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ABSTRACT Emergence of drug-resistant Plasmodium falciparum strains has led to a
situation of haste in the scientific and pharmaceutical communities. Hence, all their
efforts are redirected toward finding alternative chemotherapeutic agents that are
capable of combating multidrug-resistant parasite strains. In light of this situation,
scientists have come up with the concept of hybridization of two or more active
pharmacophores into a single chemical entity, resulting in “antimalarial hybrids.” The
approach has been applied widely for generation of lead compounds against deadly
diseases such as cancer and AIDS, with a proven potential for use as novel drugs,
but is comparatively new in the sphere of antimalarial drug discovery. A sudden
surge has been evidenced in the number of studies on the design and synthesis of
hybrids for treating malaria and may be regarded as proof of their potential advan-
tages over artemisinin-based combination therapy (ACT). However, it is evident from
recent studies that most of the potential advantages of antimalarial hybrids, such as
lower toxicity, better pharmacokinetics, and easier formulation, have yet to be real-
ized. A number of questions left unaddressed at present need to be answered be-
fore this approach can progress to the late stages of clinical development and prove
their worth in the clinic. To the best of our knowledge, this compilation is the first
attempt to shed light on the shortcomings that are surfacing as more and more
studies on molecular hybridization of the active pharmacophores of known antima-
larials are being published.
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Malaria continues to be a prominent killer of populations in the tropics. In the
recent past, we had already been hit with a major setback in the effective control

of malaria, when chloroquine (CQ) lost its position as a first-line antimalarial drug (1, 2).
Consequently, most 4-aminoquinoline (AQ) drugs show cross-resistance due to their
structural relationship to chloroquine. More recently, the endoperoxide sesquiterpene
lactone-artemisinin (lactone-ART) (and its derivatives) became the mainstay for treating
malaria. They were considered to represent the only class of potential drugs available
to vitiate the impact of multidrug-resistant strains of Plasmodium. The World Health
Organization (WHO), over the last decade, has been advocating the deployment of
artemisinin-based combination therapy (ACT) as the “gold standard” for treatment of all
malaria infections in areas afflicted by Plasmodium falciparum. It involves the simulta-
neous use of two or more blood schizonticidal drugs with independent modes of action
and different biochemical targets in the parasite (3). However, recent reports on the
emergence of artemisinin resistance have increased awareness of the risk of returning
our efforts at reducing the worldwide malaria burden to ground zero (4, 5). As ACT is
one of the last viable treatment options that we presently have, the current state of
affairs is extremely worrisome.

Although true clinical resistance to artemisinins has not been confirmed in parasites
collected from patients, there have been reports of clinical failures of artemisinin
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treatment (6). A small number of cases with poor responses to artesunate or artemether
have also been reported in western Thailand, India, and Sierra Leone (7, 8). Some
clinical parasite isolates from Nigeria and Madagascar appear to exhibit reduced
sensitivity (9, 10).

Factors such as failure of mosquito control methods, development of parasite
resistance to the existing antimalarials, lack of an effective antimalarial vaccine reaching
clinical application, shortfall in drug supply versus demand, inadequate drug deploy-
ment, and poor patient compliance contribute to the severity of the malaria menace
(11).

The present scenario has directed the attention of researchers toward exploring
new, multifaceted avenues of drug discovery, the outcome of which has been the
design and synthesis of antimalarial “hybrids.”

Hybrid compounds can be defined as chemical entities with two or more structural
moieties with different biological functions, thus combining two or more pharmaco-
phores in a single molecule (12, 13). In simple terms, it is a rational chemistry-based
approach which involves the covalent linking of two molecules, each with its own
antimalarial activity, to produce a single hybrid molecule with dual activity (14).
Therefore, the concept, also known as “covalent biotherapy” or “double drugs,” can be
regarded as an extension of the concept of a fixed-dose combination of two or more
drugs in a single tablet. Hybridization of molecules is a powerful tool that has been
utilized by several research groups to develop compounds with the potential to treat
a number of diseases such as cancer, AIDS, and tuberculosis and is now gaining
momentum in the field of antimalarial drug discovery.

Hybrid molecules can be classified on three different bases:

● Mode of interaction of the individual pharmacophores with target

● Nature/form of presentation

● Nature of the linker unit employed

Figure 1 illustrates a detailed classification of hybrids based on the categories listed
above, along with an example of a hybrid compound in each category (12–24).

FIG 1 (A) Hybrid compounds classified according to (a) mode of interaction of the individual pharmacophores with target, (b) nature/form of presentation, and
(c) nature of the linker unit employed. (B) Chemical structures of compounds representing antimalarial hybrids in each category. The chemical structure
representing a merged hybrid (F) is that of a potential anticancer agent.
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ADVANTAGES OF HYBRIDS

The suddenly accelerated pace of studies on the design and synthesis of hybrid
antimalarial drugs stands strongly in support of the potential advantages of hybrids
over ACTs, which are listed below.

Drug resistance. The use of double-drug or dual molecules can be regarded as an
approach that would reduce the risk of drug resistance development by the mutual
protection of each pharmacophoric moiety. This is especially useful in designing drugs
such as the aminoquinolines (for example, chloroquine), where resistance does not
surface because of an altered target but because of an inability to latch onto the
target. It will be interesting to evaluate whether the concept of “covalent bitherapy”
can be exploited to develop hybrid molecules with the ability to restore the activity
of members of other drug classes, such as antifolates (e.g., sulfadoxine/pyrimeth-
amine), which have been rendered ineffective by emergence of resistance (25).

Solubility. In case of fixed-dose combinations, different levels of bloodstream uptake
occur due to differences in the solubility of the partner drugs. However, with a hybrid,
one can surpass the fine-tuning required to ensure similar blood levels of drugs
administered in the same tablet. If one moiety of the hybrid molecule is more soluble
than the other, its uptake capacity can be used to contribute to the bioavailability
of the other (26). Additionally, the nature of the linker employed can also contribute
to the solubility of the entire unit. For example, the linker employed in chloroquine-
pyrimethamine hybrids has two ethylene oxide units, which take part in hydrogen
bonding with the water molecules and most likely contribute to its good solubility in
both acidic and neutral media (27).

Synergism. If the active moieties of the two partner drugs are linked and if the
spacing is appropriate, they may interact synergistically and display higher activity
than as free agents (13). Walsh et al. gave a proof of concept for the hybridization of
artemisinin and quinine in a single molecule, which showed an enhanced antimalarial
effect in comparison to that of each of the parent compounds as well as in comparison
to that of a 1:1 mixture of artemisinin and quinine (28). Another example illustrating the
synergistic effect of covalent linkage was furnished by Benoit-Vical and coworkers (29).
They combined trioxane and chloroquine into a single moiety, forming a trioxaquine,
which displayed better antimalarial activity than the two separate precursors. Also, in
addition to all the properties of trioxane-containing molecules, the hybrid was also able
to inhibit the polymerization of �-hematin, a property of chloroquine. Similar results
have been obtained in the case of artemisinin-primaquine phosphate (artemisinin-
Primaquine [PQ]) and stilbene-chalcone (30, 31) hybrids.

Pharmacokinetics. The pharmacokinetic properties of a hybrid are easier to predict
and hence to manipulate than those of the two individual drugs. Therefore, problems
pertaining to pharmacokinetics, metabolic stability, or side effects of individual mole-
cules are rectified in the form of a hybrid, as the entire drug molecule might be toxic
in a few cases, but its pharmacophore might not necessarily be as toxic. If a toxicophore
fragment of a given drug molecule does not overlap the pharmacophore, then it may
be possible to redesign the molecule (32). For example, thalidomide derivatives devoid
of teratogenic effects have been developed for treating chronic inflammation employ-
ing hybridization techniques, based on studies demonstrating that the teratogenicity is
due to its distinct toxic subunit, glutarimide (33). PQ, an 8-aminoquinoline, has serious
side effects and is known to induce hemolysis, especially in glucose-6-phosphate
dehydrogenase (G6PD)-deficient individuals. However, Vangapandu and coworkers
(34) demonstrated that 8-quinoline amine conjugates as well as the corresponding
“double prodrugs” had promising in vivo activity in mice. If these compounds, in
which the basic pharmacophore is primaquine phosphate, were modified to improve
their blood schizonticide activity, they would have the capability to be employed as
broad-spectrum (tissue and blood schizonticides) antimalarial agents.

Stability. Joubert et al. (35) employed the differential scanning calorimetry (DSC)
and thermogravimetric analysis (TGA) techniques to ascertain whether the addition of
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9-aminoacridine moiety would impart stability to the otherwise unstable artemisinin
pharmacophore. Affirming the stability of potential antimalarial compounds during
the initial stages of development is of utmost importance, so as to ensure that the
compound will be able to tolerate the extreme conditions present in regions of
malaria endemicity. The hybrids that emerged in their study were extremely stable,
with minimum weight losses. It is clearly evident from that study that the bulkiness and
rigidity of the acridine ring imparted stability to the complete hybrid structure.

Incorporation of adducts. Forming hybrids allows grafting of suitable inhibitors of
parasite resistance or water-soluble molecules to overcome poor solubility. For exam-
ple, the first attempt to counteract chloroquine resistance in P. falciparum, by blocking
its export from the parasite digestive vacuole (DV), involved linking a CQ-like moiety to
a reversal agent (RA) via an alkyl linker (36). A number of calcium channel blockers, such
as nifedipine and verapamil, and their derivatives, such as imipramine, dibenzylmeth-
ylamines, primaquine phosphate, and dihydroanthracenes, are known to restore sen-
sitivity to chloroquine in resistant strains (37–40). Certain RAs are known to inhibit P.
falciparum digestive vacuole membrane protein PfCRT (P. falciparum chloroquine re-
sistance transporter)-associated export of chloroquine from its site of action in the DV.
This occurs as a consequence of mutations in PfCRT. It was hypothesized that such a
hybrid molecule would deliver the quinoline moiety and the RA in a 1:1 ratio, lowering
the dose of reversal agent required in comparison to the dose that would be needed
in cases in which the two components would be administered individually, making the
effective dose much lower. The hybrid was termed a “reversed chloroquine” (Fig. 2), and
although it was effective against chloroquine-resistant parasites both in vitro and in
vivo, it did not move into further development on account of being highly lipophilic.

Multistage antimalarial strategy. Most antimalarial drugs in the current treatment
strategies primarily target the erythrocytic stages of the malaria parasite in the human
blood system. But to ensure malaria eradication, new drugs are urgently needed that
restrict transmission of the parasite between the human host and the mosquito vector
and that eliminate the parasite in its various stages during its cycle in the human body.
The first study based on the covalent combination of molecules acting on different
stages of the parasite life cycle was conducted by Capela et al. (30). The work describes
the synthesis of hybrid molecules containing PQ and artemisinin (ART) pharmacophoric
units, and their efficacies against Plasmodium hepatic and erythrocytic stages, both in
vitro and in animal models of malaria. PQ is the only drug approved against liver stages
of Plasmodium, including parasites acutely infecting the liver and hypnozoites. None of
the other approved drugs reliably clear hypnozoites. PQ is also effective against sexual
stages, i.e., the gametocytes, thereby disrupting the transmission of infection to mos-
quitoes. Therefore, PQ is administered in combination with a therapeutic agent that
acts against blood-stage parasites. This strategy is aimed at reliably curbing infections
with P. vivax or P. ovale and thereby preventing relapses due to the development of
subsequent blood-stage infections from hypnozoites.

Miranda et al. (18) reported a series of hybrid compounds combining either a
1,2,4-trioxane or 1,2,4,5-tetraoxane and 8-aminoquinoline moieties. The hybrids were
synthesized and screened for their antimalarial activity.

FIG 2 Chemical structures of (A) reversed chloroquine (RCQ), as proposed by Burgess et al. (36), and (B)
chloroquine and (C) imipramine (RA), employed for its synthesis.

Minireview Antimicrobial Agents and Chemotherapy

May 2017 Volume 61 Issue 5 e00249-17 aac.asm.org 4

http://aac.asm.org


Both those studies indicated that peroxide-8-aminoquinoline hybrids can serve as
promising lead compounds to develop potent agents that possess all the desired
antimalarial multistage activities in a single chemical entity that may emerge as drugs
of choice in malaria elimination campaigns.

Commercial aspects. Goals such as cost-effective production (leading to greater
chances of reaching the masses), better patient compliance, and freedom from patent
restrictions, if achieved, would contribute to the path of hybrid compounds in emerg-
ing as the next-generation antimalarials.

WHICH ARE MORE EFFICACIOUS: HYBRIDS OR COMBINATIONS?

Although interesting from a chemical biology perspective, the same antimalarial
potency of hybrid molecules might be achieved with combination therapy. The prime
force driving the concept of hybrids is their potentially higher efficacy than that of
either of the parent compounds administered as monotherapy or as a fixed-dose
combination. This would account for all the efforts put into designing of the hybrid
molecule rather than simply formulating a mixture of the drugs. However, it is a matter
of concern that the majority of the published studies have neglected the fundamental
control experiment, i.e., comparison of the activity of the hybrid with that of a 1:1 ratio
combination of the individual drugs. Most of the published studies on design and
synthesis of antimalarial hybrids involving different pharmacophore components,
starting from 2001 and continuing until the present, have been listed in Table 1. As
seen from the table, among the various classes of hybrids synthesized so far, viz.,
endoperoxide-quinoline-based hybrids, endoperoxide-chalcone-based hybrids, etc.,
only a few studies have reported such a comparison to date. The advantage of the
covalent linkage of individual functional moieties for antimalarial activity over their
combination has been proven experimentally and documented in the form of pub-
lished literature in only a minute number of studies for cultured parasites and in no
cases for animal models. The hybrid may actually be less efficacious than the combi-
nation of the individual constituents. Here, one should consider the fact that the
strategy employed in forming a hybrid would add bulk to the molecule, which might
hinder its passage into the parasite cell, which in turn would lead to reduced pene-
tration and suppressed activity. Pretorius et al. (27) investigated this issue to ascertain
the advantages of hybrids over equimolar combinations, in terms of antimalarial
activity. They concluded that there were none. The most potent hybrid in their study
was as effective as its two components, chloroquine and pyrimethamine, against strain
D10 and only slightly superior to chloroquine alone against strain Dd2. Those results
prove that all the possible partners should be thoroughly investigated and chosen for
any hybrid antimalarial project and that the advantage(s) of the hybrid over the
combination needs to be proven expeditiously. Taking into consideration the current
preference for combination therapy in the treatment of malaria, the hybrid drug would
have to compare favorably not only to the known single agents but also to the
combinations in use.

NEW METABOLIC LIABILITIES THAT ARISE BY MOLECULAR HYBRIDIZATION

Hybridization can lead to loss or gain of favorable absorption, distribution, metab-
olism, excretion, and pharmacokinetics (ADME/PK) properties of the individual phar-
macophoric moieties. Thelingwani et al. (83) addressed the various metabolic chal-
lenges that arise in covalently linking two active pharmacophores by characterizing
artemisinin-chloroquinoline hybrids (47) and concluded that though the technique
combines the desirable properties, certain unfavorable properties are also carried along
in the process and need to be accounted for. The experiment investigating metabolic
stability and metabolite identification showed that the hybrids were not extensively
metabolized, with the major amount of the parent compound remaining unchanged
after 1 h of incubation in hepatocytes. As a result, the proportions of the detected
metabolites were very low compared to those of the parent hybrid molecule. Contrast-
ingly, in another study by the same group, metabolism of 4-aminoquinoline-3-
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hydroxypyridin-4-one hybrids was predicted to be extensive in cryopreserved human
hepatocytes (mainly via the linker chain), leading to formation of various primary and
secondary metabolites (84).

The long half-life property of chloroquine was lost in both artemisinin-chloroquinoline
and 4-aminoquinoline-3-hydroxypyridin-4-one hybrids, which in turn behaved more
like the other pharmacophore present (artemisinin in the first case) by displaying a
short half-life. Intermediate to fast clearance in hepatocytes signifies that their effective
regimen should be dosing more than once daily in the treatment or prophylaxis of
malaria. The most potent compounds were the fastest cleared. Therefore, the strategy
for molecular hybridization should focus on designing more metabolically stable
hybrids, thereby achieving the desired regimen of dosing once a day.

Additionally, the artemisinin-chloroquinoline hybrid compounds were observed to
inhibit the enzymes involved in their own metabolism, the cytochrome P450 (CYP)
enzymes. Hence, they inhibited their own metabolism and that of other compounds as
well that share a common clearance mechanism. This gives rise to a liability because of
the risk of drug-drug interactions. Although the parent compounds have been reported
to inhibit a few CYP enzymes, a striking difference here is the inhibition of all the five
isoforms by the hybrids (CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4). The 50%
inhibitory concentration (IC50) for CYP3A4 inhibition was noted to be less than 1 �M,
further substantiating the risk for drug-drug interactions. Intermediate risk of interac-
tions with the substrates of CYP3A4 and CYP2D6 was observed for 4-aminoquinoline-
3-hydroxypyridin-4-one hybrids, with IC50s ranging from 1 to 10 �M. Hence, hybrid-
ization, instead of masking an undesirable property of the parent compounds, led to
broadening it.

Joubert et al. (35) observed unfavorable drug-likeness properties in artemisinin-
acridine hybrids. The hybrids showed extremely low solubility and absorption levels
under physiological conditions and undefined blood-brain barrier (BBB) penetration
levels, which they proposed to result from the blocking of the polar primary/secondary
amine groups in the intermediates, thereby leading to a reduction in the formation of
hydrogen bonds. Another possible reason could be the presence the lipophilic artemisinin
moiety. Also, the hybrids were unable to serve efficaciously against the chloroquine-
resistant P. falciparum Dd2 strain, although dihydroartemisinin was active against the same
strain. Hence, one can infer that hybridization of the artemisinin and acridine moieties
resulted in an antagonistic interaction and that the presence of acridine rendered
artemisinin ineffective against the Dd2 strain.

Ferrocene-pyrimidine conjugates were also reported by Chopra et al. (85) to exhibit
moderate to poor aqueous solubility, and the lack of hydrophilicity was distinctly
reflected in their average levels of in vitro antiplasmodial activity against CQS NF54
strain. The hybrid with the lowest IC50 was the one with the highest hydrophilicity. That
study proved that water solubility should be regarded as an essential property of newly
synthesized anyimalarial hybids to ensure adequate absorption and plasma concentra-
tions.

SOME METABOLIC LIABILITIES PERSIST AFTER MOLECULAR HYBRIDIZATION

It has been proposed that the side effects manifested by individual drugs may be
masked when they are linked covalently in a hybrid. Contrastingly, some hybrids
display the same metabolic liabilities as are exhibited by their constituents. For exam-
ple, the 4-aminoquinolines, which have been drugs of choice for various antimalarial
hybrid development programs, have been implicated in the occurrence of clinically
significant cardiovascular effects (86). They cause significant prolongation of the elec-
trocardiograph QT interval, raising the risk for fatal ventricular arrhythmias such as
“torsades de pointes” and sudden cardiac death (87). When injected rapidly, chloro-
quine is potentially hypotensive (88).

Very low solubility and absorption levels of artemisinin-acridine hybrids have
been attributed to inherent pharmacokinetic limitations of artemisinin, viz., poor
water solubility, absorption, and plasma bioavailability (35). Hepatotoxicity of acridine
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and neurotoxicity of dihydroartemisinin are also well reported (89, 90). The process
could neither reduce the toxicities associated with the acridine or artemisinin moieties
nor overcome the resistance of parasites to chloroquine.

LINKER SELECTION

In the design of hybrid drugs for malaria, very little attention has been given to the
relative proximity of the reputed cellular targets and the distance between the two
components of the hybrid. Although the data may be difficult to obtain in practice, they
nevertheless should be considered in the design of hybrid drugs, especially in situations
where a metabolically resistant linker unit is employed.

Lombard et al. (65) have devised a number of strategies to covalently link quinolines
and artemisinins, making use of different linkers. Their hybrids displayed activity either
similar to or higher than that of chloroquine against CQ-sensitive P. falciparum strains
and activity greater than that of chloroquine against CQ-resistant P. falciparum strains.
The results of all their studies indicated that cyclic linkers should be avoided as they
contribute to decreased antiplasmodial properties and that the length of the linker
should be curtailed to two or three carbon atoms. Hybrids with a linker chain length of
greater than three were found to be less potent than chloroquine. The members of the
O’Neill group, which worked on synthetic 1,2,4-trioxolaquines (91), and several others
(62, 92), have reported similar results. Therefore, the length and nature of the linker
exert a strong influence on the antimalarial efficacy of the conjugates.

It is noteworthy that, in contrast with the studies described above, another study to
do with linking astemizole derivatives with an aminoquinoline via a piperazine/amin-
opiperidine linker concluded that hybrids with conformationally constrained cyclic
linkers also exhibited potent activity against a CQ-resistant K1 strain (54). Similarly, the
two most potent hybrids from a series of quinoline-pyrimidine hybrids evaluated by
Pretorius et al. (27) contained rigid aromatic and piperazine linkers. This indicates that
the flexibility of the linker between the two pharmacophores does not govern the
activity of these compounds.

CONCLUDING REMARKS

The potential advantages of antimalarial hybrids, such as lower toxicity, better
pharmacokinetics, and easier formulation, have yet to be realized. The paucity of
information about pharmacokinetics, pharmacodynamics, and rational dosing of drugs
represents a critical knowledge gap that needs to be addressed in order to use current
drugs in conjunction with other tools to reduce malaria transmission, as well as to
provide rationally designed treatment strategies. The hybrid approach is interesting in
itself but likely no more so than the others. However, it can take a substantial position
in the strategy for searching for new antimalarials. It is important to indicate, that
instead of exhibiting potential promising pharmacological interest, no antimalarial
hybrid drug is currently either in development and or at a preclinical step in this
portfolio. From over 100 trioxaquines tested so far, the trioxaquine PA1103/SAR116242
was selected by Palumed in collaboration with Sanofi-Aventis as a drug development
candidate for treatment of uncomplicated malaria as the first “fusion” antimalarial (93).
However, it no longer appears in the global malaria portfolio as it was abandoned in
preclinical development. Our opinion is that for any hybrid antimalarial project, the
choice of partners needs careful justification, and the advantage(s) of the hybrid over
the combination needs to be proven at the earliest opportunity. Before going ahead
with designing a hybrid, both the benefits and demerits of the product, and the
strategy employed, should be thoroughly investigated and the hybrid candidate should
then be taken a level up only when the advantages overshadow the drawbacks.
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