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ABSTRACT Whole-genome sequencing of trimethoprim-resistant Escherichia coli
clinical isolates identified a member of the trimethoprim-resistant type II dihydrofo-
late reductase gene family (dfrB). The dfrB4 gene was located within a class I in-
tegron flanked by multiple resistance genes. This arrangement was previously re-
ported in a 130.6-kb multiresistance plasmid. The DfrB4 protein conferred a �2,000-fold
increased trimethoprim resistance on overexpression in E. coli. Our results are consis-
tent with the finding that dfrB4 contributes to clinical trimethoprim resistance.
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Public health agencies worldwide rank trimethoprim (TMP) a broad-spectrum anti-
biotic of importance in human medicine (1). Widely used as a result of its low cost

and effectiveness, TMP inhibits the activity of many microbial chromosomal dihydro-
folate reductases (DHFRs); thus, DHFRs have long served as prioritized targets of
antiproliferative drugs (2). Although the majority of living cells harbor a chromosomal
member of the type I DHFR family, encoded by a dfrA homolog, the dfrB genes encode
a family of plasmid-borne type II DHFRs that are evolutionarily unrelated to type I
DHFRs. The dfrB genes have been found in pathogenic bacteria recovered from many
food sources, including fish (3), pigs (4, 5), and cows (6), where they confer TMP
resistance. Bacteria carrying dfrB genes have also been identified in wastewater samples
(7). Over the past decade, dfrB genes have been tracked indirectly in antibiotic
resistance studies through identification of integron-related elements (8–10). Therefore,
the importance of dfrB genes in TMP resistance in human pathogens may be undera-
ppreciated (11, 12).

To date, only seven members of the dfrB gene family are known, and they are highly
homologous (77% to 94% genetic identity, 77% to 99% amino acid identity) (Table 1).
Among these, the DfrB1 protein (also known as R67 DHFR) is the best-studied type II
DHFR (13–17). It is proposed to be recently evolved, and it confers a significant survival
advantage under TMP exposure to microbes that harbor it (18). To date, the family of
dfrB genes has consistently been reported to be contained within the following mobile
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genetic elements: a highly variable 57- to 141-bp recombination binding site (attC) and
the 7-base canonical sequence (7-be), which is identical in all dfrB genes (5=-GTTRRRY)
except dfrB2 (GTTAGGC) and includes a 7-be at the 3= end, which is the reverse
complement of the 7-be found upstream of the coding sequence (r7-be).

Clinical sample library. We examined whole-genome shotgun sequencing data
for 593 Escherichia coli isolates, including 380 E. coli isolates recovered from 324
individuals with hospital-associated human extraintestinal infections (19) and 189 E. coli
isolates recovered from 189 women diagnosed with a community-acquired urinary
tract infection (UTI) (A. R. Manges, unpublished data). Genomic E. coli DNA from women
with UTIs (Manges collection) was extracted using the PureLink genomic DNA minikit
(Thermo Fisher Scientific). Purified DNA was sheared in water using the Biorupter Pico
(Diagenode), and sequencing libraries were prepared using the TruSeq DNA PCR-free
library preparation kit (Illumina), according to the manufacturer’s instructions. All E. coli
isolates were sequenced on the Illumina HiSeq 2500 at the University of British
Columbia’s Pharmaceutical Sciences Sequencing Centre and British Columbia Genome
Sciences Centre (Vancouver, BC).

In silico screening. Seven members of the dfrB gene family were used as templates for
in silico screening, including two variants of the dfrB1 gene that differ by the absence or
presence of 19 additional N-terminal amino acids not essential for the reductase activity (20;
see http://www.esi.umontreal.ca/~pelletjo/ToulouseSupplemental-material.pdf). The in
silico dfrB screening was performed by aligning paired-end reads from 569 whole-
genome-sequencing data sets to the set of dfrB genes in FASTA format with the
Burrows-Wheeler aligner (BWA), using standard alignment parameters. Sequencing
reads from E. coli isolates recovered from blood samples of an individual taken 2 days
apart aligned exactly over the entire dfrB4 gene sequence (19 [https://www.ncbi.nlm
.nih.gov/sra/SRX560289 and https://www.ncbi.nlm.nih.gov/sra/SRX560290]). The DNA
consensus sequences were identical to the previously deposited 237-bp dfrB4 sequence
(GenBank AY968808 and KP314737.1). Three further samples held one read that
overlapped with the dfrB4 integron with 0 to 2 mismatches. Because no contig within
assemblies of these three data sets aligned with dfrB4, they were not considered
further.

Reconstruction of dfrB4 mobile genetic element and contiguous DNA seg-
ments. Read sets with significant alignment to any reference dfrB gene were
assembled into contigs, and the dfrB genes were aligned with BWA to these
assembled contigs. The contigs from both samples have an r7-be (GTTGGGC) 61 bp
upstream of the dfrB4 coding sequence and an attC sequence downstream (Fig. 1).
The 7-be found in the attC (GCCCAAC) is 53 bp downstream from the coding
sequence. These flanking sequences are identical to those of a previously reported
dfrB4 mobile genetic element (GenBank accession no. AY970968.1) from Klebsiella
pneumoniae (21). The attC sequence differs by one nucleotide from another dfrB4
mobile genetic element from E. coli (GenBank accession no. KP314737.1) (22; http://
www.esi.umontreal.ca/~pelletjo/ToulouseSupplemental-material.pdf).

Contiguous to the mobile genetic element, we identified a 8,963-bp segment
derived from sample SRX560290 and a 9,029-bp segment derived from sample

TABLE 1 DNA sequence query coverage and identity of the main type II DHFRs, with the expected value

DHFR

Query coverage (% identity) and expected valuea for:

dfrB1 dfrB2 dfrB3 dfrB4 dfrB5 dfrB6 dfrB7

Truncated dfrB1 100 95 (77) 2e�47 90 (88) 3e�77 89 (83) 5e�61 100 (89) 9e�90 100 (92) 7e�98 100 (92) 7e�98
dfrB2 100 85 (86) 2e�66 72 (85) 2e�54 83 (79) 3e�45 97 (78) 4e�50 95 (77) 2e�47
dfrB3 100 94 (85) 2e�73 96 (86) 4e�75 97 (87) 7e�79 96 (86) 8e�78
dfrB4 100 92 (81) 8e�59 94 (80) 1e�57 92 (80) 4e�56
dfrB5 100 100 (91) 3e�96 100 (92) 1e�100
dfrB6 100 93 (94) 7e�111
aExpected values indicated by boldface (coding sequence only). The expected value (e) represents the probability of randomly matching two different sequences. The
lower the e value, the more significant the match.
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SRX560289 (Fig. 1) (19). The 66-bp difference did not belong to an open reading frame
(ORF) and lay outside the dfrB4 mobile genetic element. The dfrB4 gene was carried
with intI1 (class 1 integron integrase/recombinase) and tnpA (transposase), which are
indispensable for integration of mobile genetic elements (23). Moreover, multiple
antibiotic, biocide, and metal resistance genes were identified: qacEΔ1 (biocide resis-
tance [24, 25]), sulI (sulfonamide resistance [26]), the mphR(A)/mphA/mrx gene cluster
(macrolide/erythromycin resistance [27]), and chrA (chromate resistance [28, 29]). The
qacEΔ1 gene encodes a truncated and less-efficient cation efflux pump version of qacE
(24).

Additionally, both segments included similarity to the GNAT (acetyltransferase) and
sulI3 genes (30). The DNA sequence was 96% identical to GNAT from Aeromonas
hydrophila with 72% query coverage (GenBank accession no. JX141473.1). The sulI3
gene was 100% identical with 55% query coverage (GenBank accession no. EF382672.1)
yet included a 140-nucleotide 3= deletion. The segments included the little-known padR
transcriptional regulator. Nine additional ORFs were identified as hypothetical proteins.

A BLAST alignment of the contig derived from SRX560289 against all organisms
resulted in 957 hits with an E value of �1 � e�24 (31, 32). Among these, a single hit
(GenBank accession no. CP014320.1) included the dfrB4 mobile genetic element. It was
a 130.6-kb plasmid from a clinical isolate of a patient with recurrent E. coli sequence
type 131 (ST131) cystitis, the most prevalent E. coli lineage found in recurrent UTIs (33).
Other hits included mismatches (�15) and gaps (�38) and excluded the dfrB4 gene
sequence. This suggests that the dfrB4 mobile genetic element has recently been
incorporated into the CP014320.1 multiresistance plasmid.

The DfrB4 protein confers TMP resistance. The high sequence identity of the
DfrB4 protein to the well-characterized TMP-resistant DfrB1 protein (Table 1) and
the 6-mm TMP zone of inhibition for these clinical samples (S. Salipante, personal
communication) corresponding to an MIC of �16 �g/ml strongly argue that DfrB4
should confer TMP resistance to E. coli (34). To corroborate this hypothesis, the
consensus dfrB4 coding sequence was obtained (GeneArt gene synthesis; Thermo
Fisher Scientific) with an N-terminal hexahistidine affinity tag for eventual purifica-
tion. It was cloned into pET24-cTEM19m between NdeI and HindIII, under IPTG
(isopropyl-�-D-thiogalactopyranoside)-inducible overexpression in E. coli BL21(DE3).
The MIC value was determined at least in duplicate through broth microdilution
after incubation at 37°C for 14 to 16 h. We observed high resistance to TMP when
expressing DfrB4 (�600 �g/ml, which is the maximal concentration of TMP that is
soluble in 5% methanol) (35). The MICs for all negative controls were at least
2,000-fold lower, specifically E. coli BL21(DE3) (0.30 �g/ml) and E. coli BL21(DE3)/
pET24-cTEM19m expressing an IPTG-inducible �-lactamase (0.075 �g/ml) (36). Thus,
the MIC value of DrfB4 greatly surpasses the E. coli TMP resistance threshold (2
�g/ml) and is associated with 2.5% of all E. coli strains considered to exhibit
dangerously high TMP resistance (�512 �g/ml) (35, 37). In these experiments, DfrB4
was overexpressed; the expression level of DfrB4 in its native form is unknown.

FIG 1 Scheme of the 9,029-bp DNA segment derived from sample SRX560289. Purple, indispensable genes for integration of mobile genetic
elements. Yellow, intI (integrase/recombinase), tnpA (transposase), and the integron-associated recombination site (attI). Red, resistance genes
(qacE�1, biocide resistance; sulI, sulfonamide resistance; the mphR(A)/mphA/mrx gene cluster, erythromycin resistance; and chrA, chromate
resistance), except dfrB4 (dihydrofolate reductase, TMP resistance), which is blue. Orange, recombination binding site (attC). Dashed lines, 7-be
sequences. Green, DNA sequences sharing similarity with known genes: GNAT/sulI3 (acetyltransferase/sulfonamide resistance) and padR (tran-
scriptional regulator). Gray, the 62- and 4-bp sequence differences between DNA contigs.
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To our knowledge, this work constitutes the first report of the type II TMP-resistant
dfrB4 gene identified in a clinical sample by whole-genome sequencing. The 2,000-fold
increase in MIC for TMP that we observed in a transformed E. coli isolate points to TMP
resistance in the clinical isolate identified carrying the dfrB4 gene. The observation of
this highly TMP-resistant DfrB4 within a known class I integron indicates that it is being
disseminated, although the extent and rate of its propagation are currently unknown
as it has not been systematically tracked. Our results highlight the importance of
tracking the presence of this gene family in TMP-resistant clinical samples.
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