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Abstract

Background—Alcohol Dependence (AD) shows evidence for genetic liability, but genes 

influencing risk remain largely unidentified.

Methods—We conducted a genomewide association study in 706 related AD cases and 1748 

unscreened population controls from Ireland. We sought replication in 15,496 samples of 

European descent. We used model organisms to assess the role of orthologous genes in ethanol 
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response behaviors. We tested one primate-specific gene for expression differences in case/control 

post-mortem brain tissue.

Results—We detected significant association in COL6A3 and suggestive association in two 

previously implicated loci, KLF12 and RYR3. None of these signals are significant in replication. 

A suggestive signal in the long noncoding RNA LOC339975 is significant in case:control meta-

analysis, but not in a population sample. Knockdown of a COL6A3 ortholog in C. elegans reduced 

ethanol sensitivity. Col6a3 expression correlated with handling-induced convulsions in mice. Loss 

of function of the KLF12 ortholog in C. elegans impaired development of acute functional 

tolerance. Klf12 expression correlated with locomotor activation following ethanol injection in 

mice. Loss of function of the RYR3 ortholog reduced ethanol sensitivity in C. elegans and rapid 

tolerance in Drosophila. The ryanodine receptor antagonist dantrolene reduced motivation to self-

administer ethanol in rats. Expression of LOC339975 does not differ between cases and controls 

but is reduced in carriers of the associated rs11726136 allele in nucleus accumbens.

Conclusions—We detect association between AD and COL6A3, KLF12, RYR3 and 

LOC339975. Despite non-replication of COL6A3, KLF12 and RYR3 signals, orthologs of these 

genes influence behavioral response to ethanol in model organisms, suggesting potential 

involvement in human ethanol response and AD liability. The associated LOC339975 allele may 

influence gene expression in human nucleus accumbens. Although the functions of long 

noncoding RNAs are poorly understood, there is mounting evidence implicating these genes in 

multiple brain functions and disorders.
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Introduction

Alcohol dependence (AD) is a major public health burden with substantial costs for 

individuals and societies (Rice, 1999). Despite robust evidence for genetic influences on risk 

(Cotton, 1979; Sigvardsson et al., 1996; Prescott et al., 2005a) and heritability estimates of 

~50% (Ystrom et al., 2011), the genes influencing AD risk remain largely unidentified.

Prior genome-wide association studies (GWAS) of AD and alcohol-related phenotypes in 

European samples detected novel signals in the PECR (Treutlein et al., 2009), AUTS2 
(Schumann et al., 2011) and uncharacterized c15orf53 (Wang et al., 2013) genes. None of 

these novel signals were replicated. Two independent signals were detected and replicated 

around the long-standing candidate gene ADH1B (Frank et al., 2012; Gelernter et al., 2014). 

Three studies of Asian subjects identified signals at ALDH2 (Baik et al., 2011; Quillen et 

al., 2014) and the ADH1B functional variant H47R (rs1229984) (Park et al., 2013), likely 

due to the frequencies of functional ADH and ALDH alleles in Asian populations.

To identify genes influencing alcohol-related phenotypes, we conducted a GWAS of AD. To 

maximize power, we studied an ethnically homogeneous sample of cases, affected siblings 

and unscreened controls from Ireland, correcting for relatedness and lack of control 
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screening analytically. We sought replication in 15,496 subjects of European descent (6742 

case/controls and 8754 population samples).

Well-developed experimental approaches can test directly whether changes in candidate 

genes impact behavioral response to ethanol in vertebrate (Crabbe, 2002) and invertebrate 

(Grotewiel and Bettinger, 2015) model organisms (MO). Orthologs of genes that affect 

simple ethanol responses in invertebrates also affect more complex ethanol responses in 

mammals, including measures of sensitivity and voluntary drinking (Kapfhamer et al., 2008; 

Liu et al., 2008; Bhandari et al., 2012). This approach has previously been successful in 

demonstrating functional relevance of genes implicated by GWAS in ethanol response 

behaviors (Schumann et al., 2011).

To provide functional support for GWAS candidates, we tested whether perturbation of 

orthologous genes alters behavioral response to ethanol in C. elegans and/or Drosophila, 

depending on the presence of orthologous genes and the availability of genetic reagents and 

information. In vertebrate MO, we analyzed correlations between candidate gene expression 

and alcohol phenotypes bioinformatically in curated archival data from recombinant inbred 

mouse lines and we tested the effect of pharmacological antagonism of one candidate gene 

product on motivation to self-administer ethanol in rats after chronic ethanol exposure. For 

one candidate gene with no ortholog outside of primates, we tested for expression 

differences in alcohol dependent and control human post-mortem brain tissue stratified by 

clinical status or genotype.

Materials and Methods

GWAS Discovery Sample

Participants in the Irish Affected Sib Pair Study of Alcohol Dependence (IASPSAD) were 

recruited in Ireland and Northern Ireland between 1998 and 2002 (Prescott et al., 2005b). 

Briefly, probands were ascertained in community alcoholism treatment facilities and public 

and private hospitals. Probands were eligible for inclusion if they met DSM-IV criteria for 

lifetime AD and if all four grandparents had been born in Ireland, Northern Ireland, 

Scotland, Wales, or England. Probands, siblings, and parents were interviewed by clinically 

trained research interviewers, most of whom had extensive clinical experience with 

alcoholism. We assessed lifetime history of AD using a modified version of the Semi-

Structured Assessment of the Genetics of Alcoholism (SSAGA) interview, version II 

(Bucholz et al., 1994), demographic characteristics, other comorbid conditions, alcohol-

related traits, personality features, and clinical records. All participants provided informed 

consent. We included 815 probands and siblings in genotyping.

2048 DNA samples from healthy, unpaid volunteers donating blood at the Irish Blood 

Transfusion Service and obtained from the Trinity Biobank at Trinity College Dublin were 

used as controls. Biobank controls were eligible if they denied any problems with alcohol or 

history of mental illness and if all four grandparents had been born in Ireland, Northern 

Ireland, Scotland, Wales, or England. Because of the sample source, controls were not 

formally screened for AD, but the lack of screening was addressed analytically (see GWAS 

Statistical Analyses). Information about age and sex was available for these subjects.
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GWAS Genotyping, Quality Control and Imputation

Genomic DNAs passing quality control (QC) standards were genotyped on Affymetrix v6.0 

SNP arrays. All arrays included in analysis passed standard QC measures. Genotypes were 

called using BEAGLECALL (Browning and Yu, 2009), followed by rigorous genotype QC. 

We imputed the 1000 Genomes Project (1000 Genomes Project Consortium, 2010) April 

2012 integrated variant reference panel of 36.5 million simple nucleotide polymorphisms 

(SNPs) using IMPUTE2 (Howie et al., 2009). We converted posterior genotypic 

probabilities to allelic dosages using GenABEL (Aulchenko et al., 2007). After post-

imputation QC, 8,344,348 SNPs were available for analysis. Complete details of array, SNP 

and individual QC, BEAGLECALL genotyping, imputation and post-imputation QC are 

included in Supplementary Information and Supplementary Figures S1–S3.

GWAS Statistical Analyses

We tested individual SNPs for association by Modified Quasi-Likelihood Score (MQLS) 

(Thornton and McPeek, 2007) because MQLS accepts genotypes in post-imputation dosage 

format and can account for subject relatedness by using a kinship matrix calculated from 

pedigree data. Unscreened Biobank controls were coded as phenotype unknown. We 

included an estimated sex-weighted 8.9% population AD prevalence derived from 

population (Hasin et al., 2007) and unpaid Dutch blood donor (Atsma et al., 2011) data to 

account for lack of control screening. Varying this estimate from 0% to 12% gave a similar 

p-value distribution for all prevalence estimates. MQLS cannot include covariates. We used 

a threshold of p≤5×10−8 for genomewide significant (GWS) results. Odds ratios were not 

calculated due to the non-independence of related case alleles. Secondary analytic 

approaches for gene-based, network and geneset analyses are described in Supplementary 

Methods.

Selection for Further Study

We calculated false discovery rate (FDR) q-values (Storey and Tibshirani, 2003) for all 

SNPs to select loci for further study. For replication and secondary analysis of discovery 

data, we used a threshold q<0.3 (p<1×10−5 for our p-value distribution, 30% of results are 

false discoveries) to maximize discovery potential. For functional studies, we included any 

loci achieving genomewide significant statistical signals in discovery or replication 

(COL6A3, LOC339975) and any loci with both q<0.1 (10% of results are false discoveries) 

and prior evidence of involvement in ethanol phenotypes from human and/or MO studies 

(KLF12, RYR3).

Assessment of Variants for Potential Functional Impact

For variants with q<0.1, we assessed variant potential to impact function either directly or 

via LD with other variants using GWAS3D (Li et al., 2013). GWAS3D provides an adjusted 

p-value from Fisher’s combined probability test incorporating the GWAS evidence of 

genetic association with evidence that the variant alters 1) coding or 2) conserved sequence, 

or 3) sites of long-range interactions, 4) binding energy for known transcription factors or 

lies within 5) promoter, 6) enhancer or 7) insulator elements from ENCODE and other 

published sources.
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GWAS Replication

We conducted replication analyses in N=15,496 European subjects from three AD case-

control samples (Treutlein et al., 2009; Edenberg et al., 2010; Frank et al., 2012; Gelernter et 

al., 2014) and one population sample (Heath et al., 2011). Details of the individual samples, 

genotyping and imputation are provided in Supplementary Information. We conducted look-

up analysis of replication SNPs in each sample and meta-analysis of all replication SNPs 

first in the four ascertained case-control samples, then adding the unascertained population 

sample, for which AD diagnoses were derived rather than directly assessed (Heath et al., 

2011), using METAL (Willer et al., 2010). We weighted meta-analyses by sample size and 

direction of effect because MQLS does not generate standard errors. Many markers are non-

independent due to LD, so we assessed the 274 replication SNPs for independence using 

SNAP (Johnson et al., 2008) to determine the number of independent tests.

Invertebrate model organism studies

C. elegans studies—A single, continuous acute exposure of C. elegans to 400 mM 

exogenous ethanol yields an internal concentration of 40–50 mM (Alaimo et al., 2012) 

(~200 mg/dL, within the range observed in humans after heavy drinking (Bond et al., 

2010)). A concentration dependent slowing of locomotion at 10 minutes exposure 

(measuring initial sensitivity) is followed at ~30 minutes by an increase in speed of 

locomotion (measuring acute functional tolerance, AFT) (Davies et al., 2003; Davies et al., 

2004) despite an increase in the internal tissue concentration of ethanol (Alaimo et al., 

2012). Both measures can be independently affected by the loss of individual genes (Davies 

et al., 2003; Davies et al., 2004; Kapfhamer et al., 2008; Bettinger et al., 2012; Bhandari et 

al., 2012; Mathies et al., 2015).

C. elegans strains: C. elegans strains were maintained as previously described (Brenner, 

1974). Strains used in these studies were wild-type N2 (var. Bristol), RB1603 klf-3(ok1975), 
TR2170 unc-68(r1161) and TR2171 unc-68(r1162).

RNAi treatment: RNA interference (RNAi) induction and locomotion assays were 

performed as previously described (Kamath et al., 2001). Briefly, cultures of bacteria 

containing RNAi vectors corresponding to genes C16E9.1, C18H7.1, cutl-23 or empty 

vector (L4440) (Geneservice, Cambridge, UK) were plated on NGM plates with 1mM 

IPTG, and allowed to grow at room temperature for 24 hours. 3–5 fourth larval stage wild 

type N2 worms were placed on the seeded plates and incubated at 20°C and allowed to 

produce F1 progeny, which were maintained on RNAi cultures to adulthood. First-day adult 

F1 progeny were collected and subjected to behavioral analysis.

Locomotion tracking: Locomotion was assayed as previously described (Bettinger et al., 

2012). Ten worms for each strain were tested in each assay, and we calculate the average of 

the speeds of the 10 worms in each iteration of the assay (n = 1). Comparisons were only 

made of animals tested simultaneously on the same plates. Briefly, Nematode Growth Media 

(NGM)-containing plates were dried for 2 hours with lids off at 37˚C, then copper rings 

were embedded in the surface of the plate to act as corrals. Ethanol was added to the plates 

to a final concentration of 0 mM or 400 mM, the plates were sealed, and the ethanol was 
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allowed to equilibrate for 2 hours. Worms were placed in the corrals and two-minute movies 

were captured at 10 and 30 minutes of exposure using a Retiga 4000R camera (QImaging, 

Surrey, British Columbia) on an Olympus SZX-7 microscope. Movies were analyzed using 

ImagePro Plus (6.2) (MediaCybernetics, Rockville, MD) software. We derived two measures 

of ethanol response, Initial Sensitivity (depression of speed of locomotion at 10 minutes 

exposure compared to the same strain untreated) and Acute Functional Tolerance (AFT, 

increase in speed at 30 minutes exposure compared to the same strain at 10 minutes).

Statistical analysis: Comparisons were made of animals tested in identical conditions. 

Relative speeds (treated/untreated × 100) were used in comparisons. We used Prism 5.0 

software (GraphPad, La Jolla, CA) to perform 2-way ANOVA comparisons across time of 

ethanol exposure and genotype with Bonferroni post-hoc comparisons at each time point to 

determine differences between genotypes. Development of AFT was tested using a paired 

two-tailed t-test.

Drosophila studies—Only one candidate locus (RYR3) had both a Drosophila ortholog 

and genetic reagents available. Detailed methods for Drosophila studies are provided in 

Supplementary Materials and Methods.

Mammalian model organism studies

Mouse studies—We queried selected candidate genes for localization to ethanol 

behavioral QTL intervals using the Mouse Genome Informatics (MGI) tool set. We queried 

published expression microarray and ethanol behavioral response datasets within the curated 

GeneNetwork web-based resource of genetic, phenotypic and genomic data for evidence that 

basal candidate gene expression correlated with measured ethanol behavioral phenotypes in 

C57BL/6J × DBA/2J recombinant inbred (BXD) mouse lines. All expression data were from 

Affymetrix M430 microarrays (Affymetrix, Santa Clara, CA). We included saline or air 

treated BXD control whole brain (GN113), nucleus accumbens (NAc) (GN156), prefrontal 

cortex (PFC) (GN135), and ventral tegmental area (VTA) (GN228) (Wolen et al., 2012).

We used the single Col6a3 probeset (1424131_at_A). We selected the most representative 

probeset based on GeneNetwork quality scores for Ryr3 (1427427_at_A) and Klf12 
(1455521_at; we also assessed the better of the two probesets showing Klf12 ethanol 

response (Wolen et al., 2012), 1439847_s_at). Robust multi-array average (RMA) 

normalized expression data were used for Spearman rank correlation analyses with ethanol 

behavioral phenotypes. Identifiers of probesets and phenotypes used for specific analyses are 

shown in Results and in Figure 5. Expression and phenotype data archived in GeneNetwork 

were produced in different labs and at different times; as a result, the N of BXD lines tested 

in our analyses varies across the tissues and phenotypes analyzed. We use the GeneNetwork 

default setting to retrieve the top 1000 correlations for each probeset × tissue pair.

A total of 5134 traits are present in GeneNetwork, but they are not all independent because 

of both the multiple related measures made within studies and the partial overlap of BXD 

lines used between studies. GeneNetwork developers suggest that Bonferroni correction for 

200 independent traits approximates an FDR of 0.2 based on data in (Wang et al., 2016)). 
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We apply a more stringent correction for 2000 independent tests to maintain a conservative 

significance threshold of 0.05/2000=2.5E-05.

Rat studies

We studied the effect of pharmacological antagonism of ryanodine receptors on ethanol self-

administration in rats. Detailed methods for this single rat study are provided in 

Supplementary Materials and Methods.

Human post-mortem studies

PFC and NAc tissues from 41 AD cases and 41 controls were provided by the New South 

Wales Tissue Resource Centre. Age, sex, ethnicity, brain weight, brain pH, post-mortem 

interval (PMI), tissue hemisphere, cause of death, blood toxicology, smoking status, 

neuropathology and liver pathology were provided for each subject. Confounding effects of 

all these covariates were controlled by analysis of covariance (ANCOVA, Supplementary 

Table S7). Total RNA was isolated from 100mg frozen tissue using the mirVana-PARIS kit 

(Life Technologies, Carlsbad, CA) following manufacturer’s protocols. RNA concentration 

was measured using the Quant-iT Broad Range RNA Assay kit (Life Technologies). The 

RNA Integrity Number (RIN) was measured on the Agilent 2100 Bioanalyzer (Agilent 

Technologies, Inc., Santa Clara, CA). Quantitative real-time PCR (qRT-PCR) analyses were 

performed as previously described using SYBR Green (Riley et al., 2010) with primers 

spanning the LOC339975 exon 2–3 junction. Samples with missing genotypes and outliers 

(±2SD from the mean) were omitted from further analysis.

Results

Irish case/control discovery dataset

After all QC, the dataset consisted of 706 probands and affected siblings, 464 (65.7%) male 

and 242 (34.3%) female, mean age 41.8 (standard deviation (SD) 9.8) years, and 1748 

population controls, 755 (43.2%) male and 993 (56.8%) female, mean age 37.2 (SD 12.6) 

years, with 8,344,348 SNPs for analysis. The Manhattan plot for case/control analysis of AD 

is shown in Figure 1. The QQ plot for the final dataset after imputation and all QC is shown 

in Figure 2.

Variation in COL6A3 is associated with AD

In single marker analyses, 14 SNPs defining two independent genomic intervals achieve 

genome-wide significance, 13 within the collagen VI A3 (COL6A3) gene on chromosome 

2q37.2 (Figure 3A), including the most significant SNP in our study, rs2256485, 

p=6.17×10−9 (Table 1). COL6A3 encodes an extracellular matrix (ECM) protein expressed 

in brain. Although there is no prior human association evidence for this gene, remodeling of 

the ECM has been strongly implicated in response to various drugs of abuse (Lubbers et al., 

2014). The second interval is defined by a single SNP (rs150268941, p=1.65×10−8, Table 1) 

on chromosome 3q26.31 (Supplementary Figure S5A).
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Additional loci are suggestively associated with AD

A total of 28 SNPs in 7 LD-independent loci had q<0.1 (Table 1). These include SNPs in 

two loci with prior support from both human and MO alcohol studies (the ryanodine 

receptor 3 (RYR3) gene, chr. 15q14, rs4780153, p=1.47×10−7, Figure 3B and the Krueppel-

like factor 12 (KLF12) gene, chr. 13q22.1, rs117695261, p=6.63×10−8, Figure 3C). Four 

additional regions with suggestive signals are shown in Supplementary Figure S5B–E.

If the Fisher’s combined probability test from GWAS3D provided increased evidence based 

on potential function of the test SNP or a SNP in LD with the test SNP, the combined p-

value is also shown in Table 1. Of the 28 SNPs with q<0.1 input to GWAS3D, 14 showed 

more significant combined p-values after incorporating evidence of function. Of these 14 

results, 12 were based on evidence of functional impact for the GWAS target SNP itself. For 

the two sites where the increased evidence was based on putative functional impact of a 

variant in LD with the GWAS signal, the LD SNP rsID, r2 with the GWAS target and 

functional evidence are shown. GWAS3D analysis yields strongly enhanced signals in 

COL6A3 (rs2646265: p=1.47×10−8, combined p=1.40×10−12; rs2256485: r2=1 with 

rs2646265, p=6.17×10−9, combined p=6.18×10−13) and RYR3 (rs4780153: r2=0.867 with 

rs2076954, p=1.47×10−7, combined p=7.92×10−10).

The signals at 3q26.31 (Supplementary Figure S5A) and KLF12 (Figure 3C) are with single 

imputed SNPs of low minor allele frequency (MAF). In 1000 Genomes Phase 3 data from 

UK subjects (GBR, British residents of England and Scotland), rs117695261 (MAF 0.03) in 

KLF12 has no r2>0.2 with any other SNP, consistent with the lack of correlated signals in 

Irish subjects. By contrast, rs150268941 on 3q26.31 is tagged by rs148750402, which was 

imputed and analyzed in our sample (0.034, p=0.00147, q=0.754464). Direct genotyping of 

rs150268941 also did not support the observed association (see Supplementary Information), 

and we did not consider the chromosome 3q26.1 region further.

Human replication

A total of 274 SNPs had discovery q<0.3, and were included in replication. SNAP analysis 

indicated that 121 represent LD-independent tests, setting replication significance at 

0.05/121=0.0004. Lookup replication and meta-analysis results arranged by chromosome 

and base pair are also shown for all 28 SNPs with q<0.1 in Table 1. Supplementary Table S1 

shows these results for all 274 SNPs with q<0.3. No individual SNP achieved p<0.0004 in 

any sample. In meta-analysis of the 4 case-control samples, one SNP in a second novel 

locus, the long noncoding RNA (lncRNA) gene LOC339975 showed a GWS signal (chr. 

4q35.2, rs11726136, p=7.52×10−7, q=0.149 in the discovery sample, Figure 3D, and GWS 

p=4.20×10−8 in meta-analysis of the four case/control samples, Table 1 and Supplementary 

Table S1). Because of differences in ascertainment and severity of affection, we performed 

replication analyses including the Australian population sample separately; this signal was 

not significant when the Australian sample was included (Supplementary Table S1).

We also assessed evidence in our discovery data for association with loci identified in prior 

AD GWAS in subjects of European ancestry. We detect modest signals in PECR (minimum 

p=0.0017), AUTS2 (minimum p=0.0009) and ADH1B (minimum p=0.00166) but none of 
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these signals are with the SNPs originally reported (Supplementary Table S2). We detect no 

evidence of signal in c15orf53 (minimum p=0.2058).

Secondary analyses

Results of secondary analyses of discovery GWAS data are shown in Supplementary Table 

S3 (gene-based analyses), Supplementary Figure S6 and Supplementary Table S4 (network 

analyses) and Supplementary Table S5 (geneset analyses). Gene-based analyses assess over-

representation of case-control allele frequency differences in all SNPs within defined genic 

regions (with LD pruning or weighting as described in Supplementary Materials and 

Methods). The hybrid set-based test (HYST) incorporated in KGG shows strong gene-based 

association of AD with COL6A3 (p=7.30×10−9, q=0.00016), RYR3 (p=2.62×10−7, 

q=0.0029) and LOC339975 (p=5.31×10−6, q=0.0248) (Supplementary Table S3).

Selection for functional studies

We undertook functional studies of four candidate loci, COL6A3 and LOC339975 based on 

the GWS signals in discovery or replication analyses and KLF12 and RYR3 based on 

discovery q<0.1 and prior evidence of implicating these loci in alcohol-related phenotypes 

(reviewed below). We used established behavioral paradigms to test orthologs of COL6A3, 

KLF12 and RYR3 for effects on behavioral responses to ethanol in C. elegans and 

Drosophila where orthologous genes were present in the models and genetic reagents and 

information were available. We analyzed correlation between brain gene expression and 

alcohol-related phenotypes in BXD mouse data for all three genes. All these studies are 

summarized in Table 2 and we report here the results of all studies performed. We 

additionally tested the effect of the ryanodine receptor antagonist dantrolene on ethanol self-

administration in rats. The fourth gene, LOC339975, is primate-specific and was taken 

forward for study in human post-mortem brain.

COL6A3: Regulation of ethanol sensitivity in C. elegans and correlation with handling-
induced convulsions in mice

We tested three C. elegans genes with equally high orthology to human COL6A3 for effects 

on initial sensitivity and AFT. RNAi knockdown of C16E9.1 decreased initial sensitivity 

compared to control RNAi animals (p<0.05, Figure 4A) but did not affect the development 

of AFT. RNAi knockdown of the other COL6A3 orthologs (C18H7.1 and cutl-23) produced 

no significant differences in either measure (Figure 4B,C). Statistics and uncorrected basal 

speed data for all C. elegans experiments are shown in Supplementary Table S6.

In mice, Col6a3 is located within the Alcw5 QTL interval (MGI:3037048) for handling-

induced convulsions (HIC) following 72 hour ethanol vapor exposure (Bergeson et al., 

2003). The Alcw5 QTL maps to 39.16 centiMorgans (cM) on mouse chromosome 1, with a 

support interval of 28–47 cM. After converting cM to megabase pairs (Mb) for the latest 

version of the mouse genome (GRCm38/mm10), this yields a physical location of the Alcw5 

QTL peak of 75.57 Mb and a QTL support interval of 62.12–107.66 Mb. Col6a3 is located 

at mouse chr1:90766860–90843971, within the defined Alcw5 QTL support interval.
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In GeneNetwork, the strongest correlation observed for mouse Col6a3 basal whole brain 

expression (GN113, probeset 1424131_at_A) is with total HIC score (sum of baseline 

subtracted HIC at 4, 6 and 7 hrs) after 4 g/kg IP ethanol in males (Philip et al., 2010) (trait 

11382, correlation rank=1, rho=0.959, p=1.05×10−9, N=13 strains, Figure 5A), which 

surpasses our Bonferroni-corrected significance level of p=2.5×10−5. HIC at 7 hours in 

males (trait 11380, correlation rank=2, rho=0.835, p=3.11×10−6, N=18 strains) and in males 

and females (trait 11894, correlation rank=3, rho=0.780, p=5.11×10−5, N=18 strains) (Philip 

et al., 2010) are also strongly correlated with Col6a3 expression, and all three HIC measures 

are highly correlated (phenotypic rho=0.91–0.95). Col6a3 expression correlated negatively 

with 2-bottle choice ethanol preference (Phillips et al., 1994) (trait 10479, correlation 

rank=67, rho=−0.569, p=0.0124, N=18 strains, Figure 5B). While this is not significant after 

multiple test correction, it is consistent with the expectation that factors increasing HIC will 

decrease voluntary consumption (Metten et al., 1998).

KLF12: Regulation of acute functional tolerance to ethanol in C. elegans and gene 
expression correlation with locomotor activity in mice

There is significant prior evidence for a role of KLF12 in ethanol response behaviors across 

species. In BXD mice, Klf12 is regulated by acute ethanol in PFC, NAc and VTA, and is a 

hub in a network of ethanol responsive genes (Wolen et al., 2012). In humans, KLF12 acts in 

combination with the co-repressor CTBP1 (Schuierer et al., 2001), and in C. elegans, the 

ctbp-1 gene is required for the development of AFT (Bettinger et al., 2012). The closest C. 
elegans ortholog to human KLF12 is klf-3, and this evidence collectively suggests KLF-3 is 

likely to act together with CTBP-1 to regulate AFT in worms.

We tested a strong loss-of-function allele in klf-3. There was no difference in initial 

sensitivity between wild-type N2 and klf-3(ok1975) mutants (Figure 4D). While wild-type 

N2 animals demonstrated normal AFT at 30 minutes, klf-3 mutants failed to develop AFT 

(Figure 4D, t-test of degree of speed recovery between 10 and 30 min, 400 mM ethanol: N2 

vs. klf-3(ok1975), t3=8.99, p<0.001). These data strongly suggest that the transcriptional 

regulation provided by KLF-3 is required for the development of AFT in worms.

Based on patterns of regulation of mouse Klf12 by ethanol (Wolen et al., 2012), we analyzed 

correlation between basal Klf12 expression in mouse PFC (GN135), NAc (GN156), VTA 

(GN228) and whole brain (GN113) datasets and BXD panel phenotypes in GeneNetwork. 

The strongest correlations observed for basal Klf12 expression in PFC (GN135, probeset 

1455521_at) were with locomotor activity 0–5 minutes (trait 11708, correlation rank=1, 

rho=0.756, p=1.69×10−5, N=22 strains, Figure 5C) and 0–20 minutes (trait 11705, 

correlation rank=3, rho=0.747, p=2.54×10−5, N=22 strains) after 2.25 g/kg IP ethanol in 

females (Philip et al., 2010). The first result remains significant and the second falls just 

below significance after Bonferroni correction. Basal Klf12 expression in mouse NAc 

(GN156, probeset 1439847_s_at) was positively correlated with AFT (Kirstein et al., 2002) 

(trait 10348, correlation rank=29, rho=0.560, p=0.003, N=25 strains, Figure 5D). While not 

significant after Bonferroni correction, this is consistent with the failure to develop AFT in 

C. elegans klf-3 mutants.
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RYR3: Regulation of initial sensitivity to ethanol in C. elegans, rapid tolerance to ethanol in 
Drosophila, and motivation to self administer alcohol in rats

Previous studies have implicated ryanodine receptors (RyR) in ethanol phenotypes: in 

humans, RYR3 was implicated in a GWAS of alcohol response (Joslyn et al., 2010). Ryr1 

and Ryr2 upregulation in mouse brain is observed following acute exposure to multiple 

drugs including alcohol (Kurokawa et al., 2010; Kurokawa et al., 2013) and behavioral 

changes like conditioned place preference and withdrawal expected following acute 

exposure are blocked by the RyR antagonist dantrolene (Kurokawa et al., 2010; Kurokawa et 

al., 2013).

C. elegans has one RyR gene, unc-68. We tested the effect of ethanol on two strains carrying 

different unc-68 mutations (r1161 and r1162). Loss of unc-68 confers reduced sensitivity to 

ethanol (minimum p<0.001 for r1162, Figure 4E, F). We also observed consistent effects of 

mutations in two additional genes with products involved in calcium regulation and known 

to interact with UNC-68 (Supplementary Materials and Methods, Supplementary Results 

and Supplementary Figure S7).

There is a single RYR3 ortholog in Drosophila, RyR. We found that two insertional 

mutations that cause partial loss of function in RyR reduce the development of rapid 

tolerance to ethanol with no obvious effects on initial sensitivity (Supplementary Materials 

and Methods, Supplementary Results and Supplementary Figure S8).

The mouse Ryr3 gene is localized to the support intervals for a complex group of ethanol 

behavioral QTL mapped to Chr 2 but Ryr3 basal whole brain expression (GN113; probeset 

1427427_at) is not strongly correlated with ethanol-related phenotypes.

The availability of dantrolene, a pharmacological antagonist of ryanodine receptors, allowed 

us to assess the effect of antagonism of RyRs on the complex behavior of ethanol self 

administration in rats. We found that in rats, dantrolene dose-dependently reduced 

motivation to self-administer ethanol after 50 contiguous days of chronic ethanol self-

administration (Supplementary Materials and Methods, Supplementary Results and 

Supplementary Figure S9).

rs11726136 genotype alters LOC339975 expression in human nucleus accumbens

LOC339975 shows homology only with sequences from other primates. In order to assess 

the potential functional impact of alleles at rs11726136, we therefore tested AD case and 

control post-mortem tissue from PFC and NAc for differences in LOC339975 expression by 

clinical status or genotype. The final numbers available for analysis were for PFC, 28 cases 

and 30 controls and 50 reference allele T/T and 5 T/G genotypes, and for NAc, 34 cases and 

35 controls and 58 T/T and 7 T/G genotypes (Supplementary Table S7).

We included age, sex, ethnicity, brain weight, brain pH, PMI, tissue hemisphere, cause of 

death, blood toxicology, smoking status, neuropathology and liver pathology as covariates in 

analysis. Neuropathology and brain weight were both significantly associated with 

expression level in the NAc; no covariates were associated with expression level in the PFC 

(Supplementary Table S7). We detected no difference in expression level between AD cases 
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and controls in either NAc (p=0.75) or PFC (p=0.23) (Figure 6A,B and Supplementary Table 

S7A,B). After controlling for covariates, expression of LOC339975 is significantly reduced 

in carriers of the associated non-reference allele in NAc (p=0.003, Figure 6C, 

Supplementary Table S7C) but did not differ by genotype in PFC (p=0.54, Figure 6D, 

Supplementary Table S7D). Alternative regulation in NAc and PFC is consistent with the 

presence of several distinct transcription factor binding sites upstream of lncRNA genes 

(Alam et al., 2014). Although we do not detect case/control differences in expression, our 

data suggest the associated allele of rs11726136 has functional consequence based on the 

reduced LOC339975 expression observed in the NAc in heterozygotes.

Discussion

We identified two novel GWS association signals in COL6A3 and LOC339975, and 

suggestive signals in a number of loci, including two genes with prior support, KLF12 and 

RYR3. COL6A3, RYR3 and LOC339975 are further supported by gene-based analyses 

(Supplementary Table S3). We detect evidence of human replication only for LOC339975 
but we observe consistent evidence across multiple MOs that COL6A3, KLF12 and RYR3 
orthologs modulate behavioral response to ethanol. Human post-mortem studies show that 

the AD-associated allele reduces LOC339975 expression in NAc.

Collagen VI A3 (COL6A3)

Collagen IV (Joslyn et al., 2010) and VIII (Edenberg et al., 2010) genes were implicated in 

ethanol response and AD. COL6A3 is located in a QTL interval for alcohol withdrawal 

identified in the IASPSAD sample (Kuo et al., 2006). Although this signal did not replicate, 

our GWS association with potentially functional SNPs (GWAS3D results, Table 1) is 

supported by the reduced sensitivity after RNAi knockdown in C. elegans (Figure 4A), 

mapping to the Alcw5 QTL for HIC in mice and the strong correlation between expression 

and HIC in BXD lines (Figure 5A). COL6A3 encodes a component of the ECM, and there is 

mounting evidence (Lubbers et al., 2014) that multiple substances of abuse increase ECM 

remodeling, and that remodeling is required for the expected behavioral changes following 

exposure. Ethanol dose-dependently induces tissue plasminogen activator (tPA), required for 

ECM remodeling, which enhances ethanol reward (Bahi and Dreyer, 2012). Withdrawal 

seizures are reduced in tPA-deficient mice following chronic ethanol administration (Pawlak 

et al., 2005). Inhibition of proteolytic enzymes that degrade the ECM block escalated 

responding during acute withdrawal in dependent animals (Smith et al., 2011). Collectively, 

these results argue that ECM structural components (like COL6A3) and remodeling 

enzymes are important determinants of ethanol-induced neuroadaptation. We hypothesize 

that Col6a3 may underlie the Alcw5 HIC QTL.

Krueppel-like factor 12 (KLF12)

Klf12 is regulated by acute ethanol in mouse brain and is a hub in a network of ethanol-

responsive genes (Wolen et al., 2012) including many implicated in ethanol response (e.g. 

Grm3 (Gass and Olive, 2008), Kcnma1 (Davies et al., 2003) and Gsk3b (French and 

Heberlein, 2009)). Orthologs of KLF12 (Figure 4D) and its binding partner CTBP1 
(Bettinger et al., 2012) are required for the development of AFT in C. elegans. The targets of 
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KLF12 regulation are not yet known, but the convergent evidence argues strongly they are 

central to acute ethanol response and potentially relevant to AD risk.

Ryanodine receptor 3 (RYR3)

RYR3 was implicated in a GWAS of ethanol response (Joslyn et al., 2010) and our observed 

association may be driven by functional SNPs (GWAS3D analysis, Table 1). In C. elegans, 

loss of the single RyR gene unc-68 reduces initial sensitivity to ethanol (Figure 4E, F). This 

mutation would be predicted to decrease intracellular Ca2+. Consistent with this observation, 

we found that mutations in csq-1, which would be predicted to increase intracellular Ca2+ 

concentration, increase initial sensitivity (Supplementary Figure S7A). Mutations in the 

ether-a-go-go-related potassium channel gene unc-103, which has a genetic interaction with 

unc-68, also decrease sensitivity to ethanol (Supplementary Figure S7D). In Drosophila, 

reduction of function of the RyR gene blunts rapid tolerance (Supplementary Figure S8B).

The RyR antagonist dantrolene reduces cocaine (Kurokawa et al., 2011) and 

methamphetamine (Kurokawa et al., 2010) induced conditioned place preference, ethanol 

withdrawal symptoms (Kurokawa et al., 2013) and motivation to self-administer ethanol 

after chronic exposure in a dose-dependent manner in rats (Supplementary Figure S9), but 

these studies are limited by the nonspecificity of dantrolene, an antagonist of both ryanodine 

and inositol triphosphate receptors, the latter functioning upstream of RyR activation. In 

myocytes, RyRs provide the Ca2+ ions that activate BK channels (Lifshitz et al., 2011), 

which have strong effects on ethanol response in vivo and in vitro (Davies et al., 2003; 

Martin et al., 2008). Ethanol modulates BK channel function in a calcium-dependent manner 

(Liu et al., 2008) and we hypothesize that RyRs may be involved in this calcium-dependent 

modulation of BK channel function.

lncRNA LOC339975

lncRNA are of emerging importance in the function and dysfunction of the brain (Roberts et 

al., 2014). Expression of the estimated 25–50K lncRNA genes in the human genome 

(Hangauer et al., 2013) is widespread in the brain and highly regulated (Mercer et al., 2008; 

Guttman et al., 2011). lncRNA are implicated in multiple neurodevelopmental, 

neurodegenerative and neuropsychiatric diseases, including schizophrenia (Barry et al., 

2014), Alzheimer’s (Faghihi et al., 2008), autism (Kerin et al., 2012) and neuronal 

excitability and epilepsy (Barry et al., 2017). A recent GWAS of AD detected GWS 

association in the lncRNA LOC100507053 (Gelernter et al., 2014). While this signal is part 

of the larger ADH gene cluster signal reported and associated SNPs could only be analyzed 

in African-Americans due to MAF or imputation information, LOC100507053 is anti-sense 

to multiple ADH genes, and has potential to regulate their expression. Although the role of 

these transcripts remains unclear, the growing number of reported associations argue that 

lncRNA genes are also important in human health and disease. Our data suggest the 

associated allele of rs11726136 may have functional consequence based on the reduced 

LOC339975 expression observed in the NAc.
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Limitations

Unscreened controls: While the use of unscreened controls is common in studies of traits 

with low population prevalence, unscreened controls are not ideal for traits with the high 

population prevalence of AD (Wellcome Trust Case Control Consortium, 2007). However, 

the most likely impact of this lack of screening is for a proportion of controls to be 

unrecognized and phenotypically misclassified cases. This will reduce the contrast between 

cases and controls, increase Type II error and reduce study power to detect effects. 

Importantly, the use of unscreened controls is not expected to increase Type I error and 

produce spurious positive results.

Lack of strong human replication: The lack of strong human replication is a serious 

limitation of our study. However, non-replication of novel signals is common in GWAS of 

AD and may have several causes. Specific to our study, differences in sampling, data 

production, QC, imputation or analysis can confound meta-analysis. The GESGA sample 

was imputed to an older, smaller HapMap reference panel, has many missing data points and 

shows the least consistent sign tests (Table 1 and Supplementary Table S1). The OZALC 

population sample was genotyped at multiple sites, a well-known source of systematic 

genotype bias. We note that our strongest replication signals come from analyses of the three 

samples (Irish, COGA, Yale/Penn) with the most consistent ascertainment and genotyping. 

More generally, this pattern of non-replication may reflect the multiple independent domains 

of risk for AD (Kendler et al., 2012), including variation in 1) alcohol-specific physiological 

measures like initial sensitivity and tolerance (Schuckit et al., 1997), 2) brain reward 

circuitry implicated in substance use and other pathological behaviors (Volkow et al., 2012),, 

and 3) personality traits like internalizing and externalizing behaviors (Harford et al., 2013), 

which are unlikely to be influenced by the same genes. As in other complex traits, these 

issues will be overcome primarily by increasing sample size and power. Finally, since both 

KLF12 and RYR3 were previously implicated in substance phenotypes, our findings may be 

considered as replication evidence for these signals.

Limited phenotypic consilience: Across our MO studies, many different phenotypes are 

affected by manipulation of candidate orthologs, with little consilience between species. 

Although mammalian and invertebrate nervous systems show extensive molecular and 

functional conservation (Bargmann, 1998; Brownlee and Fairweather, 1999) and many drugs 

mediate their behavioral effects through orthologous target proteins (Matthews and 

Kopczynski, 2001; Kaletta and Hengartner, 2006), phenotypic consilience and consistent 

direction of effect following manipulation of a specific gene are not always observed across 

species (e.g. manipulations of chloride intracellular channel 4 (Clic4) orthologs altered 

sensitivity in flies and mice but in different directions (Bhandari et al., 2012). There are also 

differences in ethanol-response measures available for different MOs (e.g. AFT has not been 

demonstrated in flies despite direct efforts to elicit this response (Chan et al., 2014)). Within 

species, we observe consilience across studies for effects of 1) Klf-3 and binding partner 

Ctbp1 on AFT and 2) genes influencing intracellular calcium levels on initial sensitivity in 

worms, and 2) Col6a3 on HIC in mice.
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Conclusions

Our combined data implicate COL6A3, KLF12, RYR3 and LOC339975 in response to 

ethanol across multiple species and/or AD risk in humans. Our data are also consistent with 

prior work implicating remodeling of the ECM (COL6A3), regulation of ethanol-responsive 

genes (KLF12), and regulation of intracellular calcium release (RYR3) in response to 

ethanol.
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Figure 1. Manhattan plot for case/control analysis of Alcohol Dependence (AD)
Horizontal red line indicates genome-wide significance (5 × 10−8).

Adkins et al. Page 23

Alcohol Clin Exp Res. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Q-Q plot for final post-imputation dataset after all quality control (QC) and exclusions
Gray shading indicates 95% confidence interval for expected values. The post-imputation 

lambda (1.046) and sample size-standardized lambda1000 (1.045) indicate there is little 

inflation of test statistics.
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Figure 3. LocusZoom plots of COL6A3, RYR3, KLF12 and LOC339975
Genomewide significant results in COL6A3 (A) and three other regions of suggestive 

association supported by additional data, RYR3 (B), KLF12 (C) and LOC339975 (D).
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Figure 4. Mutations in C. elegans orthologs of human candidate genes cause ethanol response 
phenotypes
Speed of locomotion was measured at 10 and 30 minutes, and expressed as a percent of the 

untreated control speed. Control worms were tested simultaneously on the same plates. 

Worms were treated with 400 mM exogenous ethanol. The waxy cuticle of worms excludes 

most of the exogenous ethanol, tissue concentrations are approximately 12% of the 

exogenous dose (~48 mM). A, B, C: RNAi-induced gene knockdown reduced sensitivity to 

ethanol for C16E9.1 (a COL6A3 ortholog) but not for two other orthologous genes relative 

to untreated worms. D: Loss-of-function of the KLF12 ortholog, klf-3, prevented the 

development of acute functional tolerance between the 10- and 30-minute time points 

relative to wild-type N2. E, F: unc-68 mutant animals demonstrate reduced sensitivity to 

ethanol relative to wild-type N2. Statistical significance is shown for 2-way ANOVA 

followed by post-hoc comparisons across genotypes (*, p<0.05, **, p<0.01, ***, p<0.001).

Adkins et al. Page 26

Alcohol Clin Exp Res. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Bioinformatic analysis of correlation of Col6a3, Klf12 or Ryr3 expression with ethanol 
behaviors in C57BL/6J × DBA/2J recombinant inbred (BXD) mouse lines
The GeneNetwork (GN) web-based analysis platform was used to identify correlations 

between between basal expression levels of Col6a3, Klf12 or Ryr3 and ethanol behaviors. 

Panels A-D display Spearman ranked order correlations between microarray gene expression 

(x-axis) and behavioral phenotypes (y-axis). Col6a3 (probeset 1424131_at) in GN113 whole 

brain expression dataset showed significant positive correlation with total handling induced 

convulsion (HIC) score (sum of baseline subtracted HIC at 4, 6 and 7 hrs) after 4 g/kg 

intraperitoneal (IP) ethanol in males (GN record 11382; Panel A) and negative correlation 

with ethanol 2-bottle choice voluntary consumption (GN record 10479; Panel B). Klf12 
basal expression in prefrontal cortex (GN135, probeset 1455521_at) was significantly 

positively correlated with locomotor activity 0–5 minutes after 2.25 g/kg IP ethanol (GN 

record 11708; Panel C) and in nucleus accumbens (GN156, probeset 1439827_s_at) was 

positively correlated with ethanol acute functional tolerance (GN record 10348; Panel D).
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Figure 6. Expression of long noncoding RNA LOC339975 in human post-mortem nucleus 
accumbens (NAc) and dorsolateral pre-frontal cortex (PFC) stratified by diagnostic status and 
by genotype
Control mean RIN was 5.6 (SD=1.8), case mean RIN was 5.8 (SD=1.5), and did not differ 

between cases and controls (Mann-Whitney p=0.78). Samples that did not amplify (NAc, 

N=13; PFC, N=24) and 4 samples missing rs11726136 genotypes were excluded. 

Case:control comparisons of LOC339975 expression in A. 34 case and 35 control NAc 

samples, and B. 28 case and 30 control PFC samples. There were no significant differences 

in expression between diagnostic groups. Genotypic comparisons of LOC339975 expression 

in C. 58 reference (T/T) homozygote and 7 T/G heterozygote NAc samples, and D. 50 T/T 

homozygote and 5 T/G heterozygote PFC samples. While no significant differences in 

expression by genotype were observed in the PFC, NAc expression was significantly 
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reduced in carriers of the associated non-reference G allele compared to reference allele 

homozygotes (F=9.72, p=0.003).
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