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Abstract: In the residual electron density map of a fully refined X-ray protein model, there should
be no peaks arising from modeling errors or missing atoms. Any residual peaks that do occur

should be contributed by random residual intensity differences between the model and the data. If

the model is incomplete (i.e., some atoms are missing), there will be more positive peaks than neg-
ative ones. On the other hand, if the model includes inappropriately located atoms, there will be an

excess of negative peaks. In this study, random residual peaks are quantified using the probability

density function P(x), which is defined as the probability for a peak having peak height between x
and x 1 dx. It is found that P(x) is single-exponential and symmetric for both positive and negative

peaks. Thus, P(x) can be used to discriminate residual peaks contributed by random noise in com-

plete models from residual peaks being attributable to modeling errors in incomplete models. For
a number of representative structures in the PDB it is found that P(x) has far more large (greater

than 5 sigma) positive peaks than large negative peaks. This excess of large positive peaks sug-

gests that the main defect in these refined structures is the omission of ordered water molecules.

Keywords: distribution function; probability density function; cumulative probability function; expo-

nential function; completeness of large models; protein crystallography

Introduction
Upon completion of model refinement in X-ray crys-

tallography, (i) R-factor gap between model R-factor

and data quality R-factor should vanish, (ii) residual

amplitude differences between the observed Fobs and

calculated amplitudes Fcalc should approach random

noise in the diffraction data, and (iii) residual elec-

tron density (ED) map should be featureless over

the entire unit cell. For any small-molecule crystal

model, all these goals must be met before such mod-

el becomes acceptable. However, these goals are very

difficult to achieve for protein crystallography

according to recent analysis of the protein models

deposited in the PDB.1,2 Two likely reasons for why

it is so are: (i) models being reported are highly

incomplete, which is the subject of this study, and

(ii) the actual quality of diffraction data is severely

overestimated.

For small-molecule crystal models at Ångstrom

or sub-Ångstrom resolution at the completion of

model refinement when there is no R-factor gap left,

fractal dimension has been proposed to quantify the

featurelessness of residual ED maps in addition to

other quantities such as the range of residual elec-

trons, the absolute number of total residual elec-

trons, and so on.3 These criteria are seldom used in

protein crystallography when R-factor gap remains

very large for whatever reasons.1,2 Thus, it is
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important to develop some other simple quantifica-

tion on featurelessness that is independent of R-

factor gap and before R-factor gap vanishes. Other-

wise, featurelessness opens for different interpreta-

tions by investigators. In this study, the probability

density function of residual peaks as a function of

peak height is explored as a quantity for measuring

the featurelessness of residual ED map.

Results

Analysis of residual peak distribution for E. coli

catalase model reported for 5BV2

E. coli catalase model reported4 for 5BV2 contains

�30,000 non-hydrogen atoms determined at 1.53-Å

resolution with model R-factor of 8.2% and free R-

factor of 13.2% from my laboratory (Table I). Data in

the highest resolution shells collected at corners of

square detector are incomplete. The total reflection

in the data set is equivalent to the corresponding

complete data set at 1.70-Å resolution, which is

about the midpoint between the corners and edges

of the detector. This model is one of the most com-

plete protein models in the PDB examined so far

(Table I), and has the smallest R-factor gap with

RRatio of 1.22 (see Methods).4–15 Evidence will be

provided below that its corresponding residual ED

map is the closest to true featurelessness with all

the residual peaks contributed mainly by random

noise present in the intensity data.

Residual Fobs–Fcalc ED map for 5BV2 model4

was normalized in the unit of the standard deviation

for individual grid points in the entire unit cell.

When residual peaks are searched in the map, the

relative heights of peaks (x) are sorted in the

descending order for the positive peaks, and the

ascending order for the negative peaks. The peak

ordinary number is proportional to peak density but

with a varying window in which the size of window

decrease as descending the absolute value of peak

height.

The plot of peak number (or density) and its log-

arithm as a function of peak height shows that the

curve for positive peaks and the curve for negative

peaks are symmetric, and that the two curves have

similar peak numbers at any given contour levels

with the exception of above 4.5r where there are

only a few peaks [Fig. 1(A,B)].4 When the two curves

are assembled into single curve, it has a large gap

in the midpoint where the number of peaks has the

highest probability density [Fig. 1(C)]. In the loga-

rithm plot against peak height [Fig. 1(E)], deviations

of large peaks are approximately distributed evenly

at both sides of a straight line extrapolated from

small peaks. In the logarithm plot against peak

height squares [Fig. 1(F)], deviations are not evenly

distributed on two sides of the line, for example,

they are mainly on the up-right side. This observa-

tion suggests that the probability density of peaks

appears to follow a single-exponential, symmetric

curve instead of Gaussian function, which would be

traditionally expected.

Instead of varying sizes of windows, a common

histogram analysis uses a fixed size of peak-height

window of for example Dx 5 0.25 is to count the

number peaks in each window between x 5 25.00

and x1Dx 5 24.75, between x 5 24.75 and x1Dx

524.50, between x 5 24.50 and x1Dx 5 24.25, and

so on. When Dx ! 0 as dx, the number of peaks

becomes the true probability density function P(x)

Table I. R-Factor Ratios of Selective Protein Entries from the PDBa

PDB accession Description Resolution (Å) RRatio Rwork (%) Rfree (%) H2O: residue ratiob

5BV2 E. coil C2 catalase 1.53 1.22 8.2 13.2 1.48
5BV2/dry E. coil C2 catalase 1.53 3.46 18.8 22.9 0.00
3P9Q E. coli P21 catalase 1.48 2.11 14.3 17.8 1.20
4BFL E. coli P21 catalase 1.64 3.04 17.4 20.2 0.66
4XOF Human ubiquitin 1.15 2.69 13.7 17.1 1.45
4PIH Human ubiquitin 1.50 2.95 16.5 19.0 0.91
4PIJ Human ubiquitin 1.50 5.36 17.6 19.8 0.53
4WES Nitrogenase 1.08 1.67 11.0 13.3 1.25
2VB1 Triclinic lysozyme 0.65 3.89 8.5 9.5 1.04
3O4P Diisopropyl fluorophosphatase 0.85 1.58 10.3 12.1 1.58
4AYP 1,2-a-Mannosidase 0.85 2.32 9.6 10.6 1.78
4GHO Ribonuclease 1.10 2.20 9.8 11.7 1.78
4MJ9 Ru-10bp-DNA duplex 0.97 2.96 8.6 9.6 11.6
4F19 Phosphate-binding protein 0.95 2.41 9.6 11.1 2.17
4F1U Phosphate-binding protein 0.98 3.41 8.8 9.6 2.55

a References for these entries are: 5BV2 (4), 3P9Q (5), 4BFL (6), 4XOF (7), 4PIH (8), 4PIJ (8), 4WES (9), 2VB1 (10), 3O4P (11),
4AYP (12), 4GHO (13), 4MJ9 (14), 4F19 (15), and 4F1U (15). 5BV2/dry is the 5BV2 model after deleting all 4669 ordered
water molecules. Either underestimation of experimental errors or the existence of modeling errors can lead to large RRatio

values.
b Multiple conformers of ordered water molecules and protein residues are counted independently. Note that 4MJ9 is a
nucleic acid model, which has many more ordered water molecules per residue.
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between x and x 1 dx (after proper normalization

when possible). Integration of P(x) results in cumu-

lative probability density U(x), for example, after

adding all the number in each window to a fixed x

value, starting from x 5 21 (see Eq. (2) in Meth-

ods). The analysis of this kind for any quantity x

can be carried out using either non-overlapping or

overlapping window. For example, x can stand for

amplitude or intensity differences.16

When log[U(x)] and log[P(x)] are plotted against

x for segregated positive and negative peaks, or com-

bined unsigned peaks (Fig. 2), they exhibit a

straight line [Fig. 2(A,B)], again suggesting a single

exponential distribution function for both U(x) and

P(x). Of course, only single-exponential function has

exactly the same slope in logarithm plot as the first

derivative of another single-exponential function

[Fig. 2(D)]. The physical basis for residual peaks

observed here is attributed to random residual

intensity differences (see below). However, the math-

ematical basis behind P(x) observed here remains

unknown.

A systematic analysis of about 300 high-

resolution high-quality large protein structures

retrieved from the PDB using a variety of criteria in

the past 5 years shows that most protein models are

incomplete, and many of them were described else-

where.17 A few are selected here for this analysis

Figure 1. Analysis of residual peaks from 5BV2 model.4 (a) Conventional peak number as a function of peak height x with sep-

arate positive and negative peaks. Complete 5BV2 model is shown in dotted lines, and incomplete 5BV2/dry model is in solid

line. (b) Natural logarithm of peak number as a function of x. (c) Conventional peak number but with missing mid-section. (d)

The first derivative of U(x) in (c) using overlapping windows, for example, P(x), the probability distribution function. (e) log[P(x)]

versus x. (f) log[P(x)] versus x2. In (a, b, e, f), positive peaks are in green or black and negative peaks in red or magenta. In (d)

peaks for the complete 5BV2 model are in black and those for the incomplete 5BV2/dry model are in red.
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(Table I).4–15 It is shown that the 5BV2 model4

appears to be the only one whose intensity differ-

ences between the model and data are truly limited

by random noise present in the diffraction data (see

below).

Analysis of residual peaks in an incomplete

catalase model

When all 4669 ordered water molecules present in

5BV2 were removed (abbreviated as 5BV2/dry mod-

el),4 residual ED map was recalculated for analysis.

It is clearly that peak distribution is no longer sym-

metric: there are �3000 more positive peaks than

negative peaks at �3.5r contour level (Fig. 1). After

this removal, the standard deviation of the residual

map increases substantially, and thus the

distribution has been rescaled when relative peak

heights in unit of the standard deviation are shrunk

(Fig. 1). This rescaling slightly increases the slope of

log[U(x<0)] and log[P(x< 0)] for negative peaks

[Fig. 2(E)]. However, corresponding curves for posi-

tive peaks are no longer a straight line with signifi-

cantly altered shapes of both log[U(x> 0)] and

log[P(x> 0)] functions [Fig. 2(F)].

Using conventional methods for calculation of

residual ED map, the scaling factor k that makes

<kFobs>/<Fcalc>5 1 and or <kFobs–Fcalc>5 0 is

inadequate when a large fraction of solvent atoms is

missing in an incomplete model. In fact, <kFobs–

Fcalc> should be greater than 0, a feature that has

not been included in the current calculation. This

affects the kFobs(000)-Fcalc(000) term, and the mean

Figure 2. Slopes in U(x) and P(x) for 5BV2 model.4 (a,b) 5BV2 model for both positive (1) and negative (2) peak height x. (c,d)

5BV2/dry model. (e,f) 5BV2 model but using non-overlapping window functions for calculation of P(x). Positive peaks are in

green and negative peaks in red.
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<Dq> density value over the entire unit cell, as well

as the heights of all residual peaks. Thus, residual

peaks are systematically underestimated: heights for

positive peaks should be higher than they are, and

heights for negative peaks should be lower than they

are. This is why an incomplete model after deleting

4669 water molecules does not result in exactly extra

4669 positive peaks relative to negative peaks in the

residual ED map whereas deleting 200 most ordered

water molecules in the model has resulted in exactly

extra 200 positive peaks. This is also why model

refinement is always an iterative process.

Analysis of residual peaks in other protein

models
Above analysis was done with a large protein model

in which a large number of residual peaks make the

analysis robust. When the same analysis is done for

small proteins such as ubiquitin, nitrogenase, or

lysozyme, it is found that they all have an asymmet-

ric distribution of residual peaks with many more

positive peaks than negative peaks (Figs. 3 and

4).7–10 By this criterion, all of these models should

be considered to be incomplete.

Three highest-resolution models for human

ubiquitin models in the PDB are 4XOF at 1.15 Å,

and 4PIJ and 4PIH both at 1.50 Å (Table I).7,8 Ubiq-

uitin is a small protein of 76-amino acid residues. In

residual ED maps of the three models, there are 30–

70 more and larger positive peaks than correspond-

ing negative peaks at 2.5r cut-off (Fig. 3), many of

which clearly corresponded to missing ordered water

molecules. In addition, many other modeling errors

also exist, including radiation-induced structural

Figure 3. Application of statistical analysis to ubiquitin models.7,8 (a,b) 4XOF. (c,d) 4PIJ. (e,f) 4PIH. Left side, U(x). Right side,

logarithms of U(x) and P(x).
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modifications.18 In each model, the plot of log[P(x> 0)]

and log[U(x> 0)] for positive peaks differs from the

plot of log[P(x< 0)] and log[U(x< 0)] for negative

peaks. Yet, each of log[P(x> 0)], log[P(x< 0)],

log[U(x> 0)], and log[U(x< 0)] bears a striking simi-

larity across all the three models (Fig. 3), even though

they were obtained independently in different space

groups.7,8 This similarity suggests that a common

physical basis may exist for why they are incomplete.

Nitrogenase model9 reported for 4WES is at

1.08-Å resolution and has free R-factor of 13.3%

(Table I), which is within the top 5% percentile of

the smallest working R-factor/free R-factor value for

all the protein models deposited in the PDB (Fig. 4).

Its R-factor ratio is 1.67 (Table I). However, when

residual ED map is calculated, it is found that the

highest positive residual ED peak is 31.3r, there are

610 more non-random positive peaks than negative

peaks with peak height of above 5r, there are 1327

more non-random positive peaks of above 4r, and so

on [Fig. 4(C)]. This model clearly has lots of room

for further improvement.

Triclinic lysozyme model10 reported for 2VB1

model is at 0.65-Å resolution and has free R-factor of

9.8%. However, the shape of U(x> 0) function for posi-

tive peaks significantly differs from the shape of

U(x< 0) function for negative peaks. There are 200

more positive peaks than negative peaks using 2.5r
cut-off, many of which are very large positive peaks

with the highest peak of 114r [Fig. 4(D) and Fig. S1].

Peak heights for missing H atoms versus
non-random residual peaks

The model of diisopropyl fluorophosphatase11

reported for 3O4P at 0.85-Å resolution with free R-

factor of 12.1% has been used to demonstrate that

sub-Ångstrom resolution was needed for visualiza-

tion of H atoms (Table I). When a residual ED map

is calculated using the published model that

includes H atoms, the highest non-random positive

Figure 4. Analysis of nitrogenase model (4WES at 1.08-Å resolution, left, a, c, e) and lysozyme (2VB1 at 0.65-Å resolution,

right, b, d, f) model.9,10 (a,b) Standard statistics taken from PDB. (c,d) Distribution of positive (green) and negative (red) ampli-

tudes as a function of peak number. (e,f) Distribution of (intensity and amplitude) model (black and blue) and data (red and

magenta) R-factor as a function of reciprocal resolution (1/Å).
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peak is 23.6r, and there are 243 more non-random

positive peaks at the contour level of 4.20r than neg-

ative (282 versus 38) (Fig. 5). In H atom-deleted

models, the highest positive residual peak11 for

deleted H atoms was reported to be only at 4.20r,

which ranks at the 283-th of all the positive peaks

in the residual ED map calculated here. After care-

ful model re-refinement for 3O4P that has already

included H atoms, large extra peaks were observed

in the residual ED map outside of the Cb-H groups

of K210 and E104 and outside of the Cg-H group of

K210 [Fig. 5(C,D)]. These residual peaks clearly cor-

respond to partially added O atoms during data col-

lection.18 Thus, without analysis of this kind, such

large positive residual peaks near expected H atoms

in H-deleted models could easily be misinterpreted

for the missing H atoms.

An estimated contribution of H atoms to the

amplitudes of a hypothetic protein model is as fol-

lows (see Methods): 17% at zero-scattering angle, 5%

at 1.84-Å resolution, and to only 0.8% at 1.0-Å reso-

lution, decreasing rapidly with increasing resolution

[Fig. 5(B)]. Missing ordered water molecules, which

often have relatively large B-factors, contribute

more to diffraction data at low resolution than at

high resolution. Thus, there is no doubt that missing

ordered water molecules appears a major obstacle to

the completeness of model. This is likely to be the

main reason why protein crystallographers have a

difficult time to see H atoms in ED maps.11 Recent

interpretations of cryo-electron microscopy image

reconstruction suggest that ionization states affect

both X-ray and electron structure factors.19,20 Errors

in approximation of neutral X-ray atomic scattering

for ionized atoms can be significant since these

errors could not be removed by using either occu-

pancy or B-factor refinement.

Analysis of residual intensity differences

of E. coli catalase models
The observed and calculated amplitudes for the com-

plete and incomplete 5BV2 catalase models4 were

scaled for residual analysis under the assumption of

<kFobs>/<Fcalc>5 1 with bulk solvent correction

applied to the calculated amplitudes. The intensity

normalization factors were calculated in 100 resolu-

tion shells for 305,824 reflections, and then linearly

extrapolated into a specific resolution value for any

given Bragg reflection using Wilson plot (see

Methods).21

When the normalized intensity differences, zd,

of all Bragg reflections are sorted in the ascending

order,22 the ordinary number divided by the total

number of reflections in histogram analysis results

Figure 5. Analysis of diisopropyl fluorophosphatase model at 0.85-Å resolution (3O4P).11 (a) Residual positive (green) and nega-

tive (red) peaks as a function of peak number. (b) Model (black and blue) and data (red and magenta) R-factor on intensity or

amplitude as a function of reciprocal resolution (1/Å). Estimated contribution of H atoms to the total structure factor is shown in

cyan curve. (c,d) rA-Weighted F (contoured at 0.3r, blue, and 8r, green) and DF (contoured 13.5r) maps for K210 (c) and E104

(d). Arrows indicate likely partial additions of O atoms.
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in the normalized U(zd) function [Fig. 6(A)].23 For

the complete 5BV2 model,4 98% of all the reflections

have |zd|<0.5. However, for the incomplete 5BV2/

dry model, only 78% of all the reflections have

|zd|< 0.5, implying that the U(zd) plot is much

more sensitive in revealing errors present in both

model and data than conventional R-factors would.

This is because the plot treats each reflection the

same weight after intensity normalization, which it

is equivalent to fractional R-factors.23–26 In contrast,

conventional R-factors are heavily weighted on large

intensity reflections.

In the log[P(zd)] plot,27,28 the slope corresponds

to 21/rB, in which rB measures the total combined

error of modeling errors, incompleteness, and ran-

dom measurement errors [Fig. 6(B)].23 For the

incomplete 5BV2/dry model, modeling errors and the

incompleteness are far greater than random mea-

surement errors, the slopes of both log[P(zd<0)] and

log[P(zd>0)] are almost identical in absolute value.

Thus, the rB values are independent on zd and its

sign. For the complete 5BV2 model,4 modeling errors

and incompleteness are negligible, or much smaller

than those in the incomplete 5BV2/dry model so

that random measurement errors dominate rB. As a

consequence, the slope for small zd reflections is

much steeper than large zd reflections, and more so

in the negative side. This suggests that the

magnitude of random measurement errors in the

data appears correlated strongly with that of inten-

sity differences between the model and data.

If |zd| is indeed limited by random measure-

ment errors in data, the expected slope in the rI ver-

sus zd plot is 2.0, or it is 1/2 in the zd against rI plot

(see Methods). When measurement errors of R(sig-

ma) or fractional measurement errors rz 5<rI>/<I>

are plotted as a function of zd, the magnitude of

signed zd value for the complete 5BV2 model4 is pro-

portional to the measurement errors for 98% of all

the Bragg reflections that are within |zd|< 0.5, and

the slope of this plot is indeed 1/2 [Fig. 6(C)]. In

fact, this feature extends to all the Bragg reflections

within |zd|< 1.5, where fluctuations increase with

increasing |zd| values due to reducing number of

reflections in these regions. The same features in

slope are also observed in the yd (normalized ampli-

tude differences, see Methods) versus rF (standard

derivation of amplitudes) plot [Fig. 6(D)].

When the same analysis is done for the incom-

plete 5BV2/dry model,4 the slope of the rI versus zd

plot is infinite on the zd> 0 side, which suggests

that the terms Iobs-Icalc represent mainly missing

ordered water molecules, but not by random mea-

surement noise present in the data. On the zd<0

side of the plot, random measurement noise in some

of small-intensity Bragg reflections appears to

Figure 6. Analysis of intensity and amplitude differences for 5BV2 model.4 (a) Normalized U(zd) as a function of normalized

intensity differences, zd5(Iobs-Icalc)/<Iobs>. (b) log[P(zd)] without normalization factor. (c) Measurement errors for normalized

intensities grouped together for averaging using an increment of 0.05 in zd. (d) Measurement errors for normalized amplitudes

grouped together for averaging using an increment of 0.05 in yd, the normalized amplitude, yd5(Fobs–Fcalc)/<Iobs>
1/2.
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contribute part of intensity differences between the

model and data [Fig. 6(C,D)].

Discussion

Since its introduction,29 free R-factor has been use-

ful to prevent over-fitting during model refinement

at medium and low resolution: addition of ordered

water molecules to an incomplete atomic model

according to positive peaks in residual ED map

(aggressive positive residual peak-filling procedure)

should not continue when free R-factor no longer

decreases. However, the applicability of this statistic

should be re-examined in model refinement at Ång-

strom and sub-Ångstrom resolution, such as the tri-

clinic lysozyme model reported for 2VB1 model10 at

0.65-Å resolution for which over-fitting should not

be an issue.

An analysis of residual ED map for 2VB1 mod-

el10 reveals many missing ordered water molecules

on the surface of the protein. These water molecules

typically have much large B-factors than protein

atoms, which often make no contribution to Bragg

reflections at the resolution >1.0 Å. Some of these

water molecules make no contribution to Bragg

reflections even >2.0 Å. Placement of these water

molecules into the model does not affect the overall

model free R-factor as much (which is already quite

small, 9.8%) because (i) they would minimally modi-

fy the amplitudes of only one-fourth Bragg reflec-

tions <1.0-Å resolution or modestly modify the

amplitudes of mainly 3% Bragg reflection <2.0-Å

resolution in the 2VB1 data set at 0.65-Å resolution

[Fig. 4(F)],10 and (ii) they would affect scaling factor

associated with bulk solvent model. In fact, an appli-

cation of bulk solvent correction may have trapped

an atomic model in a local minimum. Replacement

of any number of individually ordered water mole-

cules in such atomic model requires readjustments

of parameters for bulk solvent model, which may

increase free R-factor transiently before converging

to a new minimum.

Concluding Remarks

Evidence is provided that the cumulative probability

distribution U(x) and the probability density distri-

bution P(x) of residual peaks as a function of peak

height x in the residual ED map of any complete

model follows a single exponential symmetric func-

tion. This results from the fact that the amplitude

differences for calculation of residual ED map are

largely due to random measurement errors present

in intensity data. This analysis as well as the distri-

bution of normalized intensity differences appears

much more sensitive to missing scattering atoms

such as ordered water molecules than conventional

model R-factors. They can be used in assistance in

refinement of protein models.

Methods

R-factor gap and R-factor ratio
R-factor gap2 between model R-factor and data R-

factor can be quantified by their ratio (RRatio) on

either intensity (I) or amplitude (F) for which the

asymptotic value is unity where there is no R-factor

gap. The large the gap, the large the RRatio, and the

fractional R-factor gap is RRatio–1.

RRatio � RI;Model

� �
= RI;Data

� �
5
X
jIobs2Icalcj=

X
jIobsj

n o
=
X

rI=
X
jIobsj

n o

5
X
jIobs2Icalcj=

X
rI �

X
jFobs2Fcalcj=

X
rF

� RF;Model

� �
= RF;Data

� �
;

(1)

where RI,Model is model intensity R-factor between

the model and data, RI,Data is data intensity R-factor

within the given data set, also known as R(sigma)

value, r denotes standard deviation for observed

data, the observed data are indicated with subscript

“obs,” and calculated values from models are indicat-

ed with the subscript “calc,” the following approxi-

mations are made: rI � 2FrF, and I 5 F2, RF,Model is

model amplitude R-factor, and RF,Data is data ampli-

tude R-factor.

Statistical analysis of residual peaks
Diffraction data and protein models were retrieved

from the PDB. When Fcalc was not available in the

retrieved data, they were calculated using Refmac5

by setting refinement cycle of zero using neutral

atomic scattering factors.30 With both available Fobs

and Fcalc, coefficients were generated using rA-

weighting function for the calculation of residual

maps,31 and peaks were searched and sorted in the

descending order of peak amplitudes using the pro-

gram suite CCP4.32

For negative peaks, the plot of peak number

versus the ascending order peak height represents

the plot of the cumulative probability density of a

modified form as a function of peak height, x, prior

to normalization. In this modification, the window-

width variable Dx is not fixed. It can be very large

with large x, and becomes smaller with smaller x

from infinite to the eventual zero. The histogram

distribution with a fixed window-width dx is the

true cumulative probability density, U(x). The fixed

window-width dx can be achieved using both non-

overlapping and overlapping of x values. With over-

lapping, the number of peaks is counted between x-

dx/2 and x 1 dx/2 for every peak with the amplitude

x. With non-overlapping, the number of peaks is

counted between x and x 1 dx with the pre-set inde-

pendent variable x. The first derivative of the
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cumulative probability density results in the under-

lying probability density, P(x).

P xð Þ5dU xð Þ=dx; U xð Þ5
ðx

21
P tð Þdt: (2)

For positive peaks, the cumulative probability densi-

ty is reversed with the descending order peak ampli-

tude. Whereas large peaks >3.5r can be individually

defined precisely, small peaks <2.5r may not. For

example, in a flat region of residual electron density

map with the value �1.0r, it is nearly impossible to

define how many peaks are there and where peaks

are located. Thus, the total number of peaks in any

residual ED map cannot easily be defined, making

normalization very difficult.

The root-mean-square deviation (RMSD) of resid-

ual ED map rDq is calculated from individual voxels of

the unit cell, which is not the same as RMSD of peak

heights rx. The relationship between rx and rDq

remains unknown. Without normalization to define

the actual normalized probability density P(x 5 10) for

example, it is difficult to assess whether a 10r peak in

the residual ED map is statistically significant.

Analysis of intensities and intensity differences

When intensity I of each Bragg reflection is treated

as independent variable x and sorted in the ascend-

ing order, the plot of ordinary number as a function

of intensity is the cumulative intensity density of a

modified version. Like in analysis of peaks, a proper

histogram analysis with a fixed window results in

the true cumulative probability function U(x). The

first derivative of this density results in the proba-

bility density P(x) (Eq. (2)). When intensity is

rescaled to make rx 5 1 in individual resolution

shells or in the entire data set, P(x) 5 e–x, which is

known as Wilson intensity distribution for non-

centrosymmetric structures of proteins.21

Intensity I of Bragg reflections can be normalized

as z variable as follows.22 They are sorted in the

ascending order of resolution and grouped in about

100 resolution shells with an approximately same

number per shell. For the catalase data set reported

for 5BV2, there are a total of 305,824 so that each res-

olution shell has �3058 reflections. With such a large

number, analysis is robust. The mean intensity and

mean reciprocal resolution squares <s2> are calculat-

ed for each resolution shell, and log[<I>] is plotted

against <s2> (i.e., Wilson plot21). For any given Bragg

reflection, its expectation is linearly extrapolated

from log[<I>] using the two closest points in the

reciprocal resolution squares s2 in the Wilson plot,

and intensity can be normalized z 5 I/<I>.22

Intensity differences can also be normalized in

the same way,27 zd 5 (Iobs-Icalc)/<Iobs>, which repre-

sent signed individual components of normalized

intensity R-factor or fractional intensity R-factor.

Summation of their absolute values is normalized

intensity R-factors:
P
jzdj5

P
jIobs2Icalcj=hIobsi½ �. If I1

and I2 represent two intensity measurements with

the same measurement errors for a given Bragg

reflection, its mean value is I5(I11I2)/2. Unsigned

fractional error of each measurement to its mean

intensity is: |I1–I|/I 5 |I2–I|/I 5 [|I1–I2|/2]/I. Thus,

if unsigned fraction error represents rI, it is half of

the difference between the two measurements. Simi-

larly, amplitude differences can also be normalized,27

yd 5 (Fobs–Falc)/<Iobs>
1/2. It has the same property as

the normalized intensity differences.

Whereas errors of multiple measurements for giv-

en Bragg reflection in a data set indeed follow Gauss-

ian distribution, strictly speaking, measurement

errors of the entire data set do not always follow

another Gaussian distribution even though it is often

so assumed.33 Measurement errors of an entire data

set have three components,34–36 the first one, inde-

pendent of intensity of individual Bragg reflections

(random errors, indeed Gaussian distribution), the

second, proportional to the intensity (X-ray photon

exchanges with crystals), the third, proportional to

the square root of the intensity (Poisson-counting lim-

it). To mathematically derive the probability density

function of residual peak distribution from measure-

ment errors, one must first define the probability

function for measurement errors. Measurement

errors currently reported for all the diffraction data

do not include X-ray radiation-induced intensity mod-

ifications due to time-dependent structural changes,18

which can be very large and is beyond the scope of

this study. The magnitudes of these errors are so large

that they have often fooled automated space group

determination procedure to downshift symmetry.17

Estimation of amplitude contribution of

hydrogen atoms in protein models

Because half of protein atoms are hydrogen, it is

assumed here in a hypothetical protein model that

(i) it consists of the same numbers of H atoms and C

atoms in one-to-one ratio, (ii) these atoms are ran-

domly distributed in the unit cell, and (iii) they have

the same B-factor. The contribution of H atoms is

proportional to H atomic scattering factor (fH) rela-

tive to the total scattering factor (fTotal), which is

summed in intensity from both C scattering factor

(fC) and H scattering factor components:21

fH=fTotal5fH=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2
C1f 2

H

q
� fH=fC : (3)

A Summary of Symbols and Abbreviations

P(x) Probability distribution function

for generic variable x.
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U(x) Cumulative probability distribu-

tion for generic variable x.

z, zd Normalized intensities and nor-

malized intensity differences.

y, yd Normalized amplitudes and nor-

malized amplitude differences

derived from normalized

intensities.

Fobs, Iobs,

Fcalc, Icalc

Observed or calculated ampli-

tudes or intensities.

RI,Model, RI,Data,

RF,Model, RF,Data

Intensity or amplitude R-factors

for model and for data.

r, rx, rI, rF Standard deviation for generic

function, for variable x, observed

intensity, and amplitude.

rA, rB They represent the known and

unknown components of struc-

ture, respectively, in an error-free

system with [rA]21[rB]251.

RRatio R-factor ratio between model and

data.

<f(x)> Expectation of generic function f

with random variable x.

<Iobs> Locally average intensity within

ultra thin resolution shells.

fH, fC, fTotal Atomic scattering factor for H, C,

and all atoms.

RMSD Root-mean-square deviation.
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