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Default “Gunel and Dickey” Bayes factors for contingency
tables
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Abstract The analysis of R ×C contingency tables usually
features a test for independence between row and column
counts. Throughout the social sciences, the adequacy of
the independence hypothesis is generally evaluated by the
outcome of a classical p-value null-hypothesis significance
test. Unfortunately, however, the classical p-value comes
with a number of well-documented drawbacks. Here we
outline an alternative, Bayes factor method to quantify the
evidence for and against the hypothesis of independence
in R × C contingency tables. First we describe different
sampling models for contingency tables and provide the cor-
responding default Bayes factors as originally developed by
Gunel and Dickey (Biometrika, 61(3):545–557 (1974)). We
then illustrate the properties and advantages of a Bayes fac-
tor analysis of contingency tables through simulations and
practical examples. Computer code is available online and
has been incorporated in the “BayesFactor” R package and
the JASP program (jasp-stats.org).

Keywords Bayes factors · Contingency table · Sampling
models · p-value

Contingency tables are ubiquitous throughout psychology
and the social sciences. Here we focus on the analysis of R×
C contingency tables, that is, contingency tables with two
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categorical variables. In a contingency table, the intersection
of row and column categories are known as cells. If y∗∗ is a
matrix of counts with R rows and C columns then the cell
entry yrc corresponds to the intersection of the r th row with
the cth column. For concreteness, consider Experiment 2
from the famous set of three experiments by Dutton and
Aron (1974), designed to “test the notion that an attractive
female is seen as more attractive by males who encounter
her while they experience a strong emotion (fear) than by
males not experiencing a strong emotion.” (Dutton & Aron,
1974, p. 511). The experimental scenario involved a attrac-
tive female interviewer who contacted male participants to
fill out a short questionnaire. To manipulate fear, a subset
of participants filled out the questionnaire while balanc-
ing on a fear-arousing suspension bridge (i.e., the Capilano
Canyon Suspension Bridge: five-foot wide, swaying, with
low hand rails and a 230-foot drop to rocks below); the
remaining subset of participants filled out the questionnaire
while standing on a solid wood bridge with high handrails,
positioned only 10 feet above a small stream. To measure
experienced attractiveness, one of the key dependent mea-
sures was whether or not the participants later called the
female interviewer (they had been given her phone number
after completing the questionnaire).1 Table 1 summarizes
the results of the study in a 2×2 contingency table with fear
and attraction as categorical variables with two levels each.
The hypothesis from Dutton and Aron (1974) entails that
the outcomes for the two categorical variables are depen-
dent: knowing whether a participant is in the fear-arousing
condition should affect the probability that he later decides
to call the interviewer.

1Not all participants accepted the phone number. The analysis here
focuses only on those participants that accepted the number.
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Table 1 Number of men who called or did not call the female
interviewer when the earlier questionnaire had been conducted on a
fear-arousing suspension bridge or on a solid wood bridge

Attraction

Fear Call No call Total

Suspension bridge 9 9 18

Solid bridge 2 14 16

Total 11 23 34

Data from Dutton and Aron (1974), Experiment 1

The top left cell entry of Table 1, y11 = 9, indicates
that 9 men were interviewed on the suspension bridge and
later called the female interviewer; the bottom left cell entry,
y21 = 2, indicates that 2 men were interviewed on the solid
bridge and later called the interviewer. In the following we
use the dot notation to indicate summation; for example,
Table 1 shows that a grand total of y.. = 34 men partici-
pated, and that of these men y.1 = 9 + 2 = 11 called the
female interviewer, whereas y.2 = 9 + 14 = 23 did not.
Examination of all four cell frequencies in Table 1 suggests
that men were more likely to call after having been inter-
viewed on the fear-arousing suspension bridge instead of on
a solid bridge. Hence, the two categorical variables do not
appear to be independent. Dutton and Aron (1974, p. 512)
conclude: “In the experimental group 9 out of 18 called, in
the control group 2 out of 16 called (χ2 = 5.7, p < .02).
Taken in conjunction with the sexual imagery data, this find-
ing suggests that subjects in the experimental group were
more attracted to the interviewer.”

In order to test the hypothesis of independence in R × C

contingency tables, popular methods include the χ2 test, the
likelihood ratio test, and the Fisher exact test. All these tests
are classical or frequentist, and ultimately their inferential
purpose rests on the interpretation of a p-value. The Fishe-
rian believes this p-value quantifies the evidence against the
null hypothesis, whereas the Neyman-Pearsonite believes it
warrants the decision to reject the null hypothesis when-
ever p < α, with α = .05 as the default value (see e.g.,
Hubbard & Bayarri, 2003 for a discussion of the differ-
ence between the two classical paradigms). Unfortunately,
all p-value inference is plagued by the same conceptual
and practical problems (e.g., Dienes, 2011; Wagenmakers,
2007; Wagenmakers, Lee, Lodewyckx, & Iverson, 2008;
Wagenmakers et al., in press; Wagenmakers et al., 2016;
Wagenmakers, Morey, & Lee, in press). For example, p-
values are sensitive to the intention with which the data
were collected (i.e, they violate the Likelihood Principle,
Berger & Wolpert, 1988); p-values cannot be used to quan-
tify support in favor of the null-hypothesis; and finally,
p-values are known to overestimate the evidence against the

null-hypothesis (e.g., Berger & Delampady, 1987; Edwards,
Lindman, & Savage, 1963). The main goal of this article is
to outline an alternative, Bayes factor hypothesis test for the
R × C contingency table that can be used to complement or
replace the classical hypothesis tests based on p-values.

Bayes factors for contingency tables have a long history
(e.g., Gunel & Dickey, 1974; Jeffreys, 1935, 1961; Kass &
Raftery, 1995; Edwards et al., 1963). However, most of this
work can be understood and used only by those with a high
level of statistically sophistication, a fetish for archaic nota-
tion, and a desire for programming and debugging. At any
rate, social scientists generally do not use Bayes factors for
the analysis of contingency tables, and we surmise that the
key reasons for this are twofold: (1) the Bayesian tests are
relatively inaccessible, and (2) their practical use has not
been appropriately emphasized.

The outline of this paper is as follows. The first section
briefly describes four different sampling plans for contin-
gency tables. The second section introduces the Bayes factor
in general terms, and the third section gives the rationale
and equations for four Bayes factors developed by Gunel
and Dickey (1974) (henceforth GD74) for R × C con-
tingency tables. The fourth section provides a simulation,
and the fifth section demonstrates the application of the
GD74 Bayes factors to a series of concrete examples. Fol-
lowing the discussion section, the Appendix provides code
that illustrates how the results from the examples can be
obtained from the BayesFactor package in R. The contin-
gency table Bayes factors have also been incorporated in
JASP, a free and open-source software program for statisti-
cal analyses (jasp-stats.org); see Appendix for details.

We would like to stress that our main contribution in this
paper is not to propose new Bayes factors for contingency
tables. Instead, our contribution was to decipher and trans-
late the original GD74 article, implement the result in a
popular software program, and demonstrate its added value
by means of practical application.

Four sampling plans

The methods developed for the Bayesian analysis of contin-
gency tables depend on the informativeness of the design.2

For the case of the R × C contingency table, we follow
GD74 and distinguish between the following four designs:
Poisson, joint multinomial, independent multinomial, and
hypergeometric. Below we consider each in turn.

2In classical statistics also, different tests exist for the separate sam-
pling plans (e.g., compare the Fisher exact test to the Barnard exact
test, Barnard, 1945). When the sample size is large the differences
become negligible.
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Poisson sampling scheme Each cell count is random, and
so is the grand total. Each of the cell counts is Poisson dis-
tributed. This design often occurs in purely observational
work. For instance, suppose one is interested in whether
cars come to a complete stop at an intersection (yes/no) as
a function of the driver’s gender (male/female). When the
sampling scheme is to measure all cars during one entire
day, there is no restriction on any cell count, nor on the grand
total.

Joint multinomial sampling scheme This scheme is the
same as the Poisson scheme, except that the grand total (y..)

is now fixed; hence, for the 2 × 2 table one only needs
three cell counts to uniquely identify the fourth, and the cell
counts are distributed as a joint multinomial. For the car
example above, this scheme holds when the stopping rule is
“collect data from 100 cars and then stop”.

Independent multinomial sampling scheme In this
scheme there are two restrictions, either on the row totals
or on the column totals. In other words, either all row mar-
gins or all column margins are fixed. Consequently, the cell
counts are multinomially distributed within each row or col-
umn. In experimental psychology, this is the most common
sampling scheme. For the car example, this scheme holds
when the stopping rule is “collect data from 50 male drivers
and 50 female drivers”. For the 2 × 2 table, two cell counts
(i.e., the number of men who come to complete stop, and
the number of women who come to a complete stop) suffice
to uniquely identify the remaining two.

Hypergeometric sampling scheme In this scheme both
row and column margins are fixed. For the 2 × 2 table, a
single cell count suffices to determine the remaining three
uniquely. The cell counts are said to be hypergeometri-
cally distributed. Practical application of the hypergeomet-
ric sampling scheme is rare. For the 2 × 2 table, an infinite
number of examples can be constructed by classifying par-
ticipants according to a median split on two continuous
variables. For example, suppose we have 100 participants,
with income and altruism as variables of interest. The first
median split creates a group of 50 rich participants and 50
poor participants; the second median split creates a group
of 50 altruistic participants and 50 egotistical participants.
Hence, all row and column margins are fixed, and a single
cell count suffices to uniquely identify the remaining three.

GD74 devised an ingenious scheme of successive con-
ditionalization to obtain Bayes factors for each of the four
sample schemes separately. Before we describe their result
the next section provides a more general outline of the Bayes
factor and its advantages.

Bayes factor basics

Denote the observed data by y and two competing models
by M1 and M2. It follows from Bayes’ rule that the poste-
rior model odds equals the prior model odds multiplied by
the Bayes factor (Jeffreys, 1961; Kass & Raftery, 1995):

p(M1 | y)

p(M2 | y)
︸ ︷︷ ︸

Posterior odds

= p(M1)

p(M2)
︸ ︷︷ ︸

Prior odds

× p(y | M1)

p(y | M2)
︸ ︷︷ ︸

Bayes factor

. (1)

Hence the Bayes factor quantifies the change from prior
to posterior model odds that are brought about by the data.
In this sense, the Bayes factor grades the decisiveness of
the evidence that the data provide for the hypotheses under
consideration (Jeffreys, 1961). The Bayes factor can also be
conceptualized as the ratio of marginal likelihoods of M1

versus M2 (Jeffreys, 1961):

BF12 = p(y | M1)

p(y | M2)

=
∫

�
p(y | θ,M1) p(θ | M1) dθ

∫

�
p(y | γ,M2) p(γ | M2) dγ

. (2)

This equation shows that the relative support of the data for
M1 versus M2 depends on the ratio of the prior-weighted
average likelihood, that is, on the average adequacy of pre-
dictions made for data y. Models receive support when
they provide a good account of the observed data across
a relatively a large proportion of their parameter space. In
contrast, highly flexible models make many predictions,
and most of these will be very poor for data y; these
poor predictions drive down the average likelihood, thereby
implementing a penalty for complexity known as Occam’s
razor (Myung & Pitt, 1997; Lee & Wagenmakers, 2013).
Note that throughout this article, the first BF subscript indi-
cates the model that is in the numerator and the second
subscript indicates the model that is in the denominator;
hence, BF12 = 1/BF21.

The framework of Bayes factors is entirely general, and
applies regardless of whether M1 and M2 are nested (i.e.,
one is a restricted subset of the other, as is required for
p-value null-hypothesis significance testing) or structurally
different (e.g., the diffusion model versus the linear ballis-
tic accumulator model, e.g., Donkin, Brown, Heathcote, &
Wagenmakers, 2011). By fully conditioning on the observed
data and by gauging strength of evidence based on pre-
dictive performance (Rouder, Morey, Verhagen, Swagman,
& Wagenmakers, in press; Wagenmakers, Grünwald, &
Steyvers, Wagenmakers, Morey, & Lee, 2006; in press),
Bayes factors overcome several key limitations of p-value
null-hypothesis significance testing. With Bayes factors, the
null-hypothesis does not enjoy a special status and is not
evaluated in isolation, but instead is always pitted against a
specific alternative. Moreover, the Bayes factor provides a
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Table 2 A descriptive classification scheme for the interpretation
of Bayes factors BF12 (Lee and Wagenmakers 2013; adjusted from
Jeffreys 1961)

Bayes factor Posterior probability Evidence category

under prior equipoise

> 100 > 0.99 Extreme evidence for M1

30 – 100 0.97 – 0.99 Very strong evidence for M1

10 – 30 0.91 –0.97 Strong evidence for M1

3 – 10 0.75 – 0.91 Moderate evidence for M1

1 – 3 0.50 – 0.75 Anecdotal evidence for M1

1 0.50 No evidence

1/3 – 1 0.25 – 0.50 Anecdotal evidence for M2

1/10 –1/3 0.09 – 0.25 Moderate evidence for M2

1/30 – 1/10 0.03 – 0.09 Strong evidence for M2

1/100 – 1/30 0.01– 0.03 Very strong evidence for M2

< 1/100 < 0.01 Extreme evidence for M2

graded assessment of evidence and does not enforce or war-
rant an all or none decision in terms of “rejecting” or “failing
to reject” a specific hypothesis.

In terms of interpretation, BF12 = 6.5 means that the
data are 6.5 times more likely under M1 than under M2;
BF12 = 0.2 means that the data are 1/0.2 = 5 times more
likely under M2 than under M1. When we assume that the
competing models are equally likely a priori (i.e., when the
prior odds equal 1), the Bayes factor can be transformed to
a posterior probability by dividing the Bayes factor by the
Bayes factor plus 1; for example, under equal prior prob-
ability a Bayes factor of BF12 = 6.5 leads to a posterior
probability for M1 of 6.5/7.5 ≈ 0.87; a Bayes factor of
BF12 = 0.2 leads to a posterior probability for M1 of
0.2/1.2 ≈ 0.17.

Despite the inherently continuous nature of the Bayes
factor as a measure of evidential strength, Jeffreys (1961)
proposed to categorize Bayes factors in discrete categories,
shown in Table 2. These categories facilitate communica-
tion and their main use is to prevent overly enthusiastic
interpretation of Bayes factors in the range from 1/3 −
3; nevertheless, the category structure is no more than a
descriptive simplification of a continuous, graded scale of
evidence.3

3The authors are divided on the merits of Jeffreys’ classification
scheme. Author RDM notes that the scheme introduces information
into the analysis that is not justified by Bayesian theory itself; what is
“strong” evidence is an extra-Bayesian consideration, and there is no
reason that 10 should be the criterion for “strong” evidence in all, or
even in most. As (Kass and Raftery, 1995) note, assessments of the
strength of evidence will often be contextual, and at any rate, probabil-
ity theory itself provides the interpretation of the Bayes factor as the
change in model odds. The Bayes factor needs no further interpreta-
tion. Other authors of this manuscript, however, believe that Jeffreys’
scheme can serve as a helpful guide.

Bayes factors for four sampling models

In this section we provide the GD74 Bayes factors for tests
of row-column independence in contingency tables, sepa-
rately for each of the four sampling schemes. All Bayes
factor tests are based on a comparison of two models: one
model that represents the hypothesis of row-column inde-
pendence (H0) and the other model that represents the
hypothesis of row-column dependence (H1). Before pro-
viding the tests in detail it is necessary to establish some
notation first. Readers who are more interested in the prac-
tical application than in the statistical details are invited to
skip ahead to the section with practical examples.

Notation

Let y∗∗ be a data matrix of R rows and C columns:

y∗∗ =

⎛

⎜

⎜

⎜

⎝

y11 y12 · · · y1C

y21 y22 · · · y2C

...
...

. . .
...

yR1 yR2 · · · yRC

⎞

⎟

⎟

⎟

⎠

, (3)

and let a∗∗ be a matrix of prior parameters with the same
dimension as the data matrix y∗∗:

a∗∗ =

⎛

⎜

⎜

⎜

⎝

a11 a12 · · · a1C

a21 a22 · · · a2C

...
...

. . .
...

aR1 aR2 · · · aRC

⎞

⎟

⎟

⎟

⎠

. (4)

In vector form, �y = (y11, y12, ..., yRC) and �a =
(a11, a12, ..., aRC). In the following, recall that a dot is used
to indicate summation across a particular dimension (row or
column), and note that a star is used to indicate the entire
vector of that dimension. This is clarified by the equations
below:

y.. =
∑

r

∑

c

yrc = y11 + y12 + ... + yRC (5a)

y∗. =
∑

c

yrc = (y1., ..., yR.) (5b)

y.∗ =
∑

r

yrc = (y.1, ..., y.C) (5c)

a.. =
∑

r

∑

c

arc (5d)

a∗. =
∑

c

arc = (a1., ..., aR.) (5e)
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a.∗ =
∑

r

arc = (a.1, ..., a.C) (5f)

ξ∗. = a∗. − (C − 1) (5g)

ξ.∗ = a.∗ − (R − 1) (5h)

ξ.. = a.. − (R − 1)(C − 1) (5i)

D(a∗∗) =
∏ �(arc)

�(a..)
. (5j)

For the matrix of prior parameters a∗∗ (i.e., the gamma
shape parameters of the Poisson rates for the cell counts, see
below), a default value is obtained when each arc = a = 1
– in the multinomial case, this indicates that every combi-
nation of parameter values is equally likely a priori. Higher
values of a bring the predictions of H1 closer to those of
H0; the prior distribution under a = 10, for instance, may
be thought of as an uninformative a = 1 prior distribution
that has been updated using 9 hypothetical observations in
each cell of the table. For the data in Table 1, y.. = 34,
y∗. = (18, 16) a vector of row totals, and y.∗ = (11, 23) a
vector of column totals. When a = 1 then a∗. = (2, 2) and
a.∗ = (2, 2). Consequently, ξ∗. is a vector of ones of length
R, the number of rows, ξ.∗ is a vector of ones of length
C, the number of columns, and ξ.. = 3 . Finally, D() is a
Dirichlet function defined in Eq. 5j (Albert, 2007; Gunel &
Dickey, 1974).

Four Bayes factors

Below we describe, separately for the four sampling
schemes, the GD74 contingency table Bayes factors in sup-
port of the row-column independence model H0 over the
row-column dependence model H1. Bayes factors are often
difficult to calculate, as they are obtained by integrating over
the entire parameter space, a process that is non-trivial when
the integrals are high-dimensional and intractable. GD74’s
Bayes factors, however, only require computation of com-
mon functions such as gamma functions, for which numer-
ical approximations are readily available. GD74 achieved
this simplicity through a series of model restrictions and
data conditionalization.

In order to describe how GD74 simplified their Bayes
factor calculations, we must first introduce the idea of a
“conditional” Bayes factor. Consider testing a simple nor-
mal mean and variance with two participants. The specific
hypotheses do not matter; we instead focus on the infor-
mation in the data. If we were sampling sequentially, we
might compute the Bayes factor for our hypothesis after
the first participant, and then after the second participant.
The second Bayes factor takes into account all the data, and
includes all the information from both participants. We can
also look at the Bayes factor due to having observed par-
ticipant 2’s data, already taking into account the data from

participant 1. This Bayes factor represents the “extra” infor-
mation about the hypothesis offered by participant 2 over
and above that offered by participant 1. We can call it the
Bayes factor for participant 2 given, or conditional on, par-
ticipant 1. However, we can partition the data in other ways
besides participants. Since the sample mean and variance
jointly capture all the information in the data, we can also
describe the Bayes factor for the sample mean conditioned
on knowing the sample variance.

In the context of contingency tables, there are logical
ways of partitioning the data. To begin, we partition the data
into a part that contains the information about the overall
quantity of observations, and a part that contains the infor-
mation about how cells differ from one another. To compute
the evidence assuming that the total number of observations
is fixed, we look at the change from the Bayes factor using
only the first part of the data (the total number of obser-
vations) to the Bayes factor conditioned on the whole data
set. Due to the way GD74 parameterized their models –
model parameters corresponding to the components of the
partition– this successive conditionalization produces Bayes
factors that are easy to compute.

1. Bayes factor under the Poisson sampling scheme
Under this sampling scheme, none of the cell counts

are fixed. Each cell count is assumed to be Poisson dis-
tributed: yrc ∼ Poisson(λrc). Each of the rate parame-
ters λrc is assigned a conjugate gamma prior with shape
parameter a and scale parameter b: λrc ∼ �(arc, b).
Here, �(arc, b) = ba

�(a)
λa−1e−bλ, λ > 0, a > 0 and

b > 0 and �(a) is the gamma function �(a) = (a−1)!.
The Bayes factor for independence under the Poisson
sampling scheme is (Equation 4.2 in GD74):

BFP
01 = (1 + 1/b)(R−1)(C−1) �(y.. + ξ..)

�(ξ..)
∏

rc

�(arc)

�(yrc + arc)

D(y∗.+ ξ∗.)
D(ξ∗.)

D(y.∗+ ξ.∗)
D(ξ.∗)

(6)

where b = R × C × a/y.. is the default value of the
gamma scale parameter suggested by GD74.4

For the 2 × 2 table with a = 1, the Bayes factor
simplifies to

BFP
10 = 8 (y.. + 1)(y1. + 1)

(y.. + 4)(y.. + 2)

[

y11! y12! y21! y22! y..!
(y1. + 1)! y2.! y.1! y.2!

]

.

(7)

2. Bayes factor under the joint multinomial sampling
scheme

Under this sampling scheme, the grand total y.. is
fixed. Cell counts are assumed to be jointly multinomi-
ally distributed: (y11, ..., yrc) ∼ Multinomial(y.., π∗∗).

4Note that for the other sampling schemes the b parameter plays no
role.
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The prior distribution on the multinomial parame-
ters is the conjugate Dirichlet distribution: π∗∗ ∼
Dirichlet(a∗∗). The Bayes factor for independence
under the joint multinomial sampling scheme is (Equa-
tion 4.4 in GD74; see also O’Hagan, Forster, & Kendall,
2004, p. 351 and Albert,2007, p. 178):

BFM
01 = D(y∗. + ξ∗.)

D(ξ∗.)
D(y.∗ + ξ.∗)

D(ξ.∗)
D(a∗∗)

D(y∗∗ + a∗∗)
. (8)

For the 2 × 2 table with a = 1, the Bayes factor
simplifies to

BFM
10 = 6 (y.. + 1)(y1. + 1)

(y.. + 3)(y.. + 2)

[

y11! y12! y21! y22! y..!
(y1. + 1)! y2.! y.1! y.2!

]

.

(9)

3. Bayes factor under the independent multinomial sam-
pling scheme

Under this sampling scheme, one margin (rows or
columns) in the contingency table is fixed. Cell counts
are assumed to be independently multinomially dis-
tributed. The Bayes factor for independence under this
sampling scheme is (Equation 4.7 in GD74):

BFI
01 = D(y.∗ + ξ.∗)

D(ξ.∗)
D(y∗. + a∗.)

D(a∗.)
D(a∗∗)

D(y∗∗ + a∗∗)
.

(10)

This Bayes factor is derived under the assumption that
the row margins are fixed. To derive the Bayes fac-
tor under the assumption that the column margins are
fixed, it suffices to interchange the rows and columns in
Eq. 10.

BFI
01 = D(y∗. + ξ∗.)

D(ξ∗.)
D(y.∗ + a.∗)

D(a.∗)
D(a∗∗)

D(y∗∗ + a∗∗)
.

(11)

For the 2 × 2 contingency table, the Bayes factor for
the independent multinomial sampling plan reduces to
a test for the equality of two proportions, θ1 and θ2.
Under the default setting a = 1, Eq. (11) then simpli-
fies to (de Bragança Pereira & Stern, 1999; Jeffreys,
1935; Wagenmakers, Lodewyckx, Kuriyal, & Grasman,
2010):

BFI
01 =

(

y.1

y11

)(

y.2

y12

)

(

y.1 + y.2

y11 + y12

)

(y.1 + 1)(y.2 + 1)

(y.1 + y.2 + 1)
, (12)

where the left-hand side features binomial coefficients.
The Bayes factor BFI

01 –or its inverse, which quan-
tifies the evidence for H1, that is, BFI

10 = 1/BFI
01–

is a two-sided test. In experimental disciplines, how-
ever, researchers often have strong prior beliefs about

the direction of the effect under scrutiny. For instance,
Dutton and Aron (1974) set out to test whether emo-
tional arousal stimulates attraction, not whether emo-
tional arousal dampens attraction. A one-sided Bayes
factor that respects the directional nature of the alterna-
tive hypothesis needs to assess the support for hypoth-
esis H+ : θ1 > θ2 or H− : θ1 < θ2. These
one-sided Bayes factors can be obtained easily (Morey
& Wagenmakers, 2014; Pericchi, Liu, & Torres, 2008).
To see this, we first decompose the desired one-sided
Bayes factor, say BF+0, into two parts:5

BF+0 = p(y | H+)

p(y | H0)

= p(y | H+)

p(y | H1)
× p(y | H1)

p(y | H0)

= BF+1 × BF10. (13)

Thus, in order to obtain the one-sided BF+0, we
need to adjust the two-sided BF10 by the factor BF+1,
which quantifies the evidence for the directional alter-
native hypothesis H+ over the undirectional alternative
hypothesis H1. To obtain this evidence, we use a sim-
ple procedure outlined by Klugkist, Laudy, and Hoijtink
(2005), who noted that BF+1 equals the ratio of poste-
rior and prior mass under H1 that is consistent with the
restriction postulated by H+. That is, BF+1 = p(θ1 >

θ2 | y,H1)/p(θ1 > θ2 | H1); for symmetric prior
distributions, the correction factor further simplifies to
BF+1 = 2 × p(θ1 > θ2 | y,H1). From this expres-
sion it is evident that incorporating the direction of the
effect in the specification of the alternative hypothesis
can increase the Bayes factor in its favor by no more
than twofold.

4. Bayes factor under the hypergeometric sample scheme.
In a 2 × 2 table the conditional distribution of y11

given both margins fixed (i.e., p(y11 | y1., y2., y.1, ψ))
is a noncentral hypergeometric distribution:

p(y11 | y1., y2., y.1, ψ)=

(

y.1
y11

) (

y.2
y1. − y11

)

ψy11

∑min(y1.,y.1)

i=max(0,y1.−y.2)

(

y.1
i

) (

y.2
y1. − i

)

ψi

(14)

for 0 < y1. ≤ y.1 + y.2 and max(0, y1. − y.2) ≤ y11 ≤
min(y1., y.1). The noncentral hypergeometric distribu-
tion equals the hypergeometric distribution when the
odds ratio (ψ) = 1.

5As before, the first BF subscript indicates the model in the numerator,
and the second subscript indicates the model in the denominator of
Eq. 2; hence, BF+0 = 1/BF0+.
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The Bayes factor for independence under the hyper-
geometric sampling scheme is (Equation 4.11 in
GD74):

BFH
01 = D(a∗∗)

∑

g(y∗∗; y.., a∗∗)

D(y∗∗ + a∗∗)
(

y..

y∗.

) (

y..

y.∗

) , (15)

where

g(y∗∗; y.., a∗∗) =
(

y..

y∗∗

) D(y∗∗ + a∗∗)
D(a∗∗)

, (16)

and
∑

is a summation over y′∗∗ with all margins fixed.
For the 2 × 2 table with a = 1, Eq. 15 is equivalent

to the Bayes factor proposed by Jeffreys (1961, p. 264):

BFH
10 = y11! y12! y21! y22! y..!

(y1. + 1)! y2.! y.1! y.2! , (17)

where y1. = min(y1., y2., y.1, y.2), that is, the smallest
of the four marginal totals.

For all four Bayes factors, the parameter matrix a∗∗ quan-
tifies the prior uncertainty. By default, each element of the
matrix is assigned the same number a. For the Dirichlet
distribution, the priors are uniform across their range when
a = 1. This is the default choice of GD74 and we will
explore the Bayes factors outlined here with this choice in
mind. As usual, robustness of statistical conclusions may
be checked by varying the prior precision along a plausible
range of values. Note the uniform choice assumes that dif-
ferences between marginal probabilities are expected to be
large. If smaller effects are expected, the a parameter may
be increased.

Relation between the four Bayes factors for the 2 × 2
table

To quantify the relationship between the Bayes factors for
each of the four sampling plans discussed above we focus
on the 2 × 2 contingency table and use the default prior
setting a = 1. It is then possible to derive the ratio for pairs
of Bayes factors; for instance, the ratio between the Bayes
factor for the Poisson sampling plan and the hypergeometric
sampling plan is obtained as BFP

10/BFH
10. All ratios of Bayes

factors are shown in Table 3; the cell in the first row and
final column shows the outcome for BFP

10/BFH
10.

Table 3 reveals that the evidence in favor of the row-
column dependence hypothesis H1 decreases with the suc-
cessive conditioning on the table margins and totals. In other
words, the Bayes factor BF10 is largest for the Poisson sam-
pling plan, and smallest for the hypergeometric sampling
plan.

Table 3 Ratios of default Bayes factors for 2 × 2 contingency tables
under the four different sampling plans

BFM
10 BFI

10 BFH
10

BFP
10

4(y.. + 3)

3(y.. + 4)

8(y1. + 1)(y2. + 1)

(y.. + 4)(y.. + 2)

8(y.. + 1)(y1. + 1)

(y.. + 4)(y.. + 2)

BFM
10

6(y1. + 1)(y2. + 1)

(y.. + 3)(y.. + 2)

6(y.. + 1)(y1. + 1)

(y.. + 3)(y.. + 2)

BFI
10

(y.. + 1)

(y2. + 1)

The ratios are obtained by dividing the Bayes factor shown in rows by
that shown in columns. Note that BF10 = 1/BF01. See text for details

Simulation

To explore the behavior of the four Bayes factors further we
conducted two simulations, each with synthetic data from a
2 × 2 contingency table. In the first simulation, we took the
table �y = (3, 3, 2, 5) with y.. = 3 + 3 + 2 + 5 = 13 as a
point of departure, with an log odds ratio of 0.91 and a cor-
responding 95 % confidence interval of (−1.37, 3.20). We
then created a total of 30 contingency tables by multiplying
each cell count by a factor c, where c = 1, 2, ..., 30. Hence,
the grand total number of observations varied from y.. = 13
at c = 1, through y.. = 195 at c = 15, to y.. = 390 at
c = 30.

For each of the 30 contingency tables, we calculated
the GD74 Bayes factors under each of the four sampling
schemes. Figure 1 shows the results. As expected, the evi-
dence against the null hypothesis increases with sample
size. For low sample sizes, the Bayes factors indicate that
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Fig. 1 Four GD74 Bayes factors for different enlargement factors (c)
of the �y = (3, 3, 2, 5) table. See text for details
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the evidence is merely anecdotal, favoring H1 —or some-
times even H0— by less than a factor of three. In addition,
the different Bayes factors all show a linear increase in
the log Bayes factor as sample size increases. The eviden-
tial gap between the Bayes factor for the Poisson sampling
scheme and the hypergeometric sampling scheme approxi-
mately spans an entire Jeffreys category. For instance, when
c = 10 the hypergeometric BFH

10 = 3.04, whereas the Pois-
son BFP

10 = 9.19, suggesting that the differences between
the Bayes factors under the different sampling models can
be substantial.

In the second simulation, we took the table �y =
(5, 5, 5, 5) as a point of departure, with an odds ratio of 1.
We created a total of 50 contingency tables by multiplying
each cell count by a factor c, where c = 1, 2, ..., 50. Hence,
the grand total number of observations varied from y.. = 20
at c = 1, through y.. = 500 at c = 25, to y.. = 1000 at
c = 50. For each table, the counts are uniformly distributed
across the cells and this should yield the maximum possible
evidence for H0. As before, for each of the 30 contingency
tables we calculated the GD74 Bayes factors under each of
the four sampling schemes. Figure 2 shows the results.

As expected, the evidence in favor of H0 –independence
between rows and columns– increases with sample size.
The speed of the increase is less pronounced than it was
in the first simulation — a reflection of the general rule
that for nested models, it is often relatively difficult to find
compelling evidence in favor of the absence of an effect
(Jeffreys, 1961). Consistent with the mathematical relation
displayed in Table 3, the evidential order has reversed; the
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Fig. 2 Four GD74 Bayes factors for different enlargement factors (c)
of the �y = (5, 5, 5, 5) table. See text for details

strongest evidence is now provided by the hypergeometric
Bayes factor, whereas the Poisson Bayes factor is the most
reluctant of the four in its support for H0. The order-reversal
suggests that, with default GD74 priors, the Poisson model
has more prior mass in the vicinity of the null hypothesis
than does the hypergeometric model.

In sum, the simulations confirm that the Bayes factor
support grows with sample size; they also highlight that dif-
ferences between the four Bayes factors cannot easily be
ignored, not even asymptotically.

Examples

This section underscores the practical relevance of the
GD74 Bayes factors by discussing a concrete example for
each of the four sampling plans. For comparison, we also report
the results from p-value null-hypothesis statistical testing.

Poisson sampling example: fathers and sons

Table 4 shows the contingency table for professional occu-
pations of 775 fathers and their sons; the data were collected
by Miss Emily Perrin and published by Pearson (1904, p.
33). The diagonal entries –shown in bold italic– indicate the
number of cases where the son’s occupation matches that of
his father.

For illustrative purposes, we assume that sampling was
based on a Poisson scheme, such that any cell count can take
on any value, and the grand total was not fixed in advance. A
frequentist test of independence between rows and columns
yields χ2

(df =169,y..=775) = 1005.45 and p < .001: we can
reject the the null hypothesis of independence and conclude
that there is an association between the profession of fathers
and their sons. However, the p-value does not quantify how
much these data should shift our belief. To address this
question we calculate the Poisson GD74 Bayes factor and
obtain log BFP

10 = 262.21, indicating extreme evidence for
the hypothesis that there exists an association between the
occupations of fathers and their sons.

Joint multinomial sampling example: job satisfaction

The left panel of Fig. 3 shows data from a 1968 job satisfac-
tion questionnaire among 715 blue collar industrial workers
in Denmark (Andersen, 1990). One expects an associa-
tion between supervisor satisfaction and worker satisfaction,
expressed by an abundance of counts on the diagonal cell
entries.

For illustrative purposes, we assume that sampling
was based on a joint multinomial scheme, such that
the grand total of 715 workers was fixed. A frequentist
test of independence between rows and columns yields
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Table 4 The occupation of fathers and their sons. Data reported in (Pearson, 1904, p. 33)

Son’s occupation

Father’s occupation 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 28 0 4 0 0 0 1 3 3 0 3 1 5 2

2 2 51 1 1 2 0 0 1 2 0 0 0 1 1

3 6 5 7 0 9 1 3 6 4 2 1 1 2 7

4 0 12 0 6 5 0 0 1 7 1 2 0 0 10

5 5 5 2 1 54 0 0 6 9 4 12 3 1 13

6 0 2 3 0 3 0 0 1 4 1 4 2 1 5

7 17 1 4 0 14 0 6 11 4 1 3 3 17 7

8 3 5 6 0 6 0 2 18 13 1 1 1 8 5

9 0 1 1 0 4 0 0 1 4 0 2 1 1 4

10 12 16 4 1 15 0 0 5 13 11 6 1 7 15

11 0 4 2 0 1 0 0 0 3 0 20 0 5 6

12 1 3 1 0 0 0 1 0 1 1 1 6 2 1

13 5 0 2 0 3 0 1 8 1 2 2 3 23 1

14 5 3 0 2 6 0 1 3 1 0 0 1 1 9

Labels: 1-army, 2-art, 3-teacher, clerk, civil servant, 4-crafts, 5-divinity, 6-agriculture, 7-landownership, 8-law, 9-literature, 10-commerce, 11-
medicine, 12-navy, 13-politics and court, 14-scholarship and science

χ2
(df =1,y..=715) = 15.81 and p < .001: we can reject the the

null hypothesis of independence and conclude that there is
an association between the satisfaction of supervisors and
workers. However, the p-value does not quantify how much
these data should shift our belief. To address this question
we calculate the joint multinomial GD74 Bayes factor and
obtain BFM

10 = 373.13, indicating extreme evidence for
the hypothesis that there exists an association between the
satisfaction level of supervisors and workers.

In addition, the right panel of Fig. 3 shows the posterior
distribution of the log odds ratio (as can be obtained using
JAGS, Plummer, 2003, or the BayesFactor package, Morey
& Rouder, 2015; see Appendix for code). The 95 % credible

interval for the log odds ratio spans the range from 0.31 to
0.92, and the median value equals log(1.85) = 0.61; note
that independence corresponds to a log odds ratio of zero.
The classical estimate of the log odds ratio is 0.62 and the
classical 95 % confidence interval is (0.31, 0.92).

Independent multinomial example: dolls

The left panel of Fig. 4 shows data from a classic study on
racial preference among school children (Hraba & Grant,
1970). Among 160 Nebraska children aged 4-8, 62 out of
89 African American children (69 %) preferred to play with
a black doll instead of a white doll, whereas 60 out of 71
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Fig. 3 Data from a 1968 job satisfaction questionnaire among 715 blue collar industrial workers in Denmark (Andersen, 1990). Left panel:
contingency table; right panel: posterior distribution of the log odds ratio
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Fig. 4 Racial preference among Nebraska school children in 1969. Data from (Hraba & Grant, 1970). Left panel: contingency table; AA=African
American; W=White. Right panel: posterior distribution of the log odds ratio

white children (84 %) preferred to play with a white doll
instead of a black doll.

For illustrative purposes, we assume that sampling was
based on an independent multinomial scheme, such that the
crucial test involves a comparison of two proportions. A fre-
quentist test of independence between rows and columns
yields χ2

(df =1,y..=160) = 46.71 and p < .001: we can reject
the the null hypothesis of independence and conclude that
there is an association between children’s race and the color
of the doll they prefer to play with. However, the p-value
does not quantify how much these data should shift our
belief. To address this question we calculate the indepen-
dent multinomial GD74 Bayes factor and obtain log BFI

10 =
23.03, indicating strong evidence for the hypothesis that
there exists an association between children’s race and the
color of the doll they preferred to play with.

In addition, the right panel of Fig. 4 shows the posterior
distribution of the log odds ratio. The 95 % credible interval
for the log odds ratio spans the range from 1.73 to 3.26,
and the median value equals log(11.82) = 2.47. The classical
estimate of the log odds ratio is 2.52 and the classical 95 %
confidence interval is (1.74, 3.31).

Table 5 Sibling acceptance data from Kramer and Gottman (1992) as
reported in Anderson (1993, p. 14–15)

Sibling acceptance

Age Lower Higher Total

Younger 9 6 15

Older 6 9 15

Total 15 15 30

Hypergeometric example: siblings

The left panel of Table 5 shows data from 30 first-born chil-
dren, aged 3-5, and their attitude towards a soon-to-be-born
sibling (Kramer & Gottman, 1992; as reported in Anderson,
1993, p. 14–15). The contingency table has been constructed
using a median split for the variables age (younger versus
older) and sibling acceptance (lower versus higher). Hence,
both margins are fixed and the sampling scheme is hyper-
geometric. At issue is the question of whether there exists a
relation between age and sibling acceptance.

A frequentist test of independence between rows and
columns yields χ2

(df =1,y..=30) = 1.2 and p = 0.27: we fail
to reject the null hypothesis of independence and conclude
that there is insufficient evidence for an association between
age and sibling acceptance. However, the p-value does not
quantify how much these data should shift our belief in favor
of the independence hypothesis. To address this question we
calculate the hypergeometric GD74 Bayes factor and obtain
BFH

10 = 0.39, indicating that the observed data are about
1/0.39 = 2.56 times more likely under the null hypothe-
sis of independence than under the alternative hypothesis of
dependence.

Concluding comments

In this article, we discussed a series of default Bayes fac-
tors for the analysis of R × C contingency tables and
we illustrated their use with concrete examples. Follow-
ing Gunel and Dickey (1974), we distinguished four sam-
pling schemes. In order of increasing restriction, these are
Poisson, joint multinomial, independent multinomial, and
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hypergeometric. The prior distributions for each model are
obtained by successive conditioning on fixed cell frequen-
cies or margins.

The use of Bayes factors affords researchers several con-
crete advantages. For instance, Bayes factors can quantify
evidence in favor of the null hypothesis and Bayes factors
may be monitored as the data accumulate, without the need
for any kind of correction (e.g., Rouder, 2014). The latter
advantage is particularly pronounced when the relevant data
are obtained from a natural process that unfolds over time
without any predefined stopping point.

It may be argued that these Bayesian advantages have
long been within reach, as Bayes factors for contingency
tables have been developed and proposed well over half a
century ago (Jeffreys, 1935). Nevertheless, for the analy-
sis of contingency tables researchers almost exclusively use
classical methods, obtaining p-values through chi-square
test and likelihood ratio tests. One reason for the neglect
of Bayesian methods in the empirical sciences is that they
lack implementation in user-friendly software packages. We
have tried to overcome this obstacle by providing R syn-
tax (see Appendix) and by incorporating the GD1974 Bayes
factor in the BayesFactor package through the function
contingencyTableBF(). In addition, we have also
made the GD74 Bayes factors available in the open-source
statistical package JASP (www.jasp-stats.org).

Before closing, let us return to the data in Table 1.
The classical analysis suggested that men who were inter-
viewed on the fear-arousing bridge rather than the solid
wood bridge called the female interviewer more often (p <

.02). The relevant GD74 Bayes factor assumes an inde-
pendent multinomial sampling scheme; in the case of the
2 table, the test simplifies to a comparison between two
proportions. The Bayes factor yields BFI

10 = 5.31, which
indicates that data are about 5 times more likely under H1

than they are under H0. However, the authors’ hypothesis
implies that the alternative hypothesis is one-sided. Follow-
ing the method described above and elsewhere (e.g., Morey
& Wagenmakers, 2014), we compute the Bayes factor for
H+ versus H0 to be BF+0 = 10.50; according to the classi-
fication scheme proposed by Jeffreys, this is strong but not
overwhelming evidence for the presence of an effect.

The GD74 Bayes factors are but one of many Bayesian
analyses that have been proposed for the analysis of R × C

contingency tables. Other early approaches include Altham
(1969, 1971); Good (1965, 1967); Good and Crook (1987);
Jeffreys (1935, 1961). The approach by Altham focuses
on parameter estimation rather than on hypothesis test-
ing, whereas the approaches advocated by Good and by
Jeffreys are similar to those outlined here. Another alterna-
tive Bayesian approach is Poisson regression or log-linear
modeling (e.g., Forster, 2010; Overstall & King, 2014), a
discussion of which is beyond the scope of the current work.

Also note that the GD74 approach hinges on the use of
prior distributions of a particular form; if the user wishes to
specify prior distributions from a different family, analytical
results may no longer be possible, and one would have to
turn to Markov chain Monte Carlo techniques (e.g., Gilks,
Richardson, & Spiegelhalter, 1996; Gamerman & Lopes,
2006).

In closing, we believe that the GD74 Bayes factors allow
an additional and valuable perspective on the analysis of
R × C contingency tables. By making these Bayes factors
available in several software packages, researchers should
feel uninhibited to make use of the methodology and, at a
minimum, confirm that their conclusions are robust to the
statistical paradigm that is used to analyze the data.
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Appendix A: Bayes Factor R Code

This appendix provides the R code that produces the
Bayes factors for the examples discussed in the main text.
The main function, contingencyTableBF(), has been
incorporated in the R “BayesFactor” package (Morey &
Rouder, 2015).

The syntax for the contingencyTableBF() func-
tion has the following form:
contingencyTableBF(x, sampleType,

fixedMargin = NULL, priorConcentration = 1,

...)

where the argument x is an “R” by “C” data matrix and
sample type specifies the sampling plan ( “poisson”,
“jointMulti”, “indepMulti”, “hypergeom”). The argument
fixedMargin is for the independent multinomial sam-
pling plan, to fix one of the margins (“rows” or “cols”);
finally, the argument priorConcentration allows the
user to deviate from the default prior setting where a = 1.

A.1 Poisson sampling scheme

Below is the Bayes factor R code and the resulting output
for the analysis of the data shown in Table 4 (occupations of
fathers and their sons):

> BFP_10 <- contingencyTableBF(data,

sampleType = "poisson",

priorConcentration = 1)
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> BFP_10

Bayes factor analysis

--------------

[1] Non-indep. (a=1) : 4.11512e+115

Against denominator:

Null, independence, a = 1

---

Bayes factor type: BFcontingencyTable,

poisson

# The log (Bayes factor)

> BFP_10@bayesFactor$bf

[1] 266.212

A.2 Joint multinomial sampling scheme

Below is the Bayes factor R code and the resulting output
for the analysis of the data shown in the left panel of Fig. 3
(job satisfaction):
> data<- matrix(c(162,110,196,247),2,2)

> BFM_10 <- contingencyTableBF(data,

sampleType = "jointMulti",

priorConcentration = 1)

> BFM_10

Bayes factor analysis

--------------

[1] Non-indep. (a=1) : 373.134

Against denominator:

Null, independence, a = 1

---

Bayes factor type: BFcontingencyTable,

joint multinomial

> BFM_10@bayesFactor$bf [1] 5.921938

Note that the last number that is returned is the log of the
Bayes factor, such that exponentiating it provides the Bayes
factor (i.e., exp 5.921938 = 373.134).

A.3 Independent multinomial sampling scheme

Below is the Bayes factor R code and the resulting output
for the analysis of the data shown in the left panel of Fig. 4
(dolls and race):

> data=matrix(c(62,27,11,60),c(2,2))

>

> BFI_10 <- contingencyTableBF(data,

sampleType = "indepMulti",

fixedMargin = "cols",

priorConcentration = 1)

> BFI_10

Bayes factor analysis

--------------

[1] Non-indep. (a=1) : 10029550038

Against denominator:

Null, independence, a = 1

---

Bayes factor type: BFcontingencyTable,

independent multinomial

> BFI_10@bayesFactor$bf

[1] 23.03

Here we also provide the Bayes factor R code and the
resulting output for the analysis of the data shown in Table 1
(arousal and attraction):
> data=matrix(c(9,2,9,14),c(2,2))

> BF <- contingencyTableBF(data,

sampleType = "indepMulti",

fixedMargin = "rows",

priorConcentration = 1)

> BF

Bayes factor analysis

--------------

[1] Non-indep. (a=1) : 5.313538

Against denominator:

Null, independence, a = 1

---

Bayes factor type: BFcontingencyTable,

independent multinomial

> BF@bayesFactor$bf

[1] 1.670258

A.4 Hypergeometric sampling scheme

Below is the Bayes factor R code and the resulting out-
put for the analysis of the data shown in Table 5 (sibling
acceptance):

> data=matrix(c(9,6,6,9),c(2,2))

> BFH_10 <- contingencyTableBF(data,

sampleType = "hypergeom",

priorConcentration = 1)

> BFH_10

Bayes factor analysis

--------------

[1] Non-indep. (a=1) : 0.3870194

Against denominator:

Null, independence, a = 1

---
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Bayes factor type: BFcontingencyTable,

hypergeometric

> BFH_10@bayesFactor$bf

[1] -0.9492805

This Bayes factor is implemented for 2 × 2 contingency
table only.

Appendix B: JASP

The GD74 Bayes factors are also available in JASP, a free
and open-source statistical software package that will be
familiar to users of SPSS (jasp-stats.org). In JASP, the user
drags and drops variables to input boxes, and subsequently
selects analysis options through mouse clicks. A screenshot
of JASP is provided in Fig. 5.

Appendix C: JAGS Code

The JAGS code below implements the joint multinomial
sampling model and computes the log odds ratio.
# Multinomial Sampling model

model{

for ( i in 1:rc) {

alpha[i ]<- 1

}

theta[1:rc] ˜ ddirch(alpha[1:rc])

y[1:rc] ˜ dmulti(theta[1:rc],n)

log_OR <- log((theta[1]*theta[4])/

(theta[2]*theta[3]))

}

The R code below runs the JAGS model and plots the
posterior distribution of the log odds ratio.

rm(list=ls())

y <- c(162,110,196,247)

n=sum(y)

rc=4 data <-list("y", "n","rc") # to be

passed on to JAGS

myinits <- list( list(alpha=c(1,1,1,1)))

# parameters to be monitored:

parameters <- c("theta", "log_OR")

samples <- jags(data, inits=NULL,

parameters,

model.file ="Multinomial_Model.txt",

n.chains=1, n.iter=20000,

n.burnin=1, n.thin=1, DIC=T)

samples.mcmc <- as.mcmc(samples)

Fig. 5 A screenshot of JASP for the analysis of a contingency table
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densityplot(samples.mcmc)

logOR<- samples$BUGSoutput$sims.list$log_OR

par(cex.main = 1.5,

mar = c(5, 6, 4, 5) + 0.1,

mgp = c(3.5, 1, 0), cex.lab = 1.5,

font.lab = 2, cex.axis = 1.3,

bty = "n", las=1)

digitsize<-1.2

z<-density(logOR)

x.mode <- z$x[i.mode <- which.max(z$y)]

setEPS()

postscript("Plot_Jobs.eps")

y.mode <- z$y[i.mode]

lim<-max(z$x)-min(z$x)

ylim0 <- c(0,1.1*y.mode )

xlow<-unname(stats::quantile(logOR,

p =0.0001))

xhigh<-unname(stats::quantile(logOR,

p =0.9999))

xticks <- pretty(c(xlow,xhigh), min.n= 3)

plot(z$x,z$y,type="l", lty=1, lwd=2,

xlim=range(xticks), ylim=ylim0,

axes=F,

main=" ", xlab="Log(Odds ratio) ",

ylab="Posterior Density")

axis(1, line=0.3, at=xticks, lab=xticks)

axis(2)

# plot 95% confidence interval

x0 <- quantile(logOR,p=c(.025,.975))[[1]]

x1 <- quantile(logOR,p=c(.025,.975))[[2]]

arrows(x0, 1.07*y.mode, x1, 1.07*y.mode,

length = 0.05, angle = 90, code = 3, lwd=2)

text(1, 1.5, expression(’BF’[10] == 713.8),

cex=digitsize)

text(0.6, 2.85, "95%" ,cex=digitsize)

text(x0, 2.55, round(x0, digits = 2)

,cex=digitsize)

text(x1, 2.55, round(x1, digits = 2)

,cex=digitsize)

#quartz.save("Plot_Jobs.eps", type="pdf")

dev.off()
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