; in 2013, it was estimated that 

18% of children 6–19 are either overweight or obese [95]. Both morbidity and mortality 

increase with excessive body weight. Multiple studies have clearly shown that levels of F2-

IsoPs, as measured in the plasma or urine, increase in obese adults [74,96–101]. F2-IsoPs 

have been positively correlated with body mass index (BMI), waist circumference (WC), 

visceral fat area, and percent body fat [102–118]. Interestingly, recent epidemiological 

studies have implicated possible racial differences in the association of F2-IsoPs with 

obesity. In the Insulin Resistance Atherosclerosis Study (IRAS) three different F2-IsoP 

isomers along with the metabolite 2,3-dinor-15-F2t-IsoP were measured in the urine of 237 

African Americans, 342 non-Hispanic whites, and 275 Hispanic whites [115]. Levels of the 

urinary F2-IsoPs and the F2-IsoP metabolite increased with BMI in non-Hispanic whites and 

His-panic whites but there was no increase with BMI observed in African Americans. A 

study by Warolin et al. in African American (n = 82) and white (n = 76) youth, ages 8–17 

years, found plasma F2-IsoPs correlated with percent body fat and truncal fat but no 

correlation was found with BMI nor were racial differences observed [119]. In a population 

of 845 Chinese women living in Shanghai, urinary 2,3-dinor-5,6-dihydro-15-F2t-IsoP but not 

urinary F2-IsoPs correlated with increased in BMI [120]. Finally, in a study of 294 Canadian 

Artic Inuits with metabolic syndrome, plasma F2-IsoPs and IsoFs correlated positively with 

BMI and abdominal obesity while IsoFs alone correlated with WC [116]. Together these 

studies indicate that lipid peroxidation associated with oxidative stress is increased in obese 

populations. These studies also highlight the importance of assessing multiple IsoP entities 

including plasma and urine F2-IsoPs as well as their urinary metabolites and other molecular 

species such as IsoFs to detect pathophysiological associations with oxidative stress.

3.2. Isoprostanes and ischemia-reperfusion

It is well understood that ischemia/reperfusion (I/R) elicits formation of reactive oxygen 

species (ROS). F2-IsoPs have been shown to increase post-I/R in humans in disease settings 

[121]. Levels of F2-IsoPs have been shown to increase in patients with chronic lower limb 

ischemia [122], following ischemic stroke [123,124], and after aneurysm rupture [125]. 

Model studies have also been conducted to better understand the human response to I/R in 

different populations. For example, in a human model using suprasystolic inflation of an arm 

blood pressure cuff to safely induce localized forearm I/R, Davies and colleagues showed 

that levels of F2-IsoPs in the plasma increase 15 min post-I/R and remain elevated for at 

least 3 h [126]. Interestingly, the observed increase in F2-IsoPs is more dramatic in healthy 

older adults (ages 62–81) compared to healthy young adults (ages 20–33) and levels remain 

elevated in the older population for a longer period of time. In a follow-up study comparing 

physically fit older adults with unfit age-matched controls, classified based upon VO2max 

and maximal leg power, the F2-IsoP response to forearm I/R was lower in the physically fit 

group [127]. This observation is postulated to result from differences in the activity of 

antioxidant enzymes.
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I/R injury is a major concern in certain surgical settings, such as coronary artery bypass 

grafting (CABG) surgery and organ transplantation, when blood flow is restored following a 

period of blood vessel occlusion. Multiple studies have shown increases in F2-IsoPs during 

CABG or cardiopulmonary bypass (CPB) surgery [121,128–131]. Importantly, this observed 

increase in oxidative stress is thought to contribute to postoperative complications. One such 

complication is acute kidney injury (AKI). AKI occurs in up to 30% of all patients 

undergoing CPB surgery and independently predicts associated morbidity and mortality. In a 

case–control study of 10 cardiac surgery AKI patients and 10 cardiac surgery risk-matched 

controls, Billings and colleagues determined that the increase in plasma F2-IsoPs, and IsoFs, 

during surgery were greater in the AKI patients in comparison to controls [132]. In a follow-

up study of 445 patients undergoing cardiac surgery, it was determined that baseline F2-

IsoPs as well as intraoperative levels of F2-IsoPs independently predicted AKI [114]. 

Pulmonary dysfunction is another common complication associated with cardiac surgery. It 

is particularly problematic in infants and children having surgical procedures performed to 

repair congenital heart defects. In a study of 20 infants (ages 3–12 months) undergoing 

elective stage 2 palliation on CPB to repair univentricular physiology, plasma F2-IsoPs were 

quantified at baseline (prior to surgical incision), 30 min after initiation of CPB, 

immediately after separation from CPB, and 24 h post-operatively [133]. Like adults on 

CPB, levels of F2-IsoPs increased significantly during surgery and returned to baseline levels 

24 h following the procedure. Interestingly, higher levels of plasma F2-IsoP levels 

immediately after separation from CPB were correlated with decreased dynamic lung 

compliance. Due to the small size of this study, it was not possible to determine if F2-IsoPs 

can predict long-term outcomes in this population but the findings, together with the adult 

studies presented herein, suggest that further study of F2-IsoPs, and potentially IsoFs, as 

predictive biomarkers of poor outcome following CPB is warranted.

In follow-up to the finding that lipid peroxidation is increased during CABG and CPB 

surgeries, multiple studies have monitored treatments that could reduce levels of surgery-

induced oxidative stress. For example, in a study of 20 patients scheduled for CABG 

surgery, Berg and colleagues showed that subjects treated with aspirin (160 mg daily) for 1 

week prior to surgery experienced a less robust elevation of F2-IsoPs during surgery 

compared to subjects not taking aspirin [134]. Interestingly, the aspirin treated group also 

showed lower baseline levels of F2-IsoPs at initiation of surgery. Others have studied the 

effect of acetaminophen treatment on the day of CPB surgery [135]. No effect of 

acetaminophen on levels of urinary F2-IsoPs was noted but the drug significantly lowered 

the magnitude of increase in urinary IsoFs during surgery. Finally, it has been suggested that 

certain anesthesia agents can exert antioxidant activity. Ballester et al. recently reported a 

study comparing the effect of the anaesthetics sevoflurane and propofol on F2-IsoP levels in 

blood samples taken from the coronary sinus of 38 patients undergoing elective off-pump 

CABG surgery [136]. Interestingly, F2-IsoPs did not increase in the patients on sevoflurane 

while signifi-cant increases were noted in the group who received propofol. No other studies 

that we are aware of have compared the effect of the chosen an-esthesia in cardiac surgery 

patients. In a study of patients undergoing total knee arthroplasty (TKA), a surgery that also 

represents a setting of I/R, Mas and co-workers compared levels of F2-IsoPs in patients 

receiving either general anesthesia or spinal anesthesia [137]. All patients showed a 
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significant increase in F2-IsoPs following TKA; however, patients receiving general 

anesthesia had more significant increases in F2-IsoPs than those receiving spinal anesthesia. 

Together, these studies indicate that procedures can be taken to help lower the resulting 

oxidative stress from surgery-associated I/R, but further work needs to be done in clinical 

populations to determine the most effective treatments to help prevent adverse clinical 

outcomes following surgery.

3.3. Isoprostanes and the central nervous system

Due to the high concentration of PUFA in the brain compared to other organs, lipid 

peroxidation is a primary outcome of free radical-induced brain injury. To that end, F2-IsoPs 

have been shown to increase in a number of chronic neurodegenerative diseases including 

Alzheimer’s disease (AD) [138–141], Huntington’s disease [142], Parkinson’s disease 

[143,144], and amyotrophic lateral sclerosis (ALS) [145]. Importantly, measurement of F2-

IsoPs in the plasma or urine does not consistently show increases in these diseases while 

their measurement in cerebral spinal fluid (CSF) is more indicative of the changes in 

oxidative stress in the brain [146,147]. A very recent study by Montine and colleagues 

measured F2-IsoPs, along with biomarkers of AD, in the CSF of more than 400 healthy 

adults (ages 21–100) to examine the association between these biomarkers and cognitive 

function in relation to aging. Higher levels of F2-IsoPs in the CSF were found to be 

associated with poorer executive function [148]. Additionally, Guest et al. also recently 

determined that F2-IsoPs in the CSF also increase with age [149].

F2-IsoPs in the CSF are increased in acute brain injury as well. Corcoran et al. quantified F2-

IsoPs, IsoFs, and F4-neuroprostanes (NPs), F2-IsoP-like compounds generated from the free 

radical-catalyzed oxidation of docosahexaenoic acid (DHA), in the CSF of patients within 

24 h following aneurysmal subarachnoid hemorrhage (aSAH) or traumatic brain injury 

(TBI) and compared them to age-matched controls [150]. All three classes of lipid 

peroxidation products were increased in the CSF of aSAH patients while only IsoFs and F4-

NPs were increased following TBI. Interestingly, in a separate study monitoring the 

production of lipid mediators in the CSF following TBI, Farius and colleagues tentatively 

identified levels of D2/E2-IsoPs to be elevated compared to controls [151]. This same group 

previously reported a dramatic increase in the levels of D2/E2-IsoPs compared to F2-IsoPs in 

a rat model of TBI [38]. Further, Reich et al. determined that D2/E2-IsoPs, and not F2-IsoPs, 

were the favored products of the IsoP pathway post-mortem brain samples from humans 

with AD [152,153]. As discussed at the beginning of this review, D2/E2-IsoPs are formed 

competitively with F2-IsoPs; lower levels of cellular reducing agents, such as GSH or α-

tocopherol, may favor the formation of E2/D2-IsoPs over F2-IsoPs in the brain [154].

3.4. Isoprostanes and cancer risk

Few studies have investigated the associations between levels of F2-IsoPs and risk of cancer. 

One case–control study reported that the level of F2-IsoPs was increased among subjects 

with breast cancer compared to controls [155]. Compared to the lowest quartile, the 

increasing quartiles of F2-IsoPs were associated with odds ratios (OR) (95% confidence 

interval (95% CI)) of 1.25 (0.81–1.94), 1.53 (0.99–2.35) and 1.88 (1.23–2.88) for the 2nd, 

3rd, and 4th quartile (p for trend, 0.002). In a subsequent cohort study conducted in Taiwan, 
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high urinary excretion rates of F2-IsoPs was significantly linked to an increased risk of 

hepatocellular carcinoma with an OR of 2.53 (95% CI: 1.30–4.93) [156]. Two nested case–

control studies were conducted within the multiethnic cohort [157,158]. One study found, 

when compared to the lowest tertile of urinary F2-IsoPs, the second and third tertiles of F2-

IsoPs were associated with two-fold elevated risk of lung cancer among men, but not women 

[157]. The other study found that high urinary F2-IsoPs was not related to risk of prostate 

cancer [158]. In contrast, two subsequent case–control studies found that urinary levels of 

F2-IsoPs significantly increased in prostate cancer patients compared to controls [159,160]. 

A recent case–control study determined that urinary levels of F2-IsoPs were significantly 

higher in gastric cancer patients compared to controls [161]. In a prospective study, 

occurrence of adenoma was not significantly associated with urinary levels of F2-IsoPs and 

other three metabolites in the pathway [162]. In a very recent case–control study, the 

investigators found that an oxidative stress balance score which took into account of pro-

oxidant and antioxidant exposure was significantly lower in colorectal adenoma patients 

compared to controls and this score was inversely correlated with plasma concentrations of 

F2-IsoPs [163].

Taken together, these case–control studies conducted so far consistently found higher levels 

of F2-IsoPs were associated with risk of cancer, including cancers of the breast, prostate, and 

stomach as well as colorectal adenoma. On the other hand, the findings from prospective 

studies have been few and inconsistent. The possible explanation for the inconsistent 

findings between case–control studies and prospective nested case–control studies is that it 

is not clear in case–control studies if oxidative stress leads to cancer or results from cancer.

In recent years, Dai and colleagues conducted the first study to prospectively examine both 

urinary F2-IsoP and the metabolite 2,3-dinor-5,6-dihydro-15-F2t-IsoP as biomarkers of 

breast cancer risk in a large-scale nested case–control study within the Shanghai Women’s 

Health Study (SWHS), a population-based cohort study of 74,942 Chinese women between 

40 and 70 years of age [164]. In this study, F2-IsoPs nor 2,3-dinor-5,6-dihydro-15-F2t-IsoP 

[165] significantly differed by breast cancer status. Levels of F2-IsoPs and 2,3-dinor-5,6-

dihydro-15-F2t-IsoP were actually related to a reduced risk of breast cancer among women 

with a BMI of <25. Among women with a BMI of <23, high F2-IsoPs was associated with a 

reduced risk of breast cancer in a dose–response manner (p for trend, 0.006) with an OR of 

0.46 (95% CI: 0.26–0.80) for the highest tertile vs. the lowest (p for interaction, 0.006). This 

reduction in risk appeared in both pre- and postmenopausal women. In contrast, however, 

F2-IsoPs and 2,3-dinor-5,6-dihydro-15-F2t-IsoP were associated with an increased risk of 

breast cancer among women with a BMI of ≥25. The associations became stronger with 

increasing levels of BMI and were more significant for 2,3-dinor-5,6-dihydro-15-F2t-IsoP 

compared to F2-IsoPs. These findings indicate that the role of ROS in the development of 

breast cancer is different by BMI status. As discussed previously, numerous studies have 

consistently observed that overweight or obese men and women have a significantly elevated 

level of F2-IsoPs, indicating women with a high level of BMI have an excessive production 

of ROS and, thus, are at high risk of oxidative stress [97–99]. Therefore, among overweight/

obese women, high levels of F2-IsoP-M and/or F2-IsoPs may be related to an increased risk 

of breast cancer [166]. Conversely, among women with normal BMI, basal levels of ROS are 

necessary to trigger p53 activation, directly mediate apoptosis and induce senescence [167]. 
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Additionally, F2-IsoPs was found to increase the glucose-induced synthesis of TGF-β1, a 

critical tumor suppressor at initial stage [168]. Several protective factors for breast cancer 

risk, such as physical activity, parity (normal pregnancy) and preeclampsia, are also linked to 

significantly elevated levels of lipid peroxidation [169]. Thus, the role of F2-IsoPs, lipid 

peroxidation, and oxidative stress are complex in the pathophysiology of cancer.

3.5. Isoprostanes, diet, and lifestyle

In general, increased levels of F2-IsoPs are considered to be detrimental to human health. 

For that reason, numerous studies have focused on identifying dietary or lifestyle 

modifications that could alter levels of endogenous F2-IsoPs. Dietary antioxidants have 

naturally been an area of intense research in the field. Unfortunately, the results of published 

studies often vary due to inherent differences in study design including factors such as 

antioxidant dose, duration of dietary supplementation, matrix analyzed (ie. urine, plasma, 

other), and IsoP analyzed (i.e. F2-IsoPs or its urinary metabolite) [64,170]. This is 

particularly true for studies involving supplementation with Vitamin E (α-tocopherol), a 

commonly used antioxidant [170]. A dose-finding study of vitamin E actually helped to 

clarify the optimal parameters for studying vitamin E as it relates to the lowering of lipid 

peroxidation associated with oxidative stress [171]. This study determined that daily doses 

of 1600 IU or greater for at least 8 weeks were required to statistically reduce plasma levels 

of F2-IsoPs. Lower doses have also been effective at lowering F2-IsoPs in settings where 

levels of lipid peroxidation are expected to be elevated. For example, Block and colleagues 

have shown that 1000 mg/day vitamin C or 800 IU/day vitamin E for 2 months can lower 

levels of plasma F2-IsoPs by 22% (p = 0.01) or 9.8% (p = 0.46), respectively, when baseline 

levels of F2-IsoPs are high (>50 mg/ml), such as in obese populations [172]. Importantly, 

neither treatment decreased levels of F2-IsoPs in individuals with normal baseline levels. In 

other studies, pre-treatment of skin with topical vitamin E reduced levels of F2-IsoPs 

generated post-UV irradiation [173]. Also, supplementation with vitamin E acetate 

decreased both baseline and allergen-induced F2-IsoPs in the brochoalveolar lavage fluid of 

atopic asthmatics [174]. Dorjgochoo et al. reported that urinary excretion rates of 2,3-

dinor-5,6-dihydro-15-F2t-IsoP, but not F2-IsoPs, were lower in Chinese women who used a 

vitamin E supplement, as determined from diet and food questionnaire responses, compared 

to those who did not [120]. In that same population, plasma concentrations of several 

antioxidants (i.e., β-carotenes, both trans and cis β-carotenes, lycopene other than trans, 5-

cis and 7-cis isomers, cis anhydrolutein, and cis β-cryptoxanthin) were inversely associated 

with 2,3-dinor-5,6-dihydro-15-F2t-IsoP but not with F2-IsoPs, whereas β-, γ-, and δ-

tocopherols were positively associated with 2,3-dinor-5,6-dihydro-15-F2t-IsoP but not with 

F2-IsoPs.

A variety of antioxidants other than Vitamin E have been studied in relationship to F2-IsoPs. 

Similarly to Vitamin E, other antioxidants tend to have the greatest effects in populations 

with an increased level of basal oxidative stress (ie. obese, asthmatics, etc.) than in normal 

healthy populations. For example, vitamin C has been shown to decrease pancreatic cancer 

tumor progression in pre-clinical models [175]. Results of a phase I clinical study of twice-

weekly intravenous pharmacological doses of vitamin C, given in combination with 

gemcitabine, showed that levels of F2-IsoPs decreased post-infusion in all patients tested (n 
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= 5) [176]. Anthocyanins, polyphenolic antioxidants typically found in dark fruits such as 

blackberries, strawberries, blueberries, blackcurrants, and cherries, also lower levels of F2-

IsoPs [177–180]. Consumption of tart cherry juice, and not placebo, lowers the observed 

increase in plasma F2-IsoP levels following forearm I/R induced by blood pressure cuff 

inflation [177]. In another study of well-trained distance runners, subjects who consumed 

250 g of blueberries per day for 6 weeks had reduced increases in plasma F2-IsoPs following 

a 2.5 h run compared to controls [178]. Consumption of a blackcurrant juice drink (20% 

juice) also reduced basal levels of F2-IsoPs in plasma in a population of healthy adults who 

typically consume <2 servings of fruit and vegetables per day [179].

Acetaminophen, similar to vitamin E and anthocyanins, is an electron donor capable of 

reducing radicals. Commonly, acetaminophen is known to modulate the activity of the COX 

enzyme by reducing the radical cation in the peroxidase site of the enzyme that is necessary 

for the synthesis of PGs. In recent studies, acetaminophen has been shown to modulate non-

enzymatic lipid peroxidation [181,182]. The antioxidant properties of acetaminophen were 

recently studied in a human population with sepsis [183]. Levels of F2-IsoPs were 

significantly lower in subjects who received acetaminophen during treatment to patients who 

did not.

Recently, the association between diet, typically reported through the use of food 

questionnaires, and F2-IsoPs has been examined. In a large study of more than 5000 young 

and middle-aged Caucasian and African Americans followed for over the course of 20 years, 

diets high in fruits and vegetables and low in red meat were associated with lower levels of 

plasma F2-IsoPs [184]. Diets with a higher intake of red meat showed increased levels of F2-

IsoPs. In a smaller study of premenopausal women (n = 258) participating in the 5 A Day 

for Better Health Program, women who met the daily requirement of at least five servings of 

fruits and vegetables had lower plasma levels of F2-IsoPs [185]. In a study of 1005 pre- and 

post-menopausal Chinese women, however, consumption of cruciferous vegetables was not 

associated with lower urinary F2-IsoPs or F2-IsoP-M [186]. Other dietary factors that reduce 

levels of endogenous F2-IsoPs include marine fish oil [101,187–197]. Marine fish oil is rich 

in the omega-3 PUFAs eicosapentaenoic acid (EPA) and DHA. Importantly, IsoP-like 

oxidation products can be generated from the oxidation of EPA and DHA. F3-, E3/D3-, and 

A3/J3-IsoPs are generated from the peroxidation of EPA; the related products produced from 

DHA have been identified and are termed neuroprostanes, as DHA is enriched in the brain 

[198–202]. Interestingly, while arachidonic acid-derived F2-IsoPs induce vasoconstriction 

and platelet aggregation and increase mean systemic arterial pressure, EPA-derived F3-IsoPs 

are less potent vasoconstrictors and do not cause platelet aggregation or an increase in 

arterial pressure [193,203]. The biological activities of the neuroprostanes are less well 

studied.

The studies highlighted herein represent the many complex factors in the diet that can affect 

levels of lipid peroxidation in vivo in humans. It is important to note that even caloric 

restriction alone has been shown to decrease systemic F2-IsoPs [113]. Thus, while 

quantifying levels of F2-IsoPs and/or related compounds has given great insight into the 

physiological and pathophysiological roles of oxidative stress in human disease, care must 

be taken when interpreting results from any given study.
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3.6. Isoprostanes and genetic disorders

Human genetic disorders are characterized by an abnormality in an individual’s DNA. 

Genetic disorders can involve a mutation in a single gene or involve an entire chromosome. 

Oxidative stress has been implicated in the pathophysiology of multiple human genetic 

disorders. F2-IsoPs levels are increased in patients with autism-spectrum disorders 

[204,205], Smith-Lemli-Opitz Syndrome (SLOS) [206], sickle cell anemia [207], cystic 

fibrosis [208–210], and in various inborn errors of metabolism [211]. Interestingly, levels of 

F2-IsoPs are increased in the amniotic fluid of pregnancies carrying fetuses with Down 

syndrome [212]. Oxida-tive stress and IsoPs are well-studied in patients with Rett syndrome 

(RTT) by De Felice and colleagues [213–216]. RTT is a severe autism spectrum disorder 

caused by a mutation in the X-linked MECP2 gene that encodes the methyl-CpG-binding 

protein-2 in most cases. The disease primarily affects girls and is characterized by loss of 

acquired cognitive, social, and motor skills together with development of autistic behavior; 

symptoms typically appear between 6 and 18 months of age. Levels of F2-IsoPs as well as 

levels of F4-NPs and F2-dihomo-IsoPs, derived from adrenic acid, are increased in plasma of 

RTT patients [213–216]. F4-NPs correlate with disease severity and F2-dihomo-IsoPs are 

elevated in early disease stages. Notably, in a cohort of 21 typical RTT patients 

supplemented with 20–40 mg/kg marine fish oil twice daily, levels of plasma F4-NPs 

decreased by ~80% over the course of 12 months, with more than one-third of those patients 

reaching levels in the normal range compared to age-matched controls [214]. This finding 

that marine fish oil can reduced levels of oxidative stress biomakers in RTT patients has led 

to additional clinical trials in which supplementation with EPA and DHA at early stages in 

the disease has led to a partial clinical rescue of RTT [193].

4. Biological functions of the isoprostanes

The chemical synthesis of specific IsoPs by many different investigators around the globe 

has allowed the exploration of the biological activity of these molecules. Most studies have 

focused on the analysis of IsoPs in the form of the free fatty acid. Among the most studied 

of the IsoPs is 15-F2t-IsoP. Much of the work surrounding the biological activity of this 

molecule has focused on the cardiovascular system. Recently, Bauer and colleagues 

published an elegant review regarding IsoPs in the cardiovascular system [217]. Briefly, 15-

F2t-IsoP is a potent vasoconstrictor in most vascular beds. Additionally, this molecule can 

modulate platelet activity, inhibit angiogenesis, and promote atherosclerosis by stimulating 

adhesion of monocytes and neutrophils to endothelial cells. These biological activities of 15-

F2t-IsoP are primarily mediated through interaction with the thromboxane (TP) receptor. 

Similarly, 15-E2t-IsoP (also referred to as 8-iso-PGE2 or iPE2-III) mediates its functions 

through the TP receptor.

15-F2t-IsoP and 15-E2t-IsoP have been shown to exert biological activity through other PG 

receptors as well, including the PGE2 (EP2-4) receptors and PGF2α (FP) receptors [218–

227]. Interestingly, the activity of the molecules can vary depending upon the receptor 

through which it acts. For example, while 15-F2t-IsoP and 15-E2t-IsoP are vaso-constrictors 

through the TP receptors, both molecules can induce vaso-dilation through the EP receptor. 

These opposing effects have been particularly well studied in the lung [219]. Additionally, 
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Chen and coworkers have observed both the vasoconstrictive and vasodilatory effects of 15-

F2t-IsoP and 15-E2t-IsoP in murine ductus arteriosus (DA), a central vascular shunt that 

constricts soon after birth, allowing redirection of blood flow from the placenta to the lungs 

[228]. These authors showed that isolated term murine DA constricts in response to both 15-

F2t-IsoP and 15-E2t-IsoP in a concentration-dependent manner and that this effect could be 

reversed by administration of a TP receptor antagonist. Interestingly, when TP receptors 

were blocked prior to IsoP exposure, both 15-F2t-IsoP and 15-E2t-IsoP produced potent 

vasorelaxation of the term DA. This action was determined to be due to activation of the EP4 

receptor by the IsoPs. Further, the authors noted a difference between the actions of 15-F2t-

IsoP and 15-E2t-IsoP in term and preterm isolated DA. Whereas 15-F2t-IsoP induced 

vasoconstriction in both the term and preterm DA via the TP receptor, 15-E2t-IsoP induced a 

dose-dependent vasodilation in the preterm DA and an EP4 receptor antagonist could reverse 

this effect. The authors explained that the response of the term and preterm vessels could be 

explained by a gestational shift in expression of the target receptors as EP4 receptors 

expression is upregulated in the preterm DA and maintained through birth while expression 

of the TP receptor is low in the preterm DA. In addition to these mouse studies, 15-F2t-IsoP 

and 15-E2t-IsoP were shown to be potent dose-dependent constrictors of the DA in chicken 

embryos, again acting through the TP receptor, and, interestingly, the presence of H2O2 can 

modify this response [229,230]. Historically, COX-derived PGs have been thought to play a 

major role in postnatal DA homeostasis, however, these findings suggest that IsoPs could 

play a role in the mediation of DA constriction. In related work, Comporti and colleagues 

found that F2-IsoPs levels are significantly higher in neonates than in older infants and 

further are inversely correlated with gestational age [231]. More recently, this group has 

shown that levels of F2-IsoPs were significantly decreased in a study of 43 preterm infants 

(gestational age <33 weeks) being treated with ibuprofen to induce DA closure. The authors 

suggest that ibuprofen is dual-acting as both an antioxidant and COX inhibitor and could be 

beneficial in the treatment of this at-risk population. Further studies are required to confirm 

these results and explore the pathophysiology of IsoPs in newborns where the DA fails to 

close.

In addition to the studies described above, 15-F2t-IsoP and 15-E2t-IsoP have been shown to 

produce hyperalgesia, an increased sensitivity to pain. 15-E2t-IsoP, when injected into the 

hindpaw of rats, was shown to significantly reduce the withdrawal threshold in response to 

both mechanical and thermal stimuli, while 15-F2t-IsoP reduced the withdrawal threshold to 

mechanical stimuli alone [232]. Further, 15-E2t-IsoP enhanced the release of transmitters 

from isolated rodent sensory neurons; this effect could not be reversed by the treatment of 

COX inhibitors. Additionally, 15-F2t-IsoP and 15-E2t-IsoP enhanced the firing of C-

nociceptors in pentobarbital-anesthetized rats [233]. Together these findings broaden our 

understanding of IsoP biology and pave the way for new areas of research regarding 

potential consequences of oxidative stress and lipid peroxidation.

The biological activities of other IsoPs have been explored as well. A2/J2-IsoPs, dehydration 

products of D2/E2-IsoPs, are reactive electro-philes that readily form Michael adducts with 

cellular thiols due to the presence of an α,β-unsaturated cyclopentenone ring structure. 

Current knowledge regarding the biological actions of these molecules has been reviewed 
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elsewhere [70,87,234–238]. The biological activity of isothromboxanes and isofurans has 

not been studied.

5. A look towards the future

The discovery of the IsoPs as products of non-enzymatic lipid peroxidation has been a major 

contribution to the field of lipid oxidation and free radical research. Twenty-five years after 

their initial discovery in human plasma, our knowledge regarding the formation of these 

potent molecules continues to expand, providing new insights into the nature of lipid 

peroxidation in vivo and revealing new biological activities. Basic research into the 

biochemistry, pharmacology, and metabolism of the IsoPs, coupled with clinical studies 

employing these molecules as biomarkers, will continue to provide important insights into 

the role of oxidant stress in human physiology and pathophysiology.
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Abbreviations

AD Alzheimer’s disease

AKI Acute kidney injury

aSAH Aneurysmal subarachnoid hemorrhage

BMI Body mass index

CAPG Coronary artery bypass grafting

COX Cyclooxygenase

CPB Cardiopulmonary bypass

CSF Cerebral spinal fluid

DA Ductus arteriosus

DHA Docosahexaenoic acid

EP Prostaglandin E2 receptor

EPA Eicosapentaenoic acid

GSH Glutathione

I/R Ischemic-reperfusion

IsoF Isofuran

IsoP Isoprostane

NP Neuroprostane
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PAF Platelet activating factor

PG Prostaglandin

PUFA Polyunsaturated fatty acid

ROS Reactive oxygen species

RTT Rett syndrome

TBI Traumatic brain injury

TP Thromboxane receptor

WC Waist circumference
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Fig. 1. 
Mechanism of formation of F2-isoprostanes from the free radical-cataylzed peroxidation of 

arachidonic acid. Two primary nomenclature systems have been developed to classify 

isoprostanes [8,9]. In the nomenclature system used throughout this manuscript, IsoP is used 

as the abbreviation for isoprostane and the four regioisomer classes are named according to 

the carbon number on which the side chain hydroxyl group is attached, with the carboxyl 

carbon being 1 [8]. This nomenclature system has been approved by the Eicosanoid 

Nomenclature Committee, which is sanctioned by JCBN of IUPAC. The alternative 

nomenclature system uses the abbreviation iP for isoprostane and the regioisomers are 

denoted as III–VI based upon the number of carbons between the omega carbon and the first 

double bond [9].
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Fig. 2. 
Arachidonic acid can be oxidized to many different classes of isoprostanes. F2-isoprostanes 

are most commonly used as biomarkers of oxidative stress in human disease but E2/D2-

isoprostanes have also been used as biomarkers of oxidative stress under certain conditions. 

Isothromboxanes as well as A2/J2-isoprostanes and deoxy-J2-isoprostanes are also formed.
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Fig. 3. 
Under settings of increased oxygen tension isofurans are formed preferentially to 

isoprostanes from a common radical intermediate.
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Fig. 4. 
Urinary metabolites of F2-isoprostanes.
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