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SUMMARY

Identification of human leukocyte antigen (HLA)-bound peptides by liquid chromatography-

tandem mass spectrometry (LC-MS/MS) is poised to provide a deep understanding of rules 

underlying antigen presentation. However, a key obstacle is the ambiguity that arises from the co-

expression of multiple HLA alleles. Here, we have implemented a scalable mono-allelic strategy 
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for profiling the HLA peptidome. By using cell lines expressing a single HLA allele, optimizing 

immunopurifications, and developing an application-specific spectral search algorithm, we 

identified thousands of peptides bound to 16 different HLA class I alleles. These data enabled the 

discovery of subdominant binding motifs and an integrative analysis quantifying the contribution 

of factors critical to epitope presentation, such as protein cleavage and gene expression. We trained 

neural-network prediction algorithms with our large dataset (>24,000 peptides) and outperformed 

algorithms trained on data-sets of peptides with measured affinities. We thus demonstrate a 

strategy for systematically learning the rules of endogenous antigen presentation.

In Brief

HLA class I binding prediction has traditionally been based on biochemical binding experiments. 

Abelin and colleagues present an LC-MS/MS-based workflow and analytical framework that 

greatly accelerates gains in prediction performance. Key advances include the discovery of 

sequence motifs and improved quantification of the roles of gene expression and proteasomal 

processing.

INTRODUCTION

Human leukocyte antigen (HLA) class I glycoproteins (HLA-A, -B, and -C) are expressed 

on the surface of almost all nucleated cells in the human body and are required for 

presentation of short peptides for detection by T cell receptors. The HLA genes are the most 

polymorphic genes across the human population; more than 10,000 HLA class I allele 

variants have been identified to date (Robinson et al., 2015). Each HLA allele is estimated to 

bind and present ~1,000–10,000 unique peptides to T cells (Hunt et al., 1992; Rammensee et 

al., 1995; Vita et al., 2015), less than 0.1% of the estimated 10 million potential 9-mer 

peptides from human protein-coding genes. Given such diversity in HLA binding, accurate 

prediction of whether a peptide is likely to bind to a specific HLA allele is highly 

challenging.
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Rules for peptide binding to HLA molecules have been studied extensively for a subset of 

HLA alleles (Vita et al., 2015) and have been encoded in modern advanced neural-network-

based algorithms (Hoof et al., 2009; Lundegaard et al., 2008). However, the algorithms in 

common use today (Trolle et al., 2015) are trained almost exclusively on measurements of 

biochemical affinity of synthetic peptides. This imparts several disadvantages. First, the 

throughput of these methods is limited because only a very small percentage of peptides are 

expected to bind, and therefore researchers must synthesize and experimentally assess 

potentially 1,000s of negative examples to identify 10s of strong-binding positive examples. 

Biased sampling can improve these odds but carries the risk of skewing the results or 

missing subdominant motifs. Meanwhile, other unintentional forms of bias, such as pre-

existing notions of the length distribution or limitations on peptide synthesis and solubility, 

are difficult to avoid. Most importantly, these approaches do not necessarily consider the 

endogenous processing and transport of peptides prior to HLA binding. Mass spectrometry 

(MS)-based approaches yield a large and relatively unbiased portrait of the population of 

processed and presented peptides and should theoretically address most of these problems. 

However, historically liquid chromatography-tandem mass spectrometry (LC-MS/MS) 

methods have required large cellular input, which limits throughput, and the multi-allelic 

nature of the data complicates productive motif learning.

In this study, we developed a biochemical and computational pipeline for LC-MS/MS 

analysis of endogenously processed HLA-associated peptides that requires less input 

material and provides single-allele resolution. Currently, the only single-allele approach 

available is based on the isolation of soluble HLA from cell lines grown in bioreactors, a 

setup that is not straightforward to implement and requires several orders of magnitude more 

input material (Hawkins et al., 2008; Trolle et al., 2016). Our approach, which isolates 

peptides from cells engineered to express a single HLA allele, provides a scalable means to 

improve the predictive power of algorithms for class I HLA-presented peptides and avoid in 

silico allelic deconvolution (Bassani-Stern-berg and Gfeller, 2016). Meanwhile, it leverages 

advances in instrumentation for rapid collection of high-resolution data and database search 

strategies that dynamically learn and leverage HLA peptide-binding motifs. The 

combination of direct antigen sequencing by LC-MS/MS and comprehensive bioinformatic 

analyses enabled the development of a predictor that outperformed current algorithms that 

are trained on peptide affinity data.

RESULTS

Workflow Uncovers Large Mono-allelic Peptide Repertoires with Minimal MS Bias

HLA-bound peptides can be directly identified via immunopurification and LC-MS/MS. We 

processed class I HLA-deficient cell lines (30 million–90 million B721.221-derived cells), 

each stably transduced to express one of 16 different class I HLA alleles (Figures 1A and 

1B). High-quality tandem mass spectra (MS/MS) were subjected to iterative database 

searches, with stringent quality criteria (Experimental Procedures). The first round used no-

enzyme specificity and no-variable peptide modifications, and the second round applied a 

database digestion specificity that leveraged the peptide-binding motif of individual HLA 

alleles determined from the first-round results and allowed peptide modifications 
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(Experimental Procedures, Figure 1C). The second round of search typically increased 

identifications by an average of 14% (5%–40%) while maintaining a stringent 1% FDR 

cutoff (Figure S1A; Table S1).

A total of 223 non-specifically bound peptides (negative controls) were identified by 

immunopurification from untransduced B721.221 cells or beads lacking antibody and 

represented ~3% of all peptide identifications (Table S1A). After filtering for these non-

specific binders, we identified between 900 and 3550 unique peptides by LC-MS/MS for 

each HLA allele (median 1,505) (Figure 1D). Variation in surface presentation of HLA 

molecules on B721.221 cells, as compared to primary lymphocytes, appeared to explain 

most of the variation in observed peptide counts (Figure S1B). For common alleles 

(population frequency >1%), 74% percent of peptides were not reported in the Immune 

Epitope Database (IEDB); for rare alleles, nearly 100% were unreported (Figure S1C).

A high degree of peptide overlap was observed between biological replicates (~70%) and a 

previously reported B cell HLA-peptide dataset (Figure S1D) (Bassani-Sternberg et al., 

2015). A median of 92% of presented peptides were unmodified, and 5% were modified, of 

which 3% were phosphorylated, and the remainder were consistent with oxidation, 

deamidation, and other handling artifacts (Figure S1E) (Berg et al., 2006). Comparisons 

among MS peptides and allele-matched synthetic peptides that were assigned as binders by 

IEDB (measured affinity < 500 nM; Figures 1E and 1F; Experimental Procedures) revealed 

only negligible peptide sequence biases related to our experimental procedures. The 

predicted MS observability of the HLA peptides and frequencies of individual amino acids 

between MS and IEDB peptides were highly similar, aside from underrepresentation of 

cysteine (Figures 1E and 1F). Free cysteine, which interferes with precursor fragmentation 

during LC-MS/MS, is underrepresented in other MS-based HLA-peptide datasets (Bassani-

Sternberg et al., 2015; Trolle et al., 2016) (Figure S1F). We recovered cysteine-containing 

peptides when a third round of database search accounted for cysteinylation (Table S1C).

Mono-allelic MS-Derived Repertoires Reveal Motifs Underrepresented in IEDB

HLA-binding affinities of peptides sequenced with our LC-MS/ MS platform were predicted 

with NetMHCpan (Figure 2A) and assessed in terms of their length distributions (Figure 

2B). For nearly every allele, most MS peptides scored <500 nM; however, most alleles also 

exhibited populations of peptides with poor predicted binding scores, suggesting that our 

data included motifs underrepresented in the NetMHCpan training set. Indeed, comparison 

of MS and IEDB peptides showed significant differences in amino acid frequencies at 

specific positions. For instance, enrichments of isoleucine, valine, and leucine (p < 1 × 10−5, 

chi-square test) were often observed at positions 5–7, suggesting the presence of secondary 

anchors (Figure 2C and Figures S2A–S2C). This was true for both sparsely studied alleles, 

such as HLA-A*02:07, and well-studied alleles, such as HLA-A*68:02 and HLA-B*57:01. 

We also noted specific alleles with length preferences not captured in IEDB, such as HLA-

A*31:01 and HLA-B*51:01, which bind high proportions of 11-mers and 8-mers, 

respectively (Figure 2B).

To visualize the dominant and subdominant motifs within our data and among IEDB 

“binders” (measured affinity < 500 nM), we defined an entropy-weighted peptide distance 
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and plotted the peptides in two-dimensional space such that “similar” peptides would be 

clustered closely and dissimilar peptides distantly (Experimental Procedures, Figure 2D and 

Figure S2D). In this manner, we discovered patterns not immediately evident by 

conventional sequence logo visualizations. Notably, MS-defined peptides clustered more 

closely to each other than to IEDB peptides themselves (Figure S2E), which suggests that 

MS recovers stronger binding motifs compared to a greater preponderance of weak binding 

peptides in the IEDB binder sets. Moreover, we found multiple peptide clusters that were 

highly enriched in MS relative to IEDB (Figures S2F and S2G), reflecting unique 

information in the MS datasets. MS technology-related biases did not appear to underlie 

these patterns: a similar analysis focused on only the subset of peptides from MS or IEDB 

with physico-chemical properties favorable for MS detection revealed similar distances and 

clustering patterns (Figures S2H and S2I) (Eyers et al., 2011; Fusaro et al., 2009; Muntel et 

al., 2015; Searle et al., 2015).

To experimentally validate these motifs, we selected sequences from clusters that were 

enriched within the MS datasets but that scored only within the bottom 10% when MS hits 

were evaluated by NetMHCpan 2.8 (Experimental Procedures). By competitive peptide-

binding assays, 32 of 33 peptides were confirmed to be strong binders (median IC50 < 14 

nM), even though only 14 of 33 were predicted as binders by NetMHCpan 2.8 (Figures 2D 

and 2E; Figure S2J).

Peptide Sequence Contexts Show a Distinct and Conserved Proteasomal Processing 
Signature

Because HLA-bound peptides have successfully undergone all processing steps—including 

proteasomal cleavage (Nielsen et al., 2005; Toes et al., 2001), transporter for antigen 

presentation (TAP) transport (Burgevin et al., 2008), and endoplasmic reticulum amino 

peptidase (ERAP)-mediated trimming (Evnouchidou et al., 2014; Saveanu et al., 2005; York 

et al., 2002)—prior to presentation, eluted peptide datasets are ideal for understanding how 

protein sequence context contributes to peptide processing and presentation. Nevertheless, 

the state of the art in cleavage prediction, NetChop (Keşmir et al., 2002; Nielsen et al., 

2005), relies on a relatively small dataset of a few thousand HLA-bound peptides and 

focuses primarily on C-terminal cleavage. We sought to refine our understanding of 

processing rules by analyzing our large dataset of 24,000 allele-specific MS peptides and 

finding motifs in the upstream and downstream flanking sequences, as well as within the 

HLA-binding peptide.

We first focused on the sequence context around each HLA peptide within its source protein, 

which is not confounded by HLA binding (Figure 3A). Upstream of the peptide, at the first 

position (“U1”), arginine and lysine were highly enriched (relative to peptide decoys, 

consisting of random proteome 9-mers matched for their first two and last two amino acids), 

indicating a strong tryptic-like specificity at the N terminus (Figure 3A). Downstream of the 

peptide, arginine and lysine were also enriched in the first position (“D1”) (which suggests 

that peptides are trimmed at the C terminus after a tryptic-like cleavage that occurs after 

these basic residues), and acidic residues were depleted in this position. In addition, there 

was an enrichment of alanine at the U1 and D1 positions. A strong depletion of proline at 
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both termini was observed to extend 3–5 residues upstream and downstream, which may 

relate to pro-line’s conformational rigidity. There was a very strong preference for peptides 

arising from the exact C terminus (labeled with a dash in Figure 3A) of their host protein, 

where only a single cleavage event is required. By comparing amino acid frequencies 

upstream, within, and downstream of each peptide, we also observed depletion of 

“cleavable” amino acids (K, R, and A) and enrichment of “non-cleavable” proline within 

peptides (Figure 3B). Thus, avoidance of internal cleavage appears to be a key feature of 

HLA ligands. Finally, we considered whether protein sequence features, such as alpha 

helices and beta strands, might influence processing potential (Figure S3A). LC-MS/MS 

peptides were twice as likely as gene-matched decoys to arise from signal peptide 

sequences; other features were significant but did not show an effect size greater than ±15%.

To explore whether the processing signature was likely to be generalizable, we analyzed the 

gene expression of the protea-some and the immunoproteasome; both were expressed in 

B721.221 B cells at proportions comparable to those in blood and epithelial cancers 

included in the cancer genome atlas (TCGA) (Figure S3B). When we examined the HLA-

bound peptide repertoires previously recovered from cells of other lineages, including breast 

and colon cancer cells (Bassani-Sternberg et al., 2015), fibroblasts (Bassani-Sternberg et al., 

2015), HeLa cells (Trolle et al., 2016), and peripheral blood mononuclear cells (Caron et al., 

2015) (Figures 3C–3G), all the key features observed for B721.221 cells were likewise 

consistently observed for these other cell types. Applying this same analytic approach to 

reported class II peptides isolated from dendritic cells (Mommen et al., 2016) (MUTZ3 cell 

line), we observed a starkly different signature exhibiting preference for hydrophobic 

residues in the D1 position and a lack of the previously observed associations for lysine, 

arginine, and alanine (Figure 3H). Finally, we note that the HLA class I signature that we 

derived only modestly resembled that obtained by comparison of peptides with high versus 

low NetChop scores. Our analyses thus identify a common HLA class I cleavage signature 

that dramatically differs from that predicted by a widely used tool.

Although HLA-class-I-bound peptides are typically thought to be cleanly “tucked” within 

the HLA class I binding groove, a recent crystal structure (McMurtrey et al., 2016) and the 

detection of nested peptide sets within our dataset (8% of total peptides; Table S3) motivated 

us to explore whether some peptides might be bound with overhang. We hypothesized that if 

long iso-forms of nested sets overhang, then the additional amino acids need not provide 

new anchors. On the other hand, if both short and long isoforms bind in tucked 

conformation, then extensions force the binding register to shift, and only certain amino acid 

additions can be tolerated. We observed that long isoforms indeed gain suitable new anchor 

sites (providing binding potential on par with the short isoforms); random amino acid 

extensions of short isoforms have uniformly worse binding potential (Figure 3J). This 

suggests that most peptides bind in the canonical tucked conformation.

Gene Expression and Binding Affinity Demonstrate a Simple, Multiplicative Relationship

In addition to the derivation of peptide binding and cleavage rules, as shown above, we also 

systematically evaluated the relative roles of gene expression, source-protein localization, 

and other source-protein characteristics to peptide presentation.
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First, we evaluated the impact of gene expression. Peptide presentation is statistically 

associated with expression (RNA and protein) (Bassani-Sternberg et al., 2015; Juncker et al., 

2009); however, there remains a lack of a standard approach for weighing expression against 

affinity during epitope prioritization. As a result, expression is routinely ignored in epitope 

selection or treated as a binary variable (Linnemann et al., 2015). To clarify this relationship, 

we binned each of our MS peptides by source transcript(s) RNA-Seq expression and 

NetMHCpan-predicted affinity. We also binned random 9-mers from the genome, enabling 

the calculation of relative enrichment ratios (Figure 4A). This revealed a multiplicative 

relationship between expression and affinity, in which a 10-fold increase in expression could 

approximately compensate for a 90% decrease in binding potential. To rule out the 

possibility that this finding might be an artifact of MS detection limits, we compared the 

peptides with the highest versus lowest MS signal intensity and compared them in terms of 

RNA-Seq expression and predicted affinity. Low-intensity binders had lower expression and 
weaker affinity, showing that MS detection is not simply reflecting underlying protein 

abundance but also reflects relative binding strength (Figure 4B). Although a simple kinetic 

model of peptide on- and off-rates may have predicted this, limitations in expression data 

quality and depth and the use of multi-allelic data (for which prediction of affinity is more 

difficult) have previously obscured this finding. The presence of multiple upstream open 

reading frames in the 5′ UTR of a transcript is associated with reduced presentation 

potential for its associated peptides (Figure 4C), suggesting that accurate measurements of 

translational efficiencies may enhance epitope selection further.

Source-Protein Localization and Sequence Features Show Significant, but Modest, 
Predictive Value

To determine whether the HLA class I processing pathway has cellular localization biases, 

we investigated whether there was enrichment in protein localization in our MS peptides 

relative to random 9-mer decoys from protein-coding genes (Figure 4D, left) and relative to 

expression-matched 9-mer decoys (Figure 4D, right). Without controlling for expression, we 

found that the differences were dramatic: secreted proteins showed an unexpected 

enrichment. However, the expression-corrected analysis eliminated most of these differences 

(aside from a persistent enrichment of peptides from proteins associated with the late 

endosome). Lack of expression correction may help to explain why previous analyses of this 

question have reached inconsistent conclusions (Bassani-Sternberg et al., 2015; Rock et al., 

2014).

Studies of peptide presentation kinetics have suggested that specialized pathways 

specifically target aborted translation products and misfolded proteins (Bourdetsky et al., 

2014; Yew-dell, 2011). Consistent with recent analyses (Bourdetsky et al., 2014; Kim et al., 

2013), we did not see an enrichment of peptides at the N-termini of their source proteins 

(Figure 4E), which would be expected if a meaningful fraction of peptides arose from 

aborted translation products. We also considered whether peptides from proteins with a high 

instability index (Guruprasad et al., 1990) or a high fraction of intrinsically disordered 

sequence (Experimental Procedures) were enriched in our MS data (Figures 4F and 4G) 

because we supposed that these would be more likely to trigger an unfolded protein 

Abelin et al. Page 7

Immunity. Author manuscript; available in PMC 2018 February 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



response. The opposite trend was observed, suggesting either our measures of “foldability” 

were insufficient or that other unobserved variables potentially confound the signal.

Finally, we considered whether pathways of normal protein turnover were tied to 

presentation likelihood. The count of ubiquitination sites (previously observed in KG-1, 

Jurkat, or MM1S cells (Krönke et al., 2015; Krönke et al., 2014; Udeshi et al., 2012, 2013), 

was positively associated with HLA-peptide presentation, consistent with the known role for 

ubiquitin in delivering proteins to the proteasome (Figure 4H). Additionally, we queried a 

collection of 200 IP-MS/MS experiments, each profiling the physical interaction partners of 

a protein involved in deubiquitination, autophagy, or ER-associated degradation (Behrends 

et al., 2010; Christianson et al., 2011; Sowa et al., 2009) (Figure 4I). Most of these gene sets 

were positively enriched in our data. Several outliers include PIK3C3, ATG12, and OTUD4, 

whose interaction partners were most strongly enriched. Meanwhile, the interaction partners 

of the autophago-some cargo protein SQSTM1 were most depleted. Collectively, these 

analyses may help to point to turnover pathways with privileged access to the HLA 

presentation pathway.

Multivariate Models Quantify the Predictive Contributions of Distinct Processing Steps

Given the consistent patterns for cleavability and expression on presented peptide sequences, 

we sought to determine whether integrating multiple variables into a single predictor would 

improve epitope selection accuracy. To measure model performance, we assessed our ability 

to discern MS peptides among a 999-fold excess of decoy peptides; the top-scoring 0.1% of 

peptides were selected as positives. Because there are approximately 10 million 9-mers in 

the human proteome, and each allele presents approximately 10,000 of these, the 1:1000 

ratio closely mimics the reality of the epitope selection problem. This positive predictive 

value (PPV) metric, which measures the percentage of predicted positives that were indeed 

observed in the MS, contrasts with the standard AUC value (area under receiver operator 

characteristic curve), which integrates performance over all possible target:decoy ratios and 

thus considers unrealistic scenarios in the final score (Experimental Procedures and Figure 

S4).

Averaging across 16 alleles, an affinity-only model (per NetMHCpan, model “A”) achieved 

a PPV of 28% (Figure 5A; see Table S4A for individual allele results). A stability-only 

model (NetMHCPanStab (Jørgensen et al., 2014), model “S”) performed nearly as well; 

however, joint prediction (model “AS”) showed minor synergism. On the other hand, adding 

RNA-Seq or iBAQ-based (Ishihama et al., 2005) protein expression (models “ASR” and 

“ASP”) improved PPV dramatically—to 39% and 47%, respectively. Adding cleavability 

prediction (per a de novo predictor trained on other MS data; Supplemental Experimental 

Procedures) provided a 7.9% boost (prediction with NetChop yields 3.1%). The incremental 

benefit of localization was less than 1%; other putative processing variables (stability index, 

disordered sequence content, count of ubiquitin sites, and sequence features such as alpha 

helices and beta strands) likewise showed incremental improvements less than 1%.

By exhaustively testing all possible predictor combinations (Table S4A), we found the order 

of variable addition that added the most predictive value earliest; we tracked the incremental 

PPV improvement provided by each variable and assigned this as the variable’s “explanatory 
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contribution” (Figure 5B). Affinity and expression dominate the analysis, although notably, 

iBAQ-based protein expression provided negligible contribution beyond RNA-Seq. For the 

45% of MS peptides that were missed in the full model, it was not known how much this 

related to the suboptimal quality of the affinity and cleavage predictions, to unknown 

variables, or to stochasticity in the MS detection. The two genes with the most false negative 

calls per unit length were ubiquitin B and C, which suggests that improved understanding of 

protein turnover dynamics may be a key missing component.

De Novo Predictors Based on Mono-allelic MS Data Perform Better Than Affinity-Trained 
Predictors

To define whether these collective findings could be used to develop improved epitope-

presentation predictors, we developed two single-layer artificial networks for each of the 16 

alleles (Figure 5C). The first, MSIntrinsic, was trained exclusively on our MS data and used 

peptide-intrinsic features only; the second, MSIntrinsicEC, additionally accounted for RNA-

Seq expression and the cleavability of the protein sequence context (Experimental 

Procedures).

We evaluated performance of these models on internal and external datasets by using PPV 

and AUC. We found that MSIntrinsic and MSIntrinsicEC outperformed both NetMHC 4.0 

and NetMHCpan 2.8 in a 5-fold cross validation by an average PPV of 20 and 30 percentage 

points, respectively (Table S4B). Accordingly, despite the fact that all models achieved an 

average AUC > 0.98, MSIntrinsic and MSIntrinsicEC consistently reached higher true-

positive rates at minimal false-positive rates; we note that performance plateaued at ~500 

training peptides (Figures S5A–S5C). Most importantly, we predicted which peptides would 

be identified in the LC-MS/MS data of other groups (Bassani-Sternberg et al., 2015; Trolle 

et al., 2016), which comprised observations from six alleles and seven cell lines. In 

comparison to that of NetMHC 4.0 and NetMHCpan 2.8, the positive predictive value for 

MSIntrinsic was 1.4-fold better on average and worse than NetMHC in only one instance; 

MSIntrinsicEC was 1.9-fold better on average (Figure 5D). MS bias did not appear to 

account for these changes: NetMHC-based predictors that additionally accounted for MS 

observability (ESP) score and cysteine count did not show appreciable improvement (Table 

S4F). Thus, we expect that these approaches could roughly double the number of correct 

epitope identifications in a vaccine. In addition, we used our algorithms to predict 

immunogenic HIV epitopes (Llano et al., 2013). Although the dataset is of modest size, the 

rank position of the top scoring HIV epitope was higher than both NetMHC predictors or 

equal to one of them for 9/12 alleles overlapping with our dataset.

Because our neural-network approach is closely modeled after NetMHC and because we did 

not outperform NetMHC when we trained and evaluated on IEDB peptides (Figure S5D), 

our advances are likely to reflect the underlying high quality of our MS data and conceptual 

advances in data integration, rather than changes in neural-network design. Our results thus 

demonstrate that large MS datasets of endogenous HLA-binding peptides can greatly 

improve our understanding of antigen-processing rules and the power of algorithms to 

predict which peptides will be presented by specific HLA alleles.
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DISCUSSION

The majority of LC-MS/MS studies of the HLA peptidome have used cells expressing 

multiple HLA molecules, which requires peptides to be assigned to one of up to six class I 

alleles through the use of pre-existing bioinformatics predictors, or “deconvolution” 

(Bassani-Sternberg and Gfeller, 2016). Thus, peptides that do not closely match known 

motifs cannot confidently be reported as binders to a given HLA allele. By contrast, we used 

a rapid approach to generate a high-quality LC-MS/MS dataset of >24,000 endogenous 

peptides whose assignment to specific HLA alleles was unambiguous. Because we knew the 

allele assignment a priori, we greatly enhanced our analyses depth. We discovered allele-

specific binding motifs and proteasomal cleavage rules and discerned the effects of transcript 

abundance on presentation. By training models on these data, we more effectively predicted 

presentation of endogenous peptides than we did with models trained on IEDB binding 

measurement.

Given the availability of our large dataset, we sought to quantify in a systematic and 

unbiased fashion the role of different factors in predicting HLA-presented peptides. Prior 

proteomic studies have inconsistently discerned associations between protein abundance and 

HLA-peptide presentation (Bassani-Sternberg et al., 2015; Hickman et al., 2004; Milner et 

al., 2006). Although Bassani-Sternberg et al. provide convincing evidence of positive 

association between HLA-peptide presentation and source-protein expression, their analysis 

was limited by reliance on MS-based protein quantification that had a high amount of 

missing observations. Therefore, we utilized RNA sequencing, a genome-wide 

characterization with a very low limit of detection (< 1 PPM) and with far greater 

accessibility for expression analysis than comparable proteomic approaches. We conclude 

that gene expression is a highly predictive variable and is more productively captured with 

RNA-Seq than with MS-based proteomic quantitation. Moreover, we have presented an 

analytic framework that enables the joint use of expression and affinity as variables to select 

epitopes in a principled manner, which is highly implementable in routine epitope-selection 

efforts in clinical settings.

The contribution of cleavability in our analyses was large but not dominant, suggesting that 

proteasomes and other endogenous peptidases have a promiscuous specificity or are difficult 

to predict (Toes et al., 2001). Cellular localization played a weak role in presentation, 

indicating that HLA class I peptides are derived from endogenous proteins throughout the 

cell. The additional impact of stability prediction is modest, and affinity-based NetMHCpan 

outperforms stability-based NetMHCStab in a direct head-to-head. These results suggest that 

motifs learned from stability assays are not substantially different. Finally, we developed a 

neural network, MSIntrinsicEC, that integrates these different variables and improves 

prediction performance of endogenous peptides relative to neural networks trained on non-

MS datasets (Andreatta and Nielsen, 2016; Hoof et al., 2009; Lundegaard et al., 2008). An 

open question is how additional data types (e.g., protein translation rates and modes of 

protein turnover), improved data quality, a larger collection of validated non-binding 

peptides, and more powerful machine-learning-based predictions would boost our ability to 

predict antigen presentation and immunological responses.

Abelin et al. Page 10

Immunity. Author manuscript; available in PMC 2018 February 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Our methodologies provide a path toward addressing challenges relating to HLA-peptide 

presentation. First, the application of our single HLA workflows to class II heterodimers 

should improve class II prediction because confident, allele-specific peptide-binding 

assignments can be made. Having a single-allele system is especially important for class II 

because the length distribution obscures the binding register, making deconvolution 

approaches more challenging. Second, a rapid pipeline should enable identification of HLA-

associated peptides from patient-derived cell lines or primary tumor samples, providing a 

unique opportunity for more personalized therapies against cancer. Third, recent 

observations of CD8+ T cells targeting mutated antigens in tumors (Schumacher and 

Schreiber, 2015) have inspired cancer immunotherapy trials aimed at inducing personalized 

T cells responses targeting an individual’s tumor. More effective prediction of HLA-

associated peptides from a collection of candidate antigens should contribute to the 

improvement of personalized cancer vaccines.

Overall, we expect these advances in unbiased identification and prediction of endogenous 

HLA-associated peptides to impact all areas of immunology, especially the identification of 

antigens driving autoimmunity and the design of more effective vaccines for infections and 

cancer.

EXPERIMENTAL PROCEDURES

Cell Culture and HLA-Peptide Immunopurification

We tested mono-allelic B cells generated by transduction of B721.221 cells with a retroviral 

vector coding a single class I HLA allele as described previously (Reche et al., 2006) (cells 

expressing HLA-A*02:01, -A*24:02, and -B*44:03 were purchased from the Fred 

Hutchinson Research Cell Bank, University of Washington; cells expressing HLA-A*03:01 

were a gift from Dr. Marcus Altfeld and Dr. Wilfredo F. Garcia-Beltran, Ragon Institute; 

others were a gift from Dr. E.L. Reinherz, Dana Farber Cancer Institute). Cell lines were 

confirmed by standard molecular typing (Brigham and Women’s Hospital Tissue Typing 

Laboratory). HLA-peptide immunopurifcation is described in the Supplemental 

Experimental Procedures.

HLA-Peptide Sequencing by Tandem Mass Spectrometry

All nanoLC-ESI-MS/MS analyses employed the same LC separation conditions, instrument 

parameters, and data analytics described in the Supplemental Experimental Procedures. The 

original mass spectra may be downloaded from MassIVE (http://massive.ucsd.edu) under 

the identifier MassIVE: MSV000080527. The data are directly accessible via ftp://

massive.ucsd.edu/MSV000080527.

Sequence Properties of MS-Identified Peptides Compared to IEDB

A curated set of previously identified class I HLA-bound peptides was downloaded from the 

Immune Epitope Database (IEDB) at http://www.iedb.org/ (accessed on 10/26/2015) (Vita et 

al., 2015). For each allele, IEDB peptides with a measured affinity <500 nM were compared 

to MS peptides in terms of their length and positional amino acid frequencies. In addition, a 

metric was defined for the pairwise “distance” between 9-mers (a Hamming distance 
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calculated with an amino acid substitution matrix [Kim et al., 2009] and inversely weighted 

according to positional entropy) and used for clustering MS and IEDB peptides in a two-

dimensional representation. A machine-learning approach (Supplemental Experimental 

Procedures) identified peptides with motifs favored in the MS but that were poor-scoring 

according to NetMHCpan 2.8; the MHC-binding affinities for these peptides were 

determined by competitive binding per gel filtration protocol (Sidney et al., 2001).

Peptide Processing Analyses

For each MS hit, the upstream ten amino acids and downstream ten amino acids were 

determined. Sequence context was likewise determined for decoy peptides (100 per hit; 

selected randomly from the proteome and matched according to their first two and last two 

amino acids). Relative amino acid frequencies were determined at each position upstream 

and downstream of hits and decoys. Additional previously published MS datasets were 

analyzed in the same manner. For comparison, peptides with high and low NetChop scores 

(top 25% and bottom 25% of 1 million randomly selected sites in the genome) were 

compared, and the motif most favored by NetChop was derived.

Relationship between Expression and Affinity

RNA was isolated from B721.221 cells expressing HLA-A*29:02, B*51:01, B*54:01, and 

B*57:01 (RNeasy mini kit, QIAGEN), processed to cDNA (Nextera XT kit; Smart-seq2 

protocol), sequenced (HiSeq2500, Rapid Run mode; 50 bp paired-end), and aligned 

(bowtie2-2.2.1 (Langmead and Salzberg, 2012); UCSC hg19 annotation). We averaged 

transcript expression (RSEM-1.2.19 [Li and Dewey, 2011]; GEO: GSE93315) across the 

four cell lines and made adjustments by dropping non-coding transcripts and rescaling TPM 

values to sum to one million. We determined expression of each peptide source protein by 

summing all transcripts containing the peptide.

Impact of Processing Pathways

MS peptides were compared to decoys (ten decoys per MS peptide; each from a different 

gene; matched per transcript expression) in terms of various features potentially related to 

peptide processing: UNIPROT localization (www.uniprot.org), distance from protein N 

terminus, source protein stability index (Guruprasad et al., 1990), intrinsically disordered 

sequence content (http://d2p2.pro) (Oates et al., 2013), count of known ubiquitination sites 

(Eichmann et al., 2014; Krönke et al., 2015; Udeshi et al., 2012), and physical interaction 

with known protein turnover regulators (Behrends et al., 2010).

Development of New Epitope-Selection Algorithms

For each allele, we trained neural-network classifiers (one hidden layer with 50 units) (by 

using Theano (Theano Development Team, 2016); 5-fold cross-validation) to differentiate 

MS 9-mers from random decoy 9-mers by using different input feature schemes: dummy 

encoding, BLOSUM62, PMBEC (Kim et al., 2009), biochemical properties (Bremel and 

Homan, 2010), and peptide-level features (Osorio et al., 2014); we averaged the results of 

these models to obtain a single prediction (called MSIntrinsic). We made a second prediction 

(MSIntrinsicEC) by adding expression and MS-trained cleavability. We validated 
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performance on external data by measuring PPV (fraction of true MS peptides among the 

top-scoring 0.1%, where decoys are present at 999:1). For multi-allelic datasets, the 

evaluation excluded any MS peptides that obviously belonged to an HLA-A or HLA-B allele 

other than the one in question (e.g., when predicting for A01:01 for a cell line with genotype 

A01:01/A02:01/B35:01/B44:02, we excluded MS-observed peptides with NetMHCPan 2.8 

scores worse than 1,000 nM for A01:01 and better than 150 nM for A02:01, B35:01, or 

B44:02).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• 24,000 HLA class I peptides were identified through a scalable MS-based 

pipeline.

• Mono-allelic data revealed binding motifs that were validated biochemically.

• Comprehensive analyses provide an updated portrait of antigen processing 

rules.

• Neural networks were trained for 16 alleles and outperform standard by 2-

fold.
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Figure 1. An Efficient Sample-Processing and -Analysis Pipeline for HLA Peptide Sequencing
(A) Overview of the standard multi-allele workflow. Cells (~500 million [M]) expressing 

multiple class I HLA alleles are lysed, and HLA-associated peptides are immunopurified 

with a pan-anti-HLA antibody. The complex mixture of HLA peptides is sequenced via LC-

MS/MS, and the allele-binding assignments are inferred from previous knowledge.

(B) In our single-allele approach, B721.221 cells (~50 M), are transduced to express only 

one HLA allele. Immunopurified peptides are analyzed by LC-MS/MS and sequenced via an 

HLA-allele-specific database search.

(C) Schema of the HLA-specific database search strategy.

(D) HLA-class-I-associated peptide identifications from 16 single-HLA-expressing cell 

lines. Total numbers of unmodified (purple), modified (orange), and negative control (black) 

peptides identified per allele are shown. Allele frequencies among Caucasian, Asian, and 

Black populations are shown. An asterisk denotes alleles for which LC-MS/MS experiments 
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have generated a greater number of peptides than what is reported in the Immune Epitope 

Database.

(E) To evaluate LC-MS/MS bias, we calculated the “MS observability index,” as measured 

by the ESP algorithm (Fusaro et al., 2009), for IEDB (blue) and MS (orange) peptide 

datasets. Distributions of the MS observability are displayed.

(F) Amino acid frequencies within peptides reported in our single-allele dataset are 

compared to amino acid frequencies in peptides reported in IEDB. See also Figure S1.
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Figure 2. HLA-Peptide Binding Motifs Enriched in LC-MS/MS Data Relative to IEDB
(A) Distributions of NetMHCpan-2.8-predicted HLA-binding affinities of peptides identified 

by LC-MS/MS (“hits”; red) compared to 1 × 106 random 9-mer peptides from protein-

coding genes (“decoys”; blue).

(B) Length distributions of HLA-associated peptides identified from single-HLA-expressing 

cell lines.

(C) Systematic evaluation of the frequencies of each amino acid (positions 1–9) within 9-

mers sequenced by LC-MS/MS for the 14 of 16 HLA alleles for which sufficient IEDB data 

are available (orange, amino acids overrepresented in LC-MS/MS data; blue, amino acids 

underrepresented in LC-MS/MS data; scaling by p value).

(D) MS 9-mer peptides (orange) compared to IEDB 9-mer peptides (blue). Non-metric 

multidimensional scaling (NMDS) was used for visualization of pairwise peptide distances 

in two dimensions for each analyzed HLA allele. Peptide distance was defined on the basis 

of sequence similarity (Kim et al., 2009). The size of each circle corresponds to the 

NetMHCpan-predicted affinity score of the corresponding peptide. Synthesized peptides for 

4/5 alleles are marked in and are numbered per the corresponding line in the table of 

measured and predicted binding affinities (for HLA-B35:01, see Figure S2J).

(E) MS peptides scoring in the bottom 10% by NetMHCpan 2.8 were selected for 

experimental validation. See also Figure S2.
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Figure 3. Analysis of Peptide Cleavage Signatures and HLA-Binding Registers
(A) Heatmap of amino acids frequencies (percent change relative to background) in the 

protein sequence context (upstream: U10-U1; downstream D1-D10) of HLA peptides 

identified from single-HLA-expressing B721.221 cell lines. Colors of heatmap cells indicate 

directionality (red: enriched; blue: depleted) and p value (see key).

(B–H) Amino acid frequency ratios for cleavage-influencing amino acids upstream of, 

downstream of, and within peptides derived from LC-MS/MS-identified peptides compared 

to random proteome 9-mers (B). Heatmaps of amino acid frequencies calculated from 

external class HLA I datasets, including the breast cancer cell line HCC1937 (C), colorectal 

cell line HCT116 (D), fibroblasts (E), HeLa cells (Bassani-Sternberg et al., 2015) (F), and 

peripheral blood mononuclear cells (Caron et al., 2015) (G), as well as class II data from 

MUTZ3 (Mommen et al., 2016) (H).

(I) Percent change in amino acid frequency of top-scoring peptides (top 25%) compared to 

bottom-scoring peptides (bottom 25%) among 1,000,000 random proteome 9-mers evaluated 

by NetChop (Saxová et al., 2003). Color coding indicates directionality and magnitude of 

percent change (see key).

(J) Distribution of predicted affinities for the short isoforms (red) and long isoforms (yellow) 

of nested sets as well as for simulated long isoforms (random amino acids added at the 

beginning or end of the short isoforms). See also Figure S3.
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Figure 4. Evaluation of HLA-Peptide Characteristics that Impact HLA-Binding Predictions
(A) Hits and decoys binned according to source transcript expression (per RNA-Seq; y axis) 

and predicted affinity (x axis) for each allele. Per bin, hit (top) and decoy (bottom) counts 

are reported. Color is according to the hit:decoy ratio (red = enriched for hits; blue = 

depleted of hits).

(B) MS peptides with high (red) and low (blue) MS1 ion intensities (top and bottom 10%, 

respectively), plotted by their NetMHCpan-predicted affinity and source transcript 

expression.

(C) Each LC-MS/MS-identified peptide was matched to ten random proteome 9-mer decoys 

with approximately equal expression but different source genes. The observed count of MS 

peptides divided by the expected count (based on decoy frequencies) is shown as a function 

of the number of upstream ATGs. P values were calculated by t test.

(D) The observed count of LC-MS/MS-identified HLA peptides mapping to each 

localization (Uniprot) relative to the expected count based on random 9-mer decoys (left) or 

expression-matched decoys (right).

(E) The ratio of observed to expected peptides at each distance lag from the source protein N 

terminus (blackline). The expected counts were determined under the assumption that each 

peptide was equally likely to have arisen from any position in its source protein. Frequent 

premature translation abortion would be expected to create an N-terminal bias (dashed red 

line).

(F) Observed versus expected HLA-peptide counts (determined from expression-matched 

decoys) as a function of source protein instability index (Guruprasad et al., 1990). P values 

were calculated by t test.
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(G) Similar analysis to (F) showing enrichments as a function of the amount of intrinsically 

disordered sequence within each peptide’s source protein.

(H) Enrichments according to the count of ubiquitination sites, as previously observed 

(Krönke et al., 2015; Krönke et al., 2014; Udeshi et al., 2012), within the source protein.

(I) Approximately 200 protein-protein interaction experiments (Behrends et al., 2010; 

Christianson et al., 2011 Sowa et al., 2009), each yielding a set of 50–100 high-confidence 

interacting proteins for a given bait (usually a known protein-turnover-pathway gene) were 

scored according to their enrichment for LC-MS/MS-observed peptides, here depicted as a 

histogram. Each block corresponds to one experiment and is colored according to the 

directionality and significance (chi-square test) of the enrichment (see key). The bait protein 

used in outlier experiments (SQSTM1, PIK3C3, and OTUD4) is marked along with the 

corresponding p value. See also Figure S4.
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Figure 5. Evaluation of MS-Data-Based HLA-Peptide Binding Predictors
(A) Positive predictive value of linear models used for discerning 9-mer MS peptides among 

a 999-fold excess of 9-mer decoys (averaging across 16 alleles). Models included one or 

more predictor variables (A = affinity, S = stability, R = RNA-Seq expression, P = protein 

expression (iBAQ), C = cleavability score, and L = source protein localization).

(B) Explanatory contributions of predictor variables derived from the cumulative 

improvement in predictive value as predictors are added.

(C) Cartoon representation of the neural-network model architecture. The 215 MSIntrinsic 

inputs included amino acid dummy variables (180 nodes), amino acid properties (27 nodes), 

and peptide properties (8 nodes). The 182 MSIntrinsicEC inputs included the amino acid 

dummy variables, expression (1 node), and cleavability (1 node).

(D) External evaluation. MS-binding data from two published datasets (Bassani-Sternberg et 

al., 2015; Trolle et al., 2016) were used for comparing the positive predictive value of 

MSIntrinsic and MSIntrinsicEC against NetMHCpan 2.8 and NetMHC 4.0 in identifying 

presented peptides among a 999-fold excess of random decoy 9-mers. Peptides were 

excluded from the evaluation if they were highly likely to bind an allele other than the one 

being evaluated. See also Figure S5.
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