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The peripheral blood proteome 
signature of idiopathic pulmonary 
fibrosis is distinct from normal 
and is associated with novel 
immunological processes
David N. O’Dwyer1,*, Katy C. Norman2,*, Meng Xia3, Yong Huang4, Stephen J. Gurczynski1, 
Shanna L. Ashley5, Eric S. White1, Kevin R. Flaherty1, Fernando J. Martinez6, Susan Murray3, 
Imre Noth4, Kelly B. Arnold2,† & Bethany B. Moore1,7,†

Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial pneumonia. The disease 
pathophysiology is poorly understood and the etiology remains unclear. Recent advances have 
generated new therapies and improved knowledge of the natural history of IPF. These gains have been 
brokered by advances in technology and improved insight into the role of various genes in mediating 
disease, but gene expression and protein levels do not always correlate. Thus, in this paper we apply 
a novel large scale high throughput aptamer approach to identify more than 1100 proteins in the 
peripheral blood of well-characterized IPF patients and normal volunteers. We use systems biology 
approaches to identify a unique IPF proteome signature and give insight into biological processes 
driving IPF. We found IPF plasma to be altered and enriched for proteins involved in defense response, 
wound healing and protein phosphorylation when compared to normal human plasma. Analysis also 
revealed a minimal protein signature that differentiated IPF patients from normal controls, which may 
allow for accurate diagnosis of IPF based on easily-accessible peripheral blood. This report introduces 
large scale unbiased protein discovery analysis to IPF and describes distinct biological processes that 
further inform disease biology.

Idiopathic Pulmonary Fibrosis (IPF) is the most common idiopathic interstitial pneumonia and is a fatal pro-
gressive disease with a median survival of 2 to 3 years1. The etiology of IPF remains unclear and despite recent 
advances in therapy, IPF persists as an incurable disease2,3. IPF is characterized by certain clinical features with 
radiological and histopathological findings of usual interstitial pneumonia1. The disease results in progressive 
fibrotic remodeling of the pulmonary parenchyma with loss of structural integrity, impaired gas exchange and 
respiratory failure. The pathophysiology of IPF features a paradigm that involves injury, loss of the epithelial 
cell barrier with aberrant re-epithelialization, fibroblast activation and unregulated myofibroblast deposition of 
extracellular matrix components4.

The natural history of IPF is variable and patients can experience different and dynamic clinical courses with 
phenotypes ranging from accelerated disease with early mortality to slowly progressive disease5. Considerable 
resources have been employed to facilitate prediction and early identification of these phenotypes to improve 
transplantation strategies and the selection of appropriate patients for therapeutic trials. Studies have identified 
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proteins and chemokines that may discriminate between disease phenotypes and predict clinical outcomes6–8. 
Several genomic expression profiles have reported associations with disease progression in IPF9,10 and the periph-
eral blood transcriptome may discriminate between mild and severe disease graded by diffusion capacity11.  
Genetic risk loci include single nucleotide polymorphisms in the Toll interacting (TOLLIP) gene, toll like recep-
tor (TLR) 3 gene and MUC5B promoter12–14. These key advances have elucidated new potential mechanisms 
and therapeutic targets and have advanced the role of “omics” in IPF. However, a greater understanding of the 
relationship between genomic risks and the mechanistic impact on IPF pathophysiology is required. For instance, 
disease susceptibility is increased by the MUC5B polymorphism yet survival is improved15. The genome is sub-
ject to post transcriptional manipulation by micro-RNA (miRNA). Altered levels of miR-200 and miR-21 have 
reported associations with fibrogenesis in experimental models and human IPF patients16,17. Furthermore, circu-
lating miRNA’s have been found in the blood of IPF patients and several miRNAs are differentially expressed in 
rapidly progressive disease18. Micro-RNA may act as regulators of disease progression and therefore the transcrip-
tome and genome may be subject to significant modifications in IPF. An accurate “snapshot” of disease biology 
may require analysis of protein or the “proteome” in IPF patients. IPF is heterogeneous with distinct individual 
variation in the clinical courses that patients encounter. It is plausible that distinct and dynamic biological pro-
cesses manifest as a common clinical phenotype, as evidenced by the UIP pattern on histopathology and imaging. 
The application of a new approach focused on identifying these processes or “molecular endotypes” may facilitate 
improved understanding of disease biology, molecular pathways and the mechanisms behind the IPF clinical 
phenotypes19,20.

Studies of the IPF proteome to date have focused on bronchoalveolar lavage fluid (BALF) and lung tissue 
analysis21–24. Novel targets have been reported including CCL2421, and putative molecular pathways have been 
identified including the unfolded protein response through proteomic studies22. While BALF may be desira-
ble for analysis given it is an accessible component of the lung environment, it is acquired through an inva-
sive endoscopic procedure and subject to variability in representative sampling and processing. Furthermore, 
many patients may be unable to undergo the sampling procedure; thus, accurate analyses from peripheral blood 
would be optimal for patients. New proteomic assays have been developed that utilize modified aptamers termed 
SOMAmers© (slow off rate modified aptamers)25. This assay can readily analyze over 1,000 proteins at varying 
levels of abundance in the peripheral blood. The SOMAmer© platform has been employed in biomarker discovery 
in several diseases to date26–30. We have previously published a panel of 6 SOMAmer© measured proteins which 
accurately predicts disease progression in IPF31. In this paper, we apply for the first time, aptamer technology to 
identify on a large scale the differentially expressed proteins in the blood of IPF patients compared to normal 
controls. We then use this information to describe in detail the biological processes and molecular pathways that 
may discriminate the disease biology of IPF. The ultimate goal of this work is not to identify or validate particular 
proteins as biomarkers, but rather to understand what biological pathways are aberrant in IPF vs. control patients 
based on the peripheral blood proteome.

Results
The peripheral proteome of IPF patients is distinct from controls.  The demographics and clinical 
characteristics of study subjects are summarized in Supplementary Table S1. This population of IPF patients 
was a sub cohort of the COMET trial. The initial proteomic analysis included all 1129 available analytes which 
span a wide variety of biological processes and molecular pathways. Relevant comorbidities are reported in 
Supplementary Table S2. We applied analysis (see schematic in Supplementary Figure S1) to the blood proteins 
measured in the SOMAscan assay in order to find differences in the blood protein profiles of healthy and fibrotic 
patients. From a total of 1129 plasma proteins, 203 were found to have a mean value that was significantly dif-
ferent (both upregulated and downregulated) than the mean value of the same analyte in control patients, with 
a Bonferroni corrected α​ of 1% (P <​ 0.0000089) (Fig. 1a). The top 10 significantly different values (all significant 
after Bonferroni correction with P <​ 4E-19) included glycogen synthase kinase-3 alpha/beta (GSK3A/GSK3B; 
3.73 fold change), proto-oncogene tyrosine-protein kinase Src (SRC; 3.85 fold change), complement C1r sub-
component (C1R; 4.39 fold change), Proprotein convertase subtilisin/kexin type 7 (PCSK7; fold change 2.07), 
cGMP-specific 3′​,5′​-cyclic phosphodiesterase (PDE5A; 4.44 fold change), sphingosine kinase 1 (SPHK1; 4.92 fold 
change), tyrosine-protein kinase BTK (BTK; 10.45 fold change), B-cell activating factor (BAFF; fold change 2.13), 
nascent polypeptide-associated complex subunit alpha (NACA; 2.28 fold change), and GTP-binding nuclear pro-
tein Ran (RAN; 10.78 fold change). Interestingly, these 10 proteins that were most significantly different between 
control and IPF patients were all increased in the IPF patients.

We next applied a secondary method to account for age differences between control and IPF cohorts. This 
screen identified 48 proteins which were expressed at significantly elevated or upregulated levels (≥​1.5 fold) 
in the blood of IPF patients at screening when compared to controls (Supplementary Table S3). This represents 
4.3% of total screened analytes. The screening process further identified 116 proteins which were expressed at 
significantly reduced or downregulated levels (≤​0.75 fold) in the blood of IPF patients when compared to con-
trols (Supplementary Table S4). This represents 10.3% of the screened analytes. A list of all significant proteins 
with their fold expression is reported in Supplementary Table S5. These biologically relevant, age-adjusted, sig-
nificantly different proteins were then highlighted in a volcano plot (Fig. 1b). The top ten significantly different, 
age-adjusted proteins were hepatoma-derived growth factor-related protein 2 (HDGFRP2; fold change 0.06), 
inactivated complement 3b (iC3b; fold change 0.53), tyrosine-protein kinase FYN (FYN; fold change 0.16), 
pulmonary surfactant-associated protein D (SFTPD; fold change 0.23), eukaryotic translation initiation fac-
tor 5 (EIF5; fold change 0.26), prefoldin subunit 5 (PFDN5; fold change 0.25), tyrosine-protein phosphatase 
non-receptor type 11 (PTPN11; fold change 0.33), prostaglandin G/H synthase 2 (PTGS2; fold change 0.30) 
40S ribosomal protein S7 (RPS7; fold change 0.19), interleukin-8 (IL8; fold change 0.034). Interestingly, when 
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the effects of age were addressed when performing the t-tests, the top ten significantly different proteins were all 
increased in healthy patients.

To better visualize how this age-adjusted, biologically relevant protein signature differentiated the two groups, 
we performed hierarchical clustering on the 48 upregulated and the 116 downregulated, age-adjusted, signif-
icantly different proteins (identified in Fig. 1b) between healthy and IPF patients. The result was almost ideal 
differentiation of the healthy and IPF groups (Fig. 1c). Overall this analysis indicated visually distinct proteomes 
could be measured in healthy and IPF patients using a subset of 164 analytes within the SOMAscan Assay®​.

Figure 1.  The peripheral plasma in IPF is distinct from normal controls. (a) Volcano plots highlighting 
fold change (x axis) and the significance level on the y axis of the blood proteins measured in the SOMAmer 
Aptamer assay in the COMET study. Points in red indicate proteins that are significantly different in the healthy 
versus IPF patients when correcting for multiple comparisons using the Bonferroni method with a corrected 
P-value of 0.01. Points in blue are the top ten most significant proteins when age is not considered. (b) Volcano 
plot with age adjustment. Points in red indicate proteins that are significantly different between healthy and 
IPF patients when adjusted for the age difference between the two groups and when correcting for multiple 
comparisons using the Bonferroni method with a corrected P-value of 0.01. The points in blue are the same as 
in panel “a”. (c) Hierarchical clustering of age-adjusted blood proteins that were determined to be significantly 
different and biologically relevant between healthy and IPF patients shows visually distinct blood proteomes 
between healthy and IPF patients. With the exception of two individuals, this protein signature in the blood 
was able to perfectly differentiate between healthy and IPF patients. The abundance of each protein is shown in 
color, with red meaning overabundant proteins, white unchanged, and blue being underabundant proteins, all 
compared to the mean (color bar scale is to the left of figure). Hierarchical clustering of proteins was generated 
by unsupervised average linkage using Pearson’s correlation as the distance metric.
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The two most common co-morbidities in this patient cohort were gastroseophageal reflux disease (GERD) 
and obstructive sleep apnea (OSA) (Supplementary Table S2). Principal component analysis demonstrates that 
the greatest differences in the proteomic data arise from variation between the healthy and IPF groups, with 
no apparent clustering due to the co-morbidities (Supplementary Figure S2). Comorbidity information was not 
available for the healthy controls.

Enrichment and network analysis of the upregulated IPF plasma proteome.  The next step was 
to utilize our differentially expressed proteins to gain systems level insight into the disease biology of IPF. This 
was achieved through enrichment analysis using the online DAVID software tool. DAVID associates proteins to 
hierarchically clustered functional terms (Gene Ontology, Kegg Pathway), and an enrichment score is calculated. 
The most significantly enriched processes included protein amino acid phosphorylation, VEGF signaling and 
intracellular signaling cascade (see Fig. 2a).

We next looked at possible networks and relationships between these proteins using the ClueGo application in 
Cytoscape. Proteins are clustered within enriched terms (Gene Ontology, Kegg Pathway) and the degree of sim-
ilarity between clusters is calculated using Kappa statistics. The significantly enriched clusters included platelet 
activation (P =​ 17.0E-12), the regulation of cardiac muscle hypertrophy (P =​ 2.9E-6) and complement and coagu-
lation cascades (P =​ 53.0E-6) (Fig. 2b). The level of agreement between each cluster and term is reported by Kappa 
statistics (Supplementary Fig S3). Statistical values for each reported term are listed in Supplementary Table S6. 
In order to biologically validate our proteomic pathway discovery findings, we analyzed threshold values of tran-
scriptomic data from peripheral blood cells in the same patients and report that VEGF-related genes correlate 
with VEGF -related proteins as measured by aptamers (data not shown). These differentially expressed VEGF 
-related genes when analyzed by Kegg pathway are enriched in biological pathways that are plausibly related to 
VEGF signaling, providing biological validation of our findings.

Enrichment and network analysis of the downregulated IPF plasma proteome.  The down-
regulated proteins were analyzed for enrichment using the DAVID online software tool. The most significantly 

Figure 2.  Enrichment and network analysis of the upregulated IPF plasma proteome. (a) DAVID 
enrichment analysis was employed to select the most significantly enriched terms within the sample of 
upregulated proteins (n =​ 48). Bonferroni corrected P value, Benjamini-Hochberg (BH) P value and False 
Discovery Rates (FDR) are reported. Kappa statistics reporting similarity to most significant term (low >​ 0.25, 
moderate 0.25–0.5, high 0.5–0.75, very high 0.75–1). (b) ClueGO visualization and analysis of biological role 
(GO, Kegg pathways) was undertaken. GO terms are mapped in clusters by Kappa statistics. [Hexagon =​ Kegg 
pathway, Ellipse =​ Gene ontology term, arrow depicts direction of association].The major overview term 
(smallest P value within cluster) is depicted in color. Node size depicts Bonferroni corrected P value <​ 0.0005 
for all terms reported. Further details can be found in online supplement.
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enriched terms (GO ontology, Kegg pathway) included defense response, anti-apoptosis and immune response 
(see Fig. 3a). Cytoscape and ClueGo were then utilized to examine possible networks and relationships between 
enriched terms and their associated proteins. These significant clusters included acute inflammatory response 
(P =​ 740.0E-9), response to peptide hormone (P =​ 3.4E-15), phagocytosis (P =​ 1.8E-6), regulation of endopepti-
dase activity (P =​ 14.0E-12), leukocyte proliferation (P =​ 25.0E-9), ERK1/2 cascades (P =​ 150.0E-12), granulocyte 
chemotaxis (P =​ 22.0E-9), positive regulation of a response to an external stimulus (P =​ 74.0E-24), TNF signaling 
pathway (P =​ 4.2E-6), proteoglycans in cancer (P =​ 530.0E-9) and cytokine activity (P =​ 140.0E-15) (Fig. 3b). 
Kappa statistics for similarity between gene, terms and clusters can be found in Supplementary Figure S4. 
Statistical values for each reported term are listed in Supplementary Table S7.

A unique protein signature involved in immune processes differentiates IPF patients from controls.  
We next wanted to find a minimum set of proteins that best differentiated the healthy and IPF patients based on 
covariance, or relationships between proteins. This signature could potentially be used as a diagnostic tool based 
on non-invasive measurements made from peripheral blood. To identify the minimum multivariate protein sig-
nature that differentiated healthy and IPF patients, we used the Least Absolute Shrinkage and Selection Operator 
(LASSO) method as a feature selection tool, followed by Partial Least Squares Determinant Analysis (PLSDA) 
to assess the usefulness of the identified signature. LASSO identified an age-adjusted signature of 8 proteins that 
best differentiated the healthy patients from the patients with IPF. A PLSDA model of these 8 selected proteins 
classified the two groups perfectly, with 100% calibration accuracy and 100% cross-validation accuracy, as well 
as 100% sensitivity and specificity for both the healthy and the IPF groups. Latent variable 1 (LV1) was able to 

Figure 3.  Enrichment and network analysis of the downregulated IPF plasma proteome. (a) DAVID 
enrichment analysis was employed to select the most significantly enriched terms within the sample of 
downregulated proteins (n =​ 116). Bonferroni corrected P value, BH P value and FDRs are reported. Kappa 
statistics reporting similarity to most significant term (low >​ 0.25, moderate 0.25–0.5, high 0.5–0.75, very high 
0.75–1). (b) ClueGO visualization and analysis of biological role (GO, Kegg pathways) was undertaken. GO 
terms are mapped in clusters by Kappa statistics. [Hexagon =​ Kegg pathway, Ellipse =​ Gene ontology term, 
arrow depicts direction of association].The major overview term (smallest P value within cluster) is depicted 
in color. Node size depicts Bonferroni corrected P value <​ 0.0005 for all terms reported. Further details can be 
found in online supplement.
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completely differentiate between healthy patients (negative scores on LV1) and patients with IPF (positive scores 
on LV1; Fig. 4a). Two of the 8 proteins were loaded positively on LV1 (Fig. 4b), indicating that they were positively 
associated with the IPF patients, whereas 6 proteins were loaded negatively on LV1, indicating that they were 
negatively associated with the IPF patients (Fig. 4b). Not surprisingly, all of the proteins identified by LASSO were 
also found to be significantly different between healthy and IPF patients in the volcano plot (Fig. 1b). LASSO and 
PLSDA were able to successfully separate individuals that were healthy from individuals with IPF; this suggests 
that the 8 proteins in the signature may have relationships that are of biological interest. The LASSO-signature 
does include proteins that have clear immunological functions: inactivated (iC3b) and tumor necrosis factor 
ligand superfamily member 14 (TNFSF14 or LIGHT). This further suggests the potential importance of immune 
processes in the pathogenesis of IPF and warrants further investigation.

In order to better visualize patient clustering using our LASSO-identified signature, we performed hier-
archical clustering and created a heat map of the LASSO-identified protein signature (Fig. 4c). The result was 
readily-identifiable, near-perfect clustering of the healthy and IPF patients, with only one patient being mis-
classified. Interestingly, the 2 proteins in the hierarchical cluster that were overabundant in the IPF patients are 
the same 2 proteins that PLSDA identified as being positively associated with the IPF patients. Recalling that 
all 8 of the proteins were also included in the biologically relevant, age-adjusted significantly different protein 
panel, these findings validate the LASSO-identified blood protein signature as being the preferred signature to 
differentiate the two groups of patients, and also support the idea that there are large differences in the blood pro-
teome seen in healthy and IPF patients. We also analyzed the LASSO-identified protein signature using GO terms 
for biological process and molecular function. The most significantly upregulated functional annotation cluster 
involved peptidase inhibitors, endopeptidase regulators and catalytic activity (FE =​ 3.46, Bonferroni corrected 
P value =​ 0.0135) (Supplementary Figure S5). Overall these results provide proof-of-concept and suggest value 

Figure 4.  LASSO/PLSDA identified a minimum protein signature of 8 age-adjusted proteins that best 
differentiated healthy and IPF patients. (a) LASSO identified an 8-protein signature that differentiated 
healthy (purple) and IPF (cyan) patients, with 100% calibration accuracy and 100% cross-validation accuracy, 
with 100% sensitivity and specificity for both healthy and IPF patients. Latent variable 1 (LV1) accounted for 
71.48% of the variance in the data, and latent variable 2 (LV2) accounted for 6.15% of the variance in the data. 
(b) The loadings plot indicates protein contributions to the LASSO-identified signature, with positive loadings 
positively associated with IPF, and negative loadings comparatively reduced in IPF. (c) Hierarchical clustering 
further emphasizes the visual difference between healthy and IPF patients based on the LASSO-identified 
signature. Abundance of each protein is shown in color, with red indicating overabundance, white unchanged, 
and blue indicating underabundant proteins compared to the mean. Color bar scale is to the left of figure.
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for these approaches in the future development of a non-invasive diagnostic assay for IPF. This could be espe-
cially useful for a diagnosis of IPF with relatively normal pulmonary function levels and/or atypical radiological 
findings.

Discussion
IPF remains a disease of unknown etiology with poorly understood pathophysiological mechanisms. Major 
advances have occurred in recent years through hypothesis-driven studies of potential biomarkers of the genome, 
transcriptome, chemokines and cytokines. In this paper we apply novel modified aptamer technology to produce 
large scale studies of proteins of variable abundance in the blood of IPF patients and normal controls for the 
first time. This novel approach to IPF has generated new hypothesis-provoking insight regarding the possible 
key functional biological pathway abnormalities in IPF. The design and main focus of this study was to identify 
differentially expressed proteins in the blood of IPF patients compared to normal healthy controls and through 
the employment of systems biology and bioinformatics tools, generate knowledge about the enriched biological 
processes that these proteins may represent.

Analysis of the downregulated protein profile identifies a role for defense response encompassing a reaction 
to the presence of a foreign body or injury with an associated attempt to restrict damage and initiate repair. This 
is the most significantly enriched process within the downregulated protein panel. These data suggest that com-
pared to a normal host, IPF patients have reduced levels of circulating proteins that support host defense. Indeed, 
the cohort of patients studied in this work (COMET study cohort) was previously employed in a project that sup-
ported a role for dysbiosis in the lung and disease progression. Alterations in the microbiome, namely an increase 
in Streptococcal and Staphylococcal operational taxonomic units were associated with disease progression in IPF32. 
Molyneaux et al. have reported an association between disease progression and increased bacterial burden in the 
lung33. An increased quantity of Streptococcus species was noted. Knippenberg et al. using murine models have 
demonstrated a mechanism by which a pneumococcal toxin, pneumolysin, exacerbates pulmonary fibrosis34. Our 
study of the proteome at trial screening suggesting a reduction in processes supporting host defense, supports 
a potential role for pathogens, particularly given further findings in the downregulated proteome involving the 
regulation of responses to external stimuli. These data enrich the evidence for a potential role for dysbiosis in IPF 
progression.

Features of acute inflammation including leucocyte chemotaxis, proliferation and phagocytosis are subject to 
downregulation in the blood compared to normal controls in our study. Several proteins involved in regulating 
the response to wounding appear inhibited in the plasma of patients with IPF compared to controls. We hypoth-
esize that this finding is indicative of the recurrent injury and loss of the alveolar epithelial barrier. The proteome 
findings in this study support the paradigm of recurrent injury or wounding with aberrant repair. Indeed, our 
findings support an intrinsic impairment of the immune response to stimuli which may, in turn, promote insuf-
ficient or even exuberant responses to improve pathogen clearance but worsen bystander damage. The response 
of Toll like receptors (TLRs) and other pathogen recognition receptors to pathogen associated molecular patterns 
(PAMPs) and danger associated molecular patterns (DAMPs) is crucial to mounting a response to infection and 
injury35. IPF patients may have impaired responses to DAMPs and PAMPs. Studies of pathogen recognition 
receptors involved in responses to PAMPs/DAMPs including TLR 3 and TOLLIP have reported associations 
with IPF pathophysiology13,14. Furthermore, the role of immunosuppression is associated with poorer survival 
and higher levels of hospitalization in IPF patients36. The addition of agents responsible for attenuated immune 
responses may contribute negatively to a disease biology that features impaired responses to PAMPs and DAMPs.

The upregulated protein profile identified T cell co-stimulation as a process discriminating between normal 
and IPF patients. The role of T cell co-stimulation in regulation of lung fibrosis is controversial and complicated 
by the fact that measurements have been based on samples taken from different human compartments versus 
murine models. Studies to date have supported a role for decreased expression of inducible T cell co-stimulator 
(ICOS) in peripheral blood mononuclear cells (PBMCs) as a marker of disease progression and a predictor of 
poor survival outcomes9,10. However, animal models of bleomycin-induced pulmonary fibrosis reported higher 
levels of ICOS ligand (ICOSL) expression on macrophages and B cells in ICOS deficient mice compared to wild 
type which correlated with higher levels of fibrosis, thus highlighting a role for ICOSL expression in positively 
regulating pulmonary fibrosis. ICOS deficient mice had attenuated pulmonary fibrosis upon bleomycin chal-
lenge37. The role of ICOS and T cell co-stimulation warrants further study given our findings of enrichment of 
this process in the upregulated proteins when comparing IPF patients to normal controls. We have shown that 
ICOS may be secreted by activated T lymphocytes31 and hypothesize that the loss of ICOS expression on cells may 
correlate with elevated plasma levels and that this may be accompanied by reduced transcription. Taken together, 
these changes suggest a crucial regulatory step in the pathobiology of IPF. Interestingly, the positive regulation of 
T cell activation is notably enriched within the downregulated plasma proteome in IPF patients suggesting that 
overall, IPF patients may have impaired T cell activity and this may be linked to disease biology, potentially via 
impaired defense against pathogens such as herpesviruses38.

Protein phosphorylation is a fundamental mechanism of signal transduction and is achieved by kinase activ-
ity. The high signal for phosphorylation in our upregulated proteome may represent heightened kinase activity 
and both these processes are enriched within the upregulated proteome. In vitro studies and animal models have 
produced robust evidence to support a central role for protein kinase activity in pulmonary fibrosis, particularly 
tyrosine kinase activity including platelet derived growth factor (PDGF), epidermal growth factor (EGF), fibro-
blast growth factor (FGF) and vascular endothelial growth factor (VEGF)39. Nintedanib, a novel and approved 
tyrosine kinase inhibitor for IPF, robustly inhibits VEGF receptor, PDGF receptor and FGF receptor with result-
ant modification of IPF fibroblast biology and improved patients outcomes3,40,41. VEGF signaling was addi-
tionally enriched within the upregulated plasma proteome of IPF patients in our work, consolidating its role 
in IPF pathogenesis. A key downstream event of ligation between these tyrosine kinases and their receptors is 
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autophosphorylation and phosphatidylinositide 3-kinase activity42,43. ErbB signaling enrichment is also notable. 
These are a family of tyrosine kinase receptors, which include Her1 (epidermal growth factor receptor (EGFR)), 
Her2, Her3 and Her4. Several of these receptors have reported roles in epithelial remodeling, epithelial prolifer-
ation and are found to play significant roles in models of fibrosis44–46. Further dysfunction within this pathway is 
supported by the finding of enrichment within the downregulated proteome for EGFR (Her1) signaling. EGFR 
is vital for normal epithelial repair so downregulation of this pathway could indicate impaired wound healing. 
Alternatively, we cannot rule out the possibility that EGFR signaling within the lung promotes fibrosis, but that 
the signature is lost in peripheral blood. Further investigation of the role of ErbB signaling in the pathogenesis of 
IPF is likely needed.

Platelet activation leads to the release of several profibrotic mediators and IPF patients have reported evidence 
of increased platelet reactivity and activation in a previous study47. It is possible that this is reflective of the IPF 
plasma environment. Complement and coagulation cascades have reported associations with IPF. Complement 
receptor polymorphisms may be associated with the development of IPF48. Furthermore, complement can aug-
ment epithelial injury in pulmonary fibrosis through crosstalk with Transforming Growth Factor-β​ (TGF-β​)49. 
Gu et al. demonstrated that the inhibition of both complement component C3a and C5a receptors can lead to 
the arrest of fibrosis and may have therapeutic potential in IPF50. The enrichment within the plasma proteome 
of platelet activation and complement cascades is suggestive of ongoing injury that is detectable in the blood and 
will require further study.

The LASSO/PSLDA proteome signature we have identified includes novel proteins that have no previous 
reported associations with IPF. Armed with these target proteins however, it is interesting to speculate on their 
putative roles in pulmonary fibrosis. TNFSF14 (Tumor necrosis factor ligand superfamily member 14 or LIGHT) 
is an inflammatory molecule and a member of the TNF superfamily that our analysis also shows to be downreg-
ulated in IPF plasma compared to normal. Seemingly contradictory, the genetic deletion of LIGHT attenuates 
bleomycin-induced pulmonary fibrosis in animal models through the abolition of Thymic stromal lymphopoi-
etin (TSLP) expression51. In addition, Herro et al. demonstrated that the administration of recombinant LIGHT 
to murine models produced features of fibrotic lung disease similar to the bleomycin fibrotic phenotype, via a 
TSLP-dependent mechanism. Human bronchial epithelial cells challenged with LIGHT in vitro generate TSLP 
production51. LIGHT appears to have potential as a regulator of fibrosis and its role in IPF requires further 
exploration. LIGHT can function as a mediator of herpes viral cell entry, hence its acronym Herpes Virus Entry 
Mediator (HVEM), and one may speculate a further mechanistic role for LIGHT in this context given the evolv-
ing roles of herpes virus in fibrotic lung disease exacerbations38, but it may be informative to compare circulat-
ing vs. tissue measurements. Glycogen synthase kinase-3 alpha/Glycogen synthase kinase-3 beta(beta (GSK3A/
GSK3B) are negative regulators of glucose homeostasis, Wnt signaling and transcription factors, and this protein 
is positively associated with IPF. GSK3A/GSK3B inhibition in bleomycin-exposed mice has been shown to reduce 
alveolitis, lung fibrosis, and alveolar cell apoptosis52. GSK3A/GSK3B inhibition also decreased the production of 
monocyte chemoattractant protein-1 (MCP-1/CCL2) and tumor necrosis factor-α​ (TNF-α​) by lung macrophages 
after bleomycin exposure in this study. Plasma serine protease inhibitor (SERPINA5), a molecule we find at ele-
vated levels in IPF relative to control patients, has been shown to be upregulated in the intra-alveolar space of 
patients with interstitial lung diseases (IPF included), and is involved in the inhibition of fibrinolysis, especially in 
IPF53. A reduction in fibrinolysis causes more collagen, fibrin, and other extracellular matrix fibers to accumulate 
in the intra-alveolar space of these patients, leading to a stiffer lung and to formation of a matrix where fibroblasts 
can proliferate and release more collagen54.

The acquisition of a distinct signature in the blood proteome of IPF patients that allows for discrimination 
between IPF and healthy controls is a significant proof of concept discovery. While we recognize that a blood test 
is not necessary to diagnose IPF patients from healthy volunteers, our work suggests that this methodology could 
be employed to help diagnose IPF from other forms of chronic lung disease. This will require further validation 
with larger numbers of patients, and exploration in other chronic lung diseases to determine whether differential 
signatures are producible in similar diseases. If true, the potential for change in clinical practice is considerable. 
The use of peripheral blood to identify disease-specific signatures may result in obviating the need for biopsy in 
patients who present with imaging features that are not consistent with IPF or possibly improve diagnostic con-
fidence in patients who are not suitable for a surgical biopsy. Previous studies of plasma proteins in IPF patients 
identified both MMP-7 and MMP-1 as predictors of disease progression that were differentially expressed com-
pared to normal plasma8. While there remain significant methodological differences between studies, we have 
found that MMP-7 is also upregulated in IPF plasma compared to normal.

There are several limitations to our study. The study numbers are limited and the IPF cohort, while extensively 
characterized, was not subject to death over the course of 80 week follow up. This population may not be fully 
representative of the IPF disease spectrum and we are not able to adjust for all potential confounding variables 
including co-morbidities within the IPF population. The absence of a validation cohort is a weakness; however 
the main goal of this work was to generate hypotheses based on the proteomic data accrued. The use of slow 
off rate modified aptamers is novel and the aptamer results may not correlate with other protein measurement 
platforms. The aptamers bind to non-linear sequences with very high specificity for the selected target; this may 
explain some of the variance when measuring identical targets with other platforms such as ELISA25. However, 
several studies have demonstrated very high levels of agreement between the modified aptamer platform and 
ELISA31,55.

Although we did not have a validation cohort to test the accuracy of our PLSDA model, we did investigate 
model accuracy through cross-validation. This involved excluding a small portion of the data (called the test set), 
building a model based on the rest of the data, and testing the accuracy of the model using the test set. By repeat-
ing this process many times and using different test sets, we were able to obtain the cross-validation accuracy by 
averaging the accuracy of each individual model. Thus despite the fact that there was not a validation cohort, 
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we were still able to report a metric of model accuracy, which was calculated based on testing the model with 
unseen data. The final model we have reported on performed perfectly during cross-validation testing with 100% 
cross-validation accuracy.

Our work identified biological processes that discriminate IPF from healthy controls and generates hypoth-
esis and new targets for investigation into disease mechanisms. Our study patients were recruited to a clinical 
trial with the highest standards of diagnostic approach and management. The prime purpose of this work was 
to introduce the approach of large scale unbiased biomarker screening and the generation of subsequent mech-
anistic hypothesis. However, given the proposed single organ nature of IPF, the biological signal detectable in 
blood is dilute and may not accurately reflect ongoing change within the lung. However, peripheral blood has 
been employed in several biomarker studies in IPF to date6,8,10 and represents an easily-accessible compartment 
for analysis. The fact that the identified proteome clustered differently between IPF and controls gives some con-
fidence that analyses of peripheral blood may be useful.

In conclusion, this work furthers the evolving evidence supporting impaired host defense as a key marker of 
IPF disease biology and validates some of our current understanding. We generate further hypotheses about novel 
potential therapeutic targets and introduce a new approach to biomarker studies in IPF. The ability to identify a 
minimal signature that allows clinicians and researchers alike to discriminate IPF cases from normal serves as a 
proof of principle that this approach may have potential in defining other forms of chronic interstitial lung disease 
and the further evaluation of molecular endotyping in pulmonary fibrosis.

Methods
Study Population.  Subjects included in this analysis were a subset of patients who participated in a pro-
spective observational study correlating biomarkers with disease progression (clinicaltrials.gov, clinical trials ID  
no. NCT01071707) (Correlating Outcomes with biochemical Markers to Estimate Time-progression in Idiopathic 
Pulmonary Fibrosis–COMET). This cohort consisted of 60 patients who had samples available for analysis for 
at least 3 follow up time points, but this report focuses only on the baseline samples. Inclusion criteria required 
patients to be aged 35-80 years with a diagnosis of IPF. Exclusion criteria included a diagnosis of IPF that was >​ 4 
years prior to screening, a diagnosis of collagen-vascular disorder, FEV1/FVC <​ 0.6, evidence of active infection 
at screening, or comorbid conditions other than IPF likely to result in death within one year. Subject follow up 
was for 80 weeks. Informed consent was obtained from all participating patients. The study protocol was reviewed 
and approved by the institutional review board of each participating center and methods were carried out in 
accordance with the relevant guidelines and regulations. Participating centers included: University of California 
Los Angeles. Los Angeles, CA, United States–University of California, San Francisco. San Francisco, CA, United 
States–National Jewish Medical and Research Center, Denver, CO, United States–University of Chicago, Chicago, 
IL, United States–University of Michigan Ann Arbor, MI, United States–Cleveland Clinic Foundation, Cleveland, 
OH, United States–Temple University, Philadelphia, PA, United States–Brown University, Providence, RI, 
United States–Vanderbilt University, Nashville, TN, United States. Patients were enrolled from March 2010 to 
March 2011. Blood samples and demographic data were also acquired from healthy human controls (n =​ 21). 
Demographics are displayed separately for IPF patients and healthy normal participants, with mean and standard 
deviation for the continuous predictor age and the number and percentage enrolled for the categorical variable 
gender. Statistical significance of differences between the two groups of people for age and gender were assessed 
via Student’s t test and Pearson’s Chi-squared test, respectively (Supplementary Table S1). Patients were diagnosed 
as having IPF using a multidisciplinary approach as per published international guidelines1. In brief, the diagnosis 
of IPF was on the basis of features on computed tomography (CT) scans of the chest or usual interstitial pneumo-
nia (UIP) pathology confirmed by lung biopsy. Cases were reviewed with expertise from radiologists, pathologists 
and clinicians at the local enrolling center. The number of biopsy proven cases was 35 of 60 patients, representing 
58% of the study cohort. All cases and controls were of Caucasian ethnicity.

Sample acquisition and preparation.  Peripheral blood was collected in EDTA-containing vacutainers 
at study centers and samples were shipped by overnight mail using cold packs to the University of Michigan. 
Samples were collected at 3 time points, namely screening, week 48 and week 80. Samples from healthy human 
controls were obtained from MedImmune and analyzed simultaneously with the COMET specimens. Whole 
blood was centrifuged at 2500 rpm for 10 minutes and plasma was collected and frozen at −​80 °C in small ali-
quots. Samples were shipped to SomaLogics for analysis on the SOMAscan®​ panel (1129 analytes). Plasma sam-
ples were diluted at 3 different concentrations for analysis on the aptamer array at the optimal concentrations for 
each SOMAmer©.

SOMAscan Assay.  The SOMAscan®​ proteomic assay has been described extensively in previous publica-
tions25. In brief, each of the listed proteins is measured using a modified aptamer reagent and measured quan-
titatively in relative fluorescence units (RFU’s) using a custom Agilent hybridization chip. Normalization and 
inter-run calibration were performed according to SOMAscan v3 assay data quality-control procedures as defined 
in the SomaLogic good laboratory practice quality system. A complete list of SOMAscan© analytes may be found 
online (http://www.somalogic.com/somalogic/media/Assets/PDFs/SSM-045-REV-1-SOMAscan-Assay-1-
3k-Content.pdf).

Statistical Analysis of SOMAscan assay results.  Proteomic data is reported quantitatively as RFU’s for 
1129 analytes in 60 IPF patients and 21 healthy controls. For a graphic summary of our investigative approach see 
Supplemental Figure S1.

The initial approach first identified 203 proteins that differentiated IPF from controls. Relative fold change 
in blood protein levels were calculated by dividing the average intensity in IPF samples by the average intensity 

http://clinicaltrials.gov
http://www.somalogic.com/somalogic/media/Assets/PDFs/SSM-045-REV-1-SOMAscan-Assay-1-3k-Content.pdf
http://www.somalogic.com/somalogic/media/Assets/PDFs/SSM-045-REV-1-SOMAscan-Assay-1-3k-Content.pdf
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in the healthy samples. Statistical analysis between the healthy and IPF patients was performed by a standard 
two-tailed and two-sample t-test. Graphical representation of the proteomic data was created using GraphPad 
Prism software (v6.01 for Windows, GraphPad Software, La Jolla, CA). Significantly different proteins were those 
that passed a set false discovery rate threshold of 1%. Hierarchical clustering of significantly different proteins 
was generated by unsupervised average linkage hierarchical clustering using Pearson’s correlation coefficient as 
the distance metric56.

Upon comparison of epidemiological factors between the two groups, we found age to be slightly increased 
in the normal group. To account for this and identify age-adjusted proteomic differences, we performed linear 
regression with all biomarkers and age as predictors based on comparison between the IPF and normal cohort, 
and assessed mean analyte differences between IPF patients and controls adjusted for age. To account for multiple 
comparisons, we considered Benjamini-Hochberg false discovery rate methods57, but eventually decided upon 
a more conservative Bonferroni correction to maintain an overall type I error of 0.01 and more aggressively 
screen analytes from the pool of candidates58,59. Altogether, this resulted in a refined volcano plot showing the 
age-adjusted proteome. Hierarchical clustering was then used to visualize how these proteins differentiated the 
healthy and IPF patients.

Analysis of the differentially expressed IPF proteome with DAVID and Cytoscape.  To identify 
significantly enriched biological process that differentiate IPF from control, those proteins that passed initial 
screening steps (a Bonferroni correction and linear regression modelling for age) were catalogued into “upregu-
lated” and “downregulated” profiles. In brief, proteins that were meaningfully “upregulated” or “downregulated” 
were deemed to have potentially significant biological roles in IPF patients compared to the control cohort. A 
fold increase over control mean of 1.5 and a fold decrease below control mean of 0.75 were used as thresholds 
for “upregulated” and “downregulated” proteins, respectively. These criteria selected out 48 upregulated proteins 
and 116 downregulated proteins when comparing IPF patients to controls (Supplementary Tables S2 and S3). 
Certain proteins were measured in combination (see Supplementary Tables S2 and S3). Certain proteins, i.e. 
inactivated or splice variants, measured by the SOMASCAN array do not have unique UniProt identifiers availa-
ble, and therefore the parent protein UniProt Identifier is reported. Functional annotation and visualization was 
employed using the Cytoscape (v3.3.0) software environment and the ClueGO (v2.2.5) plugin application60,61. In 
brief, for ClueGo analysis, Gene ontology levels and Kegg Pathways were explored with medium specificity and a 
Kappa score of >​0.4. The Bonferroni correction was employed for each P value calculation. GO fusion was used 
to reduce redundancy with child-parent term fusion. P value of 0.05 was regarded as significant. Visualization 
was applied with Overview term labelling and term P value for nodal size. Functional annotation clustering 
and enrichment analysis was performed using Gene Ontology (GO) biological processes (BP FAT), molecular 
function (MF FAT), Kyoto Encyclopedia of Genes and Genomes (KEGG). Enrichment analysis was undertaken 
by submitting these proteins to the Database for Annotation, Visualization and Integrated Discovery (DAVID) 
(http://david.abcc.ncifcrf.gov/)62,63. Enrichment analysis was performed on the basis of uniprot_accession as iden-
tifier and gene list as list type, medium stringency and Bonferroni correction was applied. Enrichment chart anal-
ysis was performed using Gene Ontology (GO) biological processes (BP FAT), GO molecular function (MF FAT) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG). The top functional annotation clusters with significant 
enrichment scores were identified.

Identification of a minimal IPF proteomic signature with hierarchical clustering and 
PLSDA.  The Least Absolute Shrinkage and Selection Operator (LASSO) method56 was used to identify a min-
imum, age-adjusted protein signature that best differentiated IPF and normal proteomes and was implemented 
using Matlab software64 (Mathworks, Natick, MA). K-fold cross-validation was used to generate the model that 
had the lowest possible mean squared error for prediction. Associated features for this model were chosen as the 
minimum set of biomarkers. In order to allow for age-adjustment in the LASSO model, age was forced into the 
model as a parameter and assigned zero penalty. PLSDA assessed the usefulness of the LASSO-identified protein 
signature for differentiating healthy and IPF patients. Data were normalized with mean centering and variance 
scaling, and cross-validation was performed by iteratively excluding random subsets in groups of 9-10 data points 
during model calibration. Excluded data samples would then be used to test model predictions. Hierarchical clus-
tering of LASSO-identified proteins was generated by unsupervised average linkage hierarchical clustering using 
Pearson’s correlation coefficient as the distance metric.

Investigating the Effect of Comorbidities in IPF had on the LASSO and PLSDA Analysis.  To 
investigate whether or not the comorbidities present in some IPF patients affected the feature selection by LASSO 
or the clustering in PLSDA, we performed a principal component analysis (PCA) on all of the measured blood 
proteins in the healthy and IPF patients. PCA was chosen as the method of analysis due to the lack of knowledge 
of the comorbidities seen within the healthy cohort. Gastroesophageal reflux disease (GERD) and obstructive 
sleep apnea (OSA) were examined based on their prevalence in the IPF patients (34 patients with GERD and 12 
patients with OSA).
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