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ABSTRACT Schistosomiasis, a major neglected tropical disease, affects more than
250 million people worldwide. Treatment of schistosomiasis has relied on the anthel-
mintic drug praziquantel (PZQ) for more than a generation. PZQ is the drug of
choice for the treatment of schistosomiasis; it is effective against all major forms of
schistosomiasis, although it is less active against juvenile than mature parasites. A
pyrazino-isoquinoline derivative, PZQ is not considered to be toxic and generally
causes few or transient, mild side effects. Increasingly, mass drug administration tar-
geting populations in sub-Saharan Africa where schistosomiasis is endemic has led
to the appearance of reduced efficacy of PZQ, which portends the selection of drug-
resistant forms of these pathogens. The synthesis of improved derivatives of PZQ is
attracting attention, e.g., in the (i) synthesis of drug analogues, (ii) rational design of
pharmacophores, and (iii) discovery of new compounds from large-scale screening
programs. This article reviews reports from the 1970s to the present on the metabo-
lism and mechanism of action of PZQ and its derivatives against schistosomes.
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Schistosomiasis, a major neglected tropical disease, is considered the most impor-
tant helminthic disease of humanity in terms of morbidity and mortality rates. More

than 200 million people are infected worldwide, and 600 million are at risk of infection
(1, 2). Control strategies have been employed to block transmission and reduce the
disease burden, including mass and targeted chemotherapy, improvements to sanita-
tion, modification of the environment, and the use of molluscicides (3, 4). However,
schistosomiasis remains a major public health problem, especially in rural regions of
sub-Saharan Africa (2). The infection is caused by three main species of blood flukes,
Schistosoma haematobium in Africa and the Middle East, S. mansoni in Africa and South
America, and S. japonicum in China and the Philippines, and two less common ones, S.
intercalatum in Africa and S. mekongi in Southeast Asia (5). Moreover, recent outbreaks
reveal the reemergence of urogenital schistosomiasis in southern Europe (6). Addition-
ally, infection with S. haematobium is classified as a group I biological carcinogen by the
International Agency for Research in Cancer of the World Health Organization (WHO)
(7). Table 1 summarizes the species that commonly infect humans, the geographical
ranges of endemicity, and the major disease symptoms (5, 7, 8).

Male and female schistosomes dwell in copula within the mesenteric veins (S.
mansoni, S. japonicum) or the venous plexus (S. haematobium) of the human host,
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laying hundreds to thousands of fertilized eggs per day, depending on the species. The
eggs traverse the intestinal wall (e.g., S. mansoni) or the bladder wall (S. haematobium)
and exit the host to the external environment in feces or urine, respectively. However,
many eggs are retained in host tissues, where they induce inflammation, granuloma,
and fibrosis. In the external environment, the eggs hatch when they reach freshwater,
releasing a free-living larva, the miracidium, that is ciliated and seeks to infect the
obligate intermediate host, a snail. Within the snail, the parasite undergoes cycles of
asexual reproduction through mother and daughter sporocyst stages, eventually shed-
ding thousands of cercariae into the water. The cycles of asexual reproduction of the
parasite within the snail require from 4 to 6 weeks before cercariae are released. The
cercaria is the infectious developmental stage for humans and other mammals. After
penetrating the skin, the cercariae shed the tail and the juvenile larvae, termed
schistosomula, migrate within the circulatory system, reaching the lungs, the liver, and
finally the portal venous system or the venous system that drains the pelvic organs,
depending on the species, where the parasite fully matures. Adult S. mansoni worms
migrate to the superior mesenteric veins, S. japonicum worms migrate to the inferior
mesenteric and superior hemorrhoidal veins, and S. haematobium worms migrate to
the vesical plexus and veins draining the ureters, bladder, and other pelvic organs. Male
and female schistosomes mate, produce eggs, and thus complete the developmental
cycle (Fig. 1) (6).

TABLE 1 Schistosoma species, regions of prevalence, and major signs and symptoms of schistosomiasis

Species Regions of prevalence Pathology, symptoms, signs

S. mansoni Africa, Middle East, Caribbean, South America Liver/periportal fibrosis, hepatomegaly, intestinal fibrosis, diarrhea
S. japonicum China, Southeast Asia (Philippines, Indonesia) Blood in stool, portal hypertension, hepatomegaly, intestinal

fibrosis, diarrhea, blood in stool, CNSa complications
S. mekongi Cambodia, Lao People’s Democratic Republic Same as for S. japonicum
S. hematobium Africa, Middle East, southern Europe (Corsica, France) Urogenital tract fibrosis, female genital schistosomiasis, bladder

cancer, renal failure, infertility
aCNS, central nervous system.

FIG 1 The developmental cycle of S. mansoni, S. haematobium, and S. japonicum. Stages: A, paired adult
worms (larger male enfolding slender female); B, eggs (left to right, S. haematobium, S. mansoni, and S.
japonicum); C, ciliated miracidium; D, intermediate host snails (left to right, genera Oncomelania,
Biomphalaria, and Bulinus); E, cercariae (infective stage).
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The infection clinically progresses from an immediate phase to acute and chronic
stages (7, 9–13). The initial phase is typically characterized by an acute, pruritic,
maculopapular eruption at the site of cercarial skin penetration within the first 24 h
after exposure. This may last several days, may occur even with zoonotic schistosome
species that do not usually mature in humans, and is also known as cercarial dermatitis
or swimmer’s itch. Acute schistosomiasis (Katayama fever) is a systemic hypersensitivity
reaction to the migrating schistosomula that occurs a few weeks to months after a
primary infection. The disease starts suddenly with fever, fatigue, myalgia, malaise,
nonproductive cough, eosinophilia, and patchy infiltrates on chest radiography. Ab-
dominal symptoms develop later, following the migration and residence of the mature
worms in the blood vessels of the intestines and bladder. Most persons recover
spontaneously from the acute stage after 2 to 10 weeks, but some develop a persistent
and more serious disease with weight loss, dyspnea, diarrhea, diffuse abdominal pain,
toxemia, hepatosplenomegaly, and a widespread rash (7, 9, 10). During chronic or
advanced schistosomiasis, which can persist for decades in the absence of treatment,
the gastrointestinal and urogenital tracts are affected, leading to hepatosplenic and
pelvic organ diseases and other complications, including portal and pulmonary hyper-
tension, abdominal ascites, upper gastrointestinal varices and hemorrhage, infertility,
and increased risk of HIV-1 transmission (Table 2) (10–13).

The paucity of information on new derivatives of praziquantel (PZQ1) is curious,
especially since not only is schistosomiasis one of the major neglected tropical diseases
but infection with S. haematobium is a biological carcinogen (14). Neglect of the latter
undoubtedly relates to the lack of reliable rodent models of urogenital schistosomiasis.
Nonetheless, the design of novel, rational compounds with potential antischistosomal
activity is hindered by the absence of the definitive mode of the antischistosomal
action of PZQ1. Although investigation of novel PZQ1 derivatives apparently continues,
there is not a wealth of information available on the mode of drug action. Here, we
review recent developments on derivatives of PZQ1, including activity and metabolites,
as well as modes of action and drug resistance. We believe that review of this
information will be beneficial for the identification of novel antischistosomal drugs and
new drug targets.

A SINGLE DRUG FOR TREATMENT AND CONTROL OF SCHISTOSOMIASIS

The pyrazino-isoquinoline derivative PZQ1 (Fig. 2) was developed by Bayer in the
1970s and shown to be active against parasitic flatworms, including schistosomes.
Remarkably, treatment and control of schistosomiasis have relied only on this drug for
over 40 years (15–17). In animal tests, PZQ1 showed minimal toxicity (18) and no
genotoxic risks (19) were detected in assays for mutagenicity (20). The few observations
that suggested accumulation of potentially mutagenic metabolites may have been
abnormalities among otherwise overwhelming evidence indicating that PZQ1 is a safe
drug (21). Generally, PZQ1 induces only mild and transient side effects, if any. The

TABLE 2 Clinical phases of schistosomiasis and its associated symptomsa

Clinical
phase Symptoms

Immediate Acute, pruritic, maculopapular eruption at site of cercarial skin penetration
within 1 day following exposure

Acute Systematic hypersensitivity reaction against migrating schistosomula,
fever, fatigue, myalgia, malaise, nonproductive cough, eosinophilia,
patchy infiltrates, weight loss, dyspnea, diarrhea, diffuse abdominal
pain, toxemia, hepatosplenomegaly, widespread rash

Chronic Affects gastrointestinal and urogenital tracts, leading to hepatosplenic and
pelvic organ diseases, portal and pulmonary hypertension, abdominal
ascites, upper gastrointestinal varices and hemorrhage, female genital
schistosomiasis, infertility, increased risk of HIV-1 transmission, and
squamous cell carcinoma of the bladder

aSee references 7 and 9 to 13.
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frequency and intensity of these effects are correlated with the intensity of infection,
and the most severe side effects of bloody diarrhea or edematous urticaria observed in
areas with high intensities of infection may be due to the release of antigens and other
metabolites by dying worms (22, 23).

During the past few years, the renewed acknowledgment of the burden imposed by
schistosomiasis has led to the implementation of mass drug administration (MDA)
programs for the control and possible elimination of the this major human helminthi-
asis, yet the WHO recently reported that less than one-third of individuals who required
“preventive chemotherapies” received treatment (24). PZQ1 has been widely used since
2006 through “preventive chemotherapy” programs distributing the drug to school age
children or at-risk populations, depending on prevalence rates. In 2010, 34 million
people received PZQ1, mostly in sub-Saharan Africa (16). It has been estimated that by
2018, as many as 235 million people will have been treated with PZQ1, a projected use
of 645 million tablets of PZQ1 (25). Also, PZQ1 is effective in the treatment of
hypertension due to chronic schistosomiasis (10). This continues to be a key drug in the
treatment of schistosomiasis and, indeed, most other fluke and cestode infections (17).

According to the Biopharmaceutics Classification System and the Biopharmaceutics
Drug Disposition Classification System, PZQ1 is a class II drug that displays a high ability
to permeate tissues and low solubility (0.4 mg/ml) and proceeds through extensive
metabolism (discussed below) (26, 27) via hydroxylation of the absorbed drug to
inactive metabolites, such that only minimal concentrations contact the parasites
within the blood system. Currently, PZQ1 is distributed as a racemate that includes
equivalent proportions of the biologically active R-PZQ (PZQ2, Fig. 2) and inactive
S-PZQ (PZQ3, Fig. 2) (28) enantiomers, the consequence of which is that half the PZQ1
dose is pharmacologically inactive. This requires the use of a 600-mg tablet to provide
a final dose of 40 mg/kg. Moreover, PZQ3 probably contributes to the unpleasant taste
of PZQ1. These disadvantages contribute to inefficient treatment of school age chil-
dren, since children frequently avoid swallowing the medicine because of its less-than-
pleasant taste (28). Meyer et al. (29) investigated the bitterness value of enantiomers in
regard to additional incentives for low-cost production of pure active PZQ1 (29).
Indeed, the pure enantiomer of PZQ2 can probably be synthesized economically (30,
31). Among these variants, however, PZQ1 presents other disadvantages, such as
decreased or complete absence of activity against juvenile schistosomes (32, 33).
Accordingly, a complete cure is not reliably achieved with a single dose of PZQ1,
particularly given that reinfection is routine (8, 34).

FIG 2 Enantiomers of PZQ1 and biologically active (R-PZQ, PZQ2) and inactive (S-PZQ, PZQ3) isomers.
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Despite decades of extensive use, much remains unknown about PZQ1, in particular,
its exact mode of action, its in vivo metabolism, and its molecular target(s). Herein,
these aspects are reviewed along with prospective derivatives of PZQ1.

PZQ PHARMACOKINETICS

Although PZQ1 has been employed for decades, few pharmacokinetic studies have
been performed with humans (26), although a study carried out with healthy volun-
teers demonstrated that absorption of PZQ1 is relatively fast (time to maximum
concentration of drug in serum [Tmax], 2.0 to 2.6 h) and nearly complete (�80%), which
demonstrates an extensive first-pass effect (35). The systemic bioavailability of PZQ1 is
low and varies considerably among individuals. After the administration of 40 mg/kg to
a healthy adult, the half-life (t1/2) was reported to range from 2.2 to 8.9 h and the area
under the curve (AUC) was reported to range from 2,100 to 5,400 ng h/ml. Oral drugs
display higher pharmacokinetic variability than drugs administered by the parenteral
route, which is explained by the blood flow at the absorption site, the absorptive
surface area, the transit time, and the gastric pH (36). These factors are also influenced
by concurrent food intake; the bioavailability of PZQ1 increases with concomitant food
administration. Following the administration of 1,800 mg (�25 mg/kg for a 70-kg body
weight) to healthy adults, the AUC from 0 to 8 h was 2.7-fold higher with a fatty diet
and �4 times as high with a high-carbohydrate diet (37). The effect of food on
bioavailability may also be due to changes in hepatic flow, altered cytochrome P450
(CYP) expression in response to the diet, or changes in the first-pass metabolism of
PZQ1 (38, 39). The bioavailability of PZQ1 has also been analyzed during schistosomi-
asis. Comparing the bioavailability of PZQ1 in healthy volunteers and infected people
after the administration of 40 mg/kg, the Cmax (the maximum or peak concentration)
and AUC were 1.7- and 4.2-fold higher in patients, the Tmax was 0.6 times shorter, and
the t1/2 was 5.2 times longer (40). PZQ1 is mainly concentrated in the liver and kidneys.
Concentrations higher than those in plasma occur in the lungs, pancreas, adrenal
glands, pituitary gland, and salivary glands (41). However, the volume of distribution is
not known (41). In addition, PZQ1 binds to proteins (�80% exclusively to albumin).
Hence, nutritional status and other factors, including chronic inflammation, influence
the levels of the free drug (35, 42).

INSIGHTS INTO METABOLISM OF PZQ

As noted, PZQ1 is mainly metabolized to PZQ2 and PZQ3, which in turn breaks down
into various mono- or dihidroxy metabolites and S-trans- and S-cis-4-OH-PZQ, while
PZQ2 is metabolized to R-trans-4-OH-PZQ or R-cis-4-OH-PZQ (Fig. 3) (43–45). Since
higher drug concentrations in plasma and slightly longer half-lives are achieved with
metabolites than with PZQ1, the metabolites likely contribute to the drug’s antischis-
tosomal activity (46). In fact, in vitro studies using PZQ2 and PZQ3 and its major
metabolites against S. mansoni developmental stages (newly transformed schistoso-
mula and adult worms) demonstrated that PZQ2 and its metabolites exhibit 100- and
1,000-fold higher activities than their S counterparts. These findings confirm that PZQ2
is the main effector, whereas PZQ3 and its metabolites do not contribute significantly
to the drug’s antischistosomal activity (15). Nonetheless, metabolites of PZQ1 are less
active than the parent drug (47). Although the enzymes that metabolize PZQ1 are not
fully known, PZQ1 is primarily metabolized by CYP 3A and to a lesser extent by CYP 2D6
(35). Several studies have been performed to clarify the metabolic profile of PZQ1, as
well as the enzymes involved and the identities of the phase II metabolites (48–53).

Development of new PZQ derivatives might be a good strategy to circumvent the
major drawbacks of current PZQ1 therapy. Substantial investigation has been directed
to the design of different types of PZQ derivatives. Through the years, several PZQ
derivatives have been developed and assessed via in vitro and in vivo studies mainly
against S. mansoni and S. japonicum. Design of urea and amide derivatives (Fig. 4) led
to a moderate reduction of worm motility in vitro, but generally, this activity was not
observed in vivo. However, one derivative of these series, PZQ7, stood out in regard to
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significant activity in vivo, which may derive from its in vivo reduction to a trans-
cyclohexanol metabolite, PZQ4 (54). With this structure in mind, chiral PZQ derivatives
(PZQ10 and PZQ11) were developed, as well as chiral PZQ7. Racemic PZQ10 and PZQ11
had modest activity against S. japonicum in vitro, while their enantiomers (S and R)
failed to display any activity, with the exception of racemic PZQ7 and its enantiomers.
Overall, all chiral PZQ derivatives display modest activity in vivo compared to that of
PZQ1. Intriguingly, the size of the ring with a carbonyl group in these derivatives had
an appreciable impact on R isomers, increasing their activity, but had almost no effect
on S isomers (55). Using organometallic moieties such as ferrocenyl (already present in
anticancer, antibacterial, and antimalarial drugs [56–58]) Fc-PZQ derivatives (types A
and B, Fig. 4) displayed anthelmintic activity in the micromolar range but were
considerably less active than PZQ1 (59). Upon alteration of the organometallic moiety
to Cr(CO)3 (CrPZQ16, CrPZQ17, Fig. 4), the derivatives exhibited marked activity against
S. mansoni in vitro; however, they exerted low activity in vivo (60). This fact might be
related to the metabolite liability of these derivatives, resulting in less-active metabo-
lites (Fig. 5), and due to protein binding or distribution (61). Following a different design
strategy, a combination of artesunate (AS) and PZQ1 led to new derivatives that
incorporate these two moieties, DW-3-15. Because of the complementary effect of
these two drugs (AS is more effective against schistosomula and juvenile worms,
whereas PZQ is effective against adult worms), it was expected that this derivative
would demonstrate potential broad-spectrum antischistosomal activity (62, 63). In fact,
biological evaluation of DW-3-15 (Fig. 4) proved that the complementary functions of
AS and PZQ1 were more effective than PZQ1 alone. Therefore, this might encourage
rational drug design by combining pharmacophore moieties of discrete bioactive
compounds with dual modes of action (62, 63). In comparison to DW-3-15, it was
expected that endoperoxide-PZQ derivatives would have increased bioavailability
(since their molecular weight was less than that of DW-3-15) and thereby improved
antischistosomal activity. Although these derivatives presented good efficacy against
adult S. mansoni worms in vitro, their activity was lower than that of DW-3-15.

FIG 3 PZQ1 is metabolized by CYP 450, resulting in PZQ4 as the main product and other minor enantiomers such as PZQ5 and PZQ6.
In addition, enantiomers of PZQ1 also undergo metabolism. Bold green and blue arrows indicate major metabolites of PZQ
enantiomers PZQ2 and PZQ3, respectively. PZQ2 is mainly metabolized into trans- and cis-4-OH-PZQ (PZQ6), whereas PZQ3 is mainly
metabolized into other mono- or dihydroxylated forms of PZQ1 and, to a less extent, into trans- and cis-4-OH-PZQ (PZQ5, PZQ6). P450
enzymes perform these transformations.
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Moreover, potential action in vitro did not translate to impressive killing in vivo (64). The
diminished activity of endoperoxidase derivatives might be associated with intrinsic
aspects of their in vivo metabolism.

Apparently, the positions of chemical modifications played an important role in the
compounds’ activity. It seems that linkage through the metabolically liable cyclohexyl
might not afford active derivatives, e.g., organometallic moieties. Moreover, PZQ
derivatives have generally not achieved improved activity compared to that of the
parent drug. Furthermore, in most cases, the promising in vitro activity of candidate
drugs cannot be extrapolated to good in vivo activity since their pharmacokinetics and
metabolic profiles are key determinants of their in vivo efficacy (53). Much remains to
be done to develop an improved and effective derivative of PZQ1.

HOW DOES PZQ KILL SCHISTOSOMES?

Despite many years of use and the treatment of many millions of people, the
mechanism(s) of action of PZQ1 has not been established yet. However, the early
effects exerted by PZQ on the schistosome have been summarized under three main
headings, (i) calcium influx into the whole parasite, (ii) muscle contraction, and (iii)
surface modifications (65). It is tempting to link these phenomena into a single thread,
assuming that calcium influx is the key event, which in turn induces muscle contraction
and alterations to the tegument (65, 66). The correlation between increased intracel-

FIG 4 Structures of diverse PZQ derivatives developed and assessed for activity against schistosomes.
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lular Ca2� and muscular contractions in schistosomes exposed to PZQ has been known
for decades. However, how PZQ1 disrupts homeostasis in schistosomes remains largely
unknown. Diverse studies have focused on the phenomenon (Table 3). Initially, it was
hypothesized that PZQ1 affects Ca2� influx through voltage-operated calcium channels
(67–73). However, in subsequent studies, it was shown that calcium accumulation by
itself, as measured in parasites maintained in vitro, may not explain the schistosomicidal
activity of PZQ1 (71, 72).

High-throughput transcriptomic approaches have been employed to address the
refractory/susceptible nature of the developmental stages of schistosomes in terms of
PZQ1 activity (73–77). These studies revealing genes that might be evolved in aerobic
metabolism and cytosolic calcium regulation, suggesting that schistosomes undergo a
transcriptomic response similar to that seen during oxidative stress (74). Moreover, it
was demonstrated that CamKII (calcium/calmodulin-dependent protein kinase type II)
appears to play a key role in the mode of action of PZQ1 and hence might be
considered a promising novel drug target (76, 77). The use of mass spectrometry

FIG 5 Metabolism of Cr-PZQ derivatives in vitro by human liver microsomes.

TABLE 3 Key reports and findings focused on the mechanism of action of PZQ

Study design Finding(s) Reference(s)

Exposure of S. mansoni males in vitro Muscular paralysis and rapid Ca2� influx, removal of Ca2�

inhibited PZQ effect, tegument blebbing and disruption
67, 68

VOCCa � subunits expressed in
Xenopus oocytes

Schistosome � subunits associated with drug sensitivity 69

Block VOCC, exposing schistosome to
cytochalasin D

Inhibition of Ca2� channels suppressed schistosomal activity 70, 71

Suppression of Dugesia japonica Ca2�

channel subunits by RNA interference
Suppression of Ca2� channels of amputated parasite in two heads

leads to inhibition of regeneration of two heads and tail
72, 73

Transcriptional response of S. mansoni to
heat shock

�600 genes upregulated as possible targets of PZQ; schistosomes
undergo oxidative-stress-like transcriptomic response

74

Gene expression in adult and juvenile S.
mansoni cultured in PZQ

Juvenile schistosomes show enhanced transcriptomic elasticity 75

RNA interference-based silencing of CamKII CamKII mitigated effect of PZQ by stabilizing Ca2� fluxes within
parasite muscles and tegument and might play role in mode of
action

76, 77

Mass spectrometric characterization of
surface lipids of schistosomes

Distinct chemical markers in female vs male responses to PZQ;
PZQ may inhibit sphingomyelinase activity, impairing
reproduction in females, whereas PZQ may impair activity of
Na�/K�-ATPase in males

78, 79

aVOCC, voltage-operated calcium channels.
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techniques revealed the existence of chemical markers that are distinct according to
sex after drug exposure. Apparently, PZQ1 alters the conformation of the usual surface
double lipid bilayer that surrounds schistosomes (78). Perhaps PZQ1 inhibits sphingo-
myelinase activity and thereby impairs reproduction by impeding the continuous
release of eggs (79, 80).

Despite these efforts to understand how PZQ1 acts, the molecular targets remain
elusive. Although from a medical point of view, how the drug acts might not be
important as long as the drug is efficacious, the mechanism of action is relevant to
improvement of the efficacy of new PZQ1 derivatives.

IS PZQ RESISTANCE IMMINENT?

Reliance on PZQ1 raises legitimate concerns about selection for PZQ resistance (65).
MDA never reaches all of the infected people in a community, and so, the worm
population remaining after treatment is not composed solely of resistant worms; there
will still be a susceptible population that, in turn, reduces the likelihood of resistance
(81–83). Whereas widespread drug resistance has not been proved, researchers have
identified field and experimental isolates that exhibit significantly reduced susceptibil-
ity. These findings could portend the emergence of resistance to PZQ1 in schistosomes.
Over the years, evidence of resistance to PZQ1 has been widely reviewed and remains
controversial (81, 83–87). Moreover, the criteria used to classify a schistosome strain
PZQ resistant are also controversial (81, 82). Here, we present an overview and synthesis
of findings on this topic and also highlight potential mechanisms of drug resistance.

EXPERIMENTALLY INDUCED PZQ RESISTANCE

Attempts to induce resistance to PZQ1 in the laboratory were reported as early as
the 1970s and have continued until the present, mostly focused on S. mansoni (88–90).
Table 4 highlights some of the key studies (from our viewpoint) that attempt to
demonstrate the appearance of resistance to PZQ. A hallmark study by Fallon and
Doenhoff (91) published in 1994 demonstrated that S. mansoni developed resistance to
PZQ1 over the course of several subcurative multiple doses of PZQ1 in mice; by the
seventh generation of PZQ1 pressure, the population of schistosomes was 93% resis-
tant to three PZQ1 doses of 300 mg/kg, a dose that killed 89% of the control
schistosomes. Ismael and colleagues (92) studied the effect of PZQ1 at 300 and 500
mg/kg on successive generations of S. mansoni worms in mice and observed that at low
subcurative doses, resistance to therapeutic doses of the drug appeared after several
generations of the treatment regimen (92). More recently, Couto et al. (93) reported a
novel method to induce resistance to PZQ1 in S. mansoni. Snails infected with schis-
tosomes were treated successively with PZQ1 at 100 mg/kg for 5 consecutive days.
Subsequently, mice were infected with cercariae released from the snails and treated
with PZQ1 at 200, 400, or 800 mg/kg. This method is effective for inducing resistance
of S. mansoni to PZQ1 in the laboratory and is far less costly and labor intensive than
some other approaches mentioned above (93). Other studies have reported the gen-
eration of resistance to PZQ1 in S. japonicum, assayed in adult worms, cercariae, and
miracidia (94). In contrast, we are not aware of reports describing experimental induc-
tion of resistance to PZQ1 in S. haematobium. Finally, it is also worth noting that the
mode of action of the drug would be expected to be altered in strains that are
insensitive to PZQ1 (81).

PZQ RESISTANCE IN THE FIELD

Reports of field resistance or therapeutic failure of PZQ are listed in Table 5. Most
field surveys of resistance to PZQ1 focus on S. mansoni. Reduced susceptibility to PZQ1
has been widely found in foci of endemicity, notably in Africa, including Egypt and
Senegal. An extremely low cure rate (18%) was reported in Senegal (95); however, it was
suggested that failure of PZQ1 therapy occurs because of factors other than drug
resistance, including very intense transmission and the presence of PZQ-refractory
juvenile worms (immature parasites) (96). In Egypt, eggs obtained from treated and
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uncured patients gave rise to schistosomes (S. mansoni) that showed 3- to 5-fold lower
sensitivity to PZQ1 (97). In fact, in vitro measurements of PZQ1 susceptibility correlated
well, in some cases, with the drug dose producing 50% of the maximal effect (ED50), as
determined in murine infections, further indicating that factors in the worms them-

TABLE 4 Key studies and findings focused on experimentally induced PZQ resistance in different Schistosoma species

Strain(s) Study design Treatment Findings/outcomes Reference(s)

S. mansoni
WW and LE

Miracidia from feces of infected
patients were used to infect
B. glabrata to obtain cercaria
(strain WW), which were
used to infect mice; infected
mice were treated with
antischistosomal drugs;
sensitivities of strains WW
and LE to drugs were
compared

Hycanthone, 80 and 20 mg/kg;
niridazole, 100 and 50 mg/
kg/day for 5 days;
oxamniquine, 100 and 50
mg/kg, 1 dose

Hycanthone altered oogram pattern of
100% of mice infected with strain
LE; hycanthone did not affect
oogram pattern of mice infected
with strain WW; strain WW was
more resistant to niridazole and
oxamniquine

88, 89

S. mansoni
Brazilian

Mice were infected with S.
mansoni obtained from
infected individual, they
were treated with different
antischistosomal drugs
during the time of
embryological development
of genital organs of
schistosomula of both sexes

Oxamniquine, 50 mg/kg, 1
dose; oltipraz, 60 mg/kg
daily for 5 days; PZQ, 50
mg/kg for 5 days

All treated groups had larger
percentages of worms in liver and
portal vein and significantly lighter
parasite loads than control group,
high rates of worm reduction, low
rates of surviving worms, and 100%
had changed oogram pattern;
failure to induce resistance in
Brazilian strain

90

S. mansoni
Egyptian

S. mansoni infected mice were
treated with subcurative
different doses of PZQ after
6 wk p.i.;a eggs produced by
worms that survived to
treatment were used to
infect snails

PZQ, 3 � 300 mg/kg S. mansoni subjected to drug pressure
may develop resistance to
schistosomicidal drugs after
relatively few passages; first
demonstration of resistance to PZQ

91

Miracidia obtained from eggs
from infected patient were
used to infected mice; eggs
produced by worms that
survive to treatment 6 wk p.i.
were used to infect snails
and mice of the following
generations

PZQ, 300 or 500 mg/kg Subcurative dose of PZQ led to
development of resistance to
therapeutic dose of PZQ in
following generations

92

S. mansoni LE Infected B. glabrata snails were
treated with PZQ; after
treatment, cercariae obtained
from these snails (LE-PZQ
isolate) and susceptible LE
strains were used to infect
mice that were treated p.i.

B. glabrata, 3 � 100 mg/kg, 5
consecutive days; infected
mice, 45 days p.i., 200, 400,
800 mg/kg

Experimental model of development
of resistance to S. mansoni using
infected snails; mean no. of worms
recovered from group of mice
infected with LE-PZQ isolate treated
with 200 and 400 mg/kg was
significantly higher than that from
mice infected with LE strain with
same treatment; in vitro, worms of
LE-PZQ isolates were also less
susceptible to PZQ

93

S. japonicum Mice were infected with
isolates from two distinct
regions, PZQ-susceptible
isolates and PZQ-induced
isolates, and then treated
with PZQ; cercariae and
miracidia of different isolates
were exposed to PZQ
solution, and morphological
alterations were observed

Infected mice, 35 days p.i.,
0,37.5,75, 150, 300, and 600
mg/kg; cercariae and
miracidia, 10�5, 5 � 10�6,
5 � 10�7, and 10� M

PZQ-resistant isolates of S. japonicum
were established in mice with
subcurative doses of PZQ by
artificial selection in laboratory; drug
resistance might be exhibited by
different developmental stages
(miracidia, cercaria, adult worms);
established PZQ ED50s for different
developmental stages

94

ap.i., postinfection.
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selves were responsible for the reduced susceptibility of these isolates to PZQ1 (98).
Studies carried out 10 years later in the same area failed to show any hint of resistance
to PZQ1 (99).

As noted, there is no evidence of S. haematobium resistance to PZQ1. However,
some studies have reported failures of treatment to cure infections with this species
(100–102). For example, Alonso et al. (102) described the case of two Spanish travelers
with urogenital schistosomiasis in whom repeated standard treatment (a single 40-
mg/kg dose of PZQ1) failed to clear the infection. Sabah et al. (103) hypothesized that
people coming from areas where schistosomiasis is not endemic may lack an immu-
nological component that has been shown to contribute to the activity of PZQ1 in
experimental animals. Emergence of resistance of S. japonicum to PZQ1 has also
received attention (101–105). However, despite large-scale and repeated use, the
current efficacy of PZQ1 remains unchanged and it is highly effective at a curative
dosage (a single dose of 40 mg/kg) in the main areas of China where schistosomi-
asis is endemic (106–108). Seto et al. (106) conducted a cross-sectional survey, in
which the efficacy of PZQ1 was evaluated in 33 villages in Sichuan Province, where
the prevalence of infection was found to be 5.7%. Of 3,269 persons tested, 185 were
infected. The infected persons were treated two times with a 40-mg/kg dose of
PZQ1, and only one remained infected, findings that support the notion that PZQ1
remains effective for the treatment of infection with S. japonicum in China.

Insensitive measurement of infection burdens may lead to overestimation of PZQ1

TABLE 5 Key reports of field resistance or therapeutic failure of PZQ

Species Country Yr
Sample
size Treatment(s) Outcome measure Reference

S. mansoni Senegal 1991 422 40 mg/kg 12 wk after treatment, cure rate only 18%, antigen detection
positive in 90% of individuals; low cure rates may be due
to intense transmission and/or development immune
responses

95

Egypt 1994 1,607 1 dose of 40 mg/kg,
3 successive
doses of 40, 40
and 60 mg/kg

1–2.4% of villagers treated could not be completely cured of
infection, and 3 of every 1,000 treated villagers may
harbor parasites that can tolerate high doses of PZQ;
extensive use of PZQ has not resulted in dramatic change
in its efficacy

97

2005 1,405 Compared with results obtained in 1994 in same villages,
decreased prevalence and intensity of infections; first
treatment resulted in normal cure rate (73–92%); after 3
successive doses, no uncured patients; drug failure did
not increase over 10 years of therapeutic pressure in
these villages

99

S. hematobium Malawia 1995 1 �40 mg/kg (30%
was spit up)

3 doses of PZQ necessary to cure infection; concomitant
Giardia lamblia infection might have caused
malabsorption of drug; repeated courses of therapy may
be necessary to cure infection, and both parasite and host
factors should be considered if infection persists; 7
treatments necessary to eliminate eggs from parasites

100

Senegala 2006 2 40 mg/kg Repeated standard treatment failed to clear infection 102

S. japonicum Sichuan Province,
China

1985 185 2 � 40 mg/kg Low no. of treatment failures (only 1 remained infected);
good compliance with treatment; PZQ remains effective
against this schistosome

106

2010 584 6 wk after treatment, 95% had no detectable eggs, 3% were
still excreting eggs, and 2nd dose of drug was given; no
detectable eggs were observed 6 wk after 2nd dose;
efficacy of PZQ still high; no evidence of resistance
detected

108

2012 43 Single oral dose of
40 mg/kg, 30 mg/
kg for 2 days

6 wk after second treatment, eggs not found were found in
infected villagers; no evidence of resistance

110

aTravelers from this area of endemicity.
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efficacy and thereby confound attempts to discriminate between reduced PZQ1 sus-
ceptibility and drug resistance. Diagnostic techniques for schistosomiasis are time-
consuming, and many epidemiological assessments rely on microscopic observation of
viable eggs in urine (S. haematobium) and feces (S. mansoni, S. japonicum) (109, 110).
However, fluctuation of egg output in urine or stool occurs routinely, negatively
influencing the sensitivity of the assay in the absence of repeated sampling (111). New
diagnostic techniques such as egg detection by PCR aim to improve sensitivity, but the
sampling limitations persist (112, 113). Despite the development of new tools for
diagnosis (reviewed in reference 114), there remains a need for better diagnostics,
both in the field and in the clinic. In addition to the importance of improvements
for clinical diagnosis, advances in diagnostic tools are also critical in programs
targeting elimination by MDA and for the development and assessment of new
drugs and vaccines (3).

MECHANISM OF PZQ RESISTANCE

In the absence of the exact mechanism of action of PZQ1, the mechanism of drug
resistance in schistosomes also remains unclear (115). However, the likely nature of the
mechanism of PZQ resistance has been described, such as induction of ATP-binding
cassette (ABC) transporters (ABC transporters are proteins involved in the transport of
toxins and xenobiotics). Several members of this family, like P-glycoprotein (Pgp) and
multidrug resistance (MDR)-associated proteins (MRPs) represent two classes of these
MDR transporters (116, 117). ABC transport protein homologues from S. mansoni are
known, i.e., SmMRP1 (orthologue of MRP1) and SMDR2 (orthologue of Pgp) (106).
Juvenile schistosomes express �2.5-fold higher basal levels of SMDR2 and SmMRP1
than adults, higher levels of SMRD2 RNA are seen in females than in males, and higher
SmMRP1 levels are seen in males than in females (118). Furthermore, SMRD2 is
modulated by PZQ1, suggesting that PZQ1 is also a substrate for SMRD2 (119).
Transcriptomic analysis reveals increasing levels of transcripts encoding the ABC
transporters SMDR1, SmMRP1, SmMRD2, and SMDR3 in juveniles exposed to PZQ1
in vitro, supporting the notion that ABC transporters participate in resistance to
PZQ1 in schistosomes (75). Guglielmo et al. (120) developed a series of PZQ
NO-donors furoxans that are worthy of investigation in view of their potential
activity against PZQ-resistant schistosomes. Involvement of Ca2� channel changes
in resistance to PZQ has been widely described (121). Nonetheless, whether these
phenomena are responsible for drug action or represent downstream conse-
quences has not been established (83, 122).

CONCLUDING REMARKS

Because of its efficacy, safety, cost, and indeed the lack of alternatives, PZQ1 has
remained the drug of choice for schistosomiasis treatment and transmission control for
�40 years (15, 16). Yet PZQ1 has drawbacks, including inactivity against juvenile
schistosomes. Moreover, reliance on a single drug for the treatment of a disease with
the global public significance of schistosomiasis risks facilitating the development and
spread of drug resistance, especially since reduced susceptibility has occurred fre-
quently both in the field and in the laboratory. A pressing need for new interventions
has arisen, including novel compounds with modes of action discrete from those of
PZQ1 and methods to detect the appearance and spread of resistance to PZQ1 (123).
Despite the novel structures of several derivatives of PZQ1, most are sufficiently
efficacious to warrant closer investigation in clinical trials. In addition, understanding
the mechanism of action of PZQ1 and its metabolism is critical since this information
would facilitate the elucidation of novel targets and/or lead to improvements in the
efficacy of this essential and singular medicine.
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