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Abstract

Atopic dermatitis (AD), the most common chronic inflammatory skin disease, is driven by both 

terminal keratinocyte differentiation defects and strong type 2 immune responses. In contrast to 

chronic plaque-type psoriasis, AD is now understood to be a much more heterogeneous disease, 

with additional activation of Th22, Th17/IL-23 and Th1 cytokine pathways, depending on the 

subtype of the disease. In this review, we discuss our current understanding of the AD immune 

map in both early-onset as well as chronic disease. Clinical studies using broad and targeted 

therapeutics have helped to elucidate the contribution of various immune axes to the disease 

phenotype. Importantly, immune activation extends well beyond lesional AD, as non-lesional skin 

and the blood component harbor AD-specific inflammatory changes. For this reason, future 

therapeutics will need to focus on a systemic treatment approach, especially in patients suffering 

from moderate-to-severe disease.
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Introduction

Atopic dermatitis (AD) is the most common chronic inflammatory skin disease, with a 

prevalence of up to 7% in adults and up to 25% among children.1–5 Characteristically, 
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symptoms start within the first 5 years of life, and in adult patients, the disease has generally 

been present for decades. Similar to psoriasis,6,7 AD is now considered a primarily T-cell 

driven disease,8,9 as proven by the clinical efficacy of broad T-cell targeting therapeutics 

such as cyclosporine, efalizumab, and alefacept.10,11,12 While the latter two are no longer 

available due to safety concerns, cyclosporine, oral glucocorticosteroids (GCS) and 

phototherapy (NB-UVB) are often used to treat moderate-to-severe disease.13–15 However, 

cyclosporine and even more so GCS are not suitable for long term use due to multiple side 

effects. Phototherapy is very time consuming and not feasible for most patients.16 Therefore, 

AD presents a large unmet need for both effective and safe therapeutics.2 While animal 

models have been instrumental in deciphering general components of cutaneous biology in 

health and disease, the complex interplay between immune mechanisms, skin barrier and 

potential intrinsic and extrinsic triggers of disease are not well represented in a single animal 

model, and thus need to be addressed and characterized in humans.17,18

One strategy that was instrumental in psoriasis to educate on disease pathogenesis and 

activated cytokines is through clinical trials with broad and specific immune antagonists 

coupled with tissue biomarkers.19 Such an approach is also being successfully implemented 

in AD.20 Broad therapeutics such as GCS, cyclosporine, topical calcineurin inhibitors and 

NB-UVB have suggested the immune nature of AD, and indicated possible involvement of 

more than one cytokine pathway.13,14,21,22 These studies not only provided the final proof of 

the immune nature of AD, but also of the pathogenic role of the Th2 axis in this disease. 

Although increased IL-4 and IL-13 in lesional and non-lesional AD was first described in 

1994, it was not until recent that studies demonstrated the clinical efficacy of dupilumab, an 

IL4R antagonist, and that conclusive clinical proof became available supporting the 

importance of the type 2 immune pathway in AD.23–26

The emerging immune map of AD

Similar to psoriasis, that is centered around a Th17/IL-23 axis, AD has been associated with 

activation of T-cell subsets.27 Although AD seems to be unanimously characterized by a 

strong activation of Th2 immune responses in lesions and even in non-lesional skin,20 Th22, 

Th17/IL-23 and Th1 cytokine pathways likely play a role in the disease, particularly in some 

AD subtypes.8

In acute lesions, AD onset is characterized by profound increases of Th2 (IL-4, IL-5, IL-13, 

IL-31, CCL18) and Th22 (IL-22, S100A proteins) responses.28,29 These mediators have 

been demonstrated to down-regulate terminal differentiation genes and tight junction 

products such as claudins, contributing to the barrier defect in AD.30–40 Recently, it has been 

demonstrated that group 2 innate lymphoid cells (ILC) can also produce Th2 cytokines. 

While present at much lower frequencies than T cells, type 2 ILC have been found at 

increased levels in AD lesions compared to healthy control skin,41–43 thereby possibly 

promoting Th2 responses.41,44

Among Th2 immune mediators, IL-4 and IL-13 have been demonstrated to play a key role in 

AD pathogenesis. Genetically, AD has been shown to be associated with IL-4 and IL-13 

polymorphisms,45–48 and eczema-like features can be induced in transgenic mice 
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overexpressing these cytokines.49–52 In humans, mRNA in situ hybridization studies by 

Hamid et al. demonstrated increased levels of IL-4 and IL-13 in both acute and chronic AD, 

to a higher degree than IFN-γ.26,53 IL-4 decreases the expression of multiple genes in the 

epidermal differentiation complex (EDC) that regulate epidermal barrier function.54 

Keratinocytes differentiated in the presence of IL-4 and IL-13 exhibited significantly 

reduced filaggrin gene expression, even in patients without filaggrin mutations.38 Aside 

from filaggrin, loricrin and involucrin are also downregulated in lesional and nonl-lesional 

AD skin by IL-4 and IL-13, contributing to a defective skin barrier in AD.31 A compromised 

barrier allows penetration of bacteria and allergens in to the skin, leading to infections and 

allergen sensitization, both being highly characteristic of AD.31

Th2 polarization facilitates Staphylococcus aureus binding and colonization,55,56 and IL-4 

and IL-13 inhibit skin production of antimicrobial peptides (AMP),56 predisposing AD skin 

to S. aureus infections,57 which, in turn, further exacerbates skin inflammation and barrier 

defects.58–62 Also, eczema vaccinatum, a disseminated viral skin infection that occurs in AD 

following inoculation with vaccinia virus, has been demonstrated to depend on IL-4/IL-13 

expression via AMP downregulation.63 Mechanistically, it has been shown that IL-4 and 

IL-13 inhibit TNF-α and IFN-γ-induced human beta-defensin(HBD)-3 via activation of 

STAT-6 production in keratinocytes,64,65 as well as TNF-α-induced cathelicidin 

production.57 Despite the fact that IL-17 can be found in AD lesions, its antimicrobial 

effects (via the up-regulation of antimicrobial peptides such as HBD-2 in keratinocytes) are 

inhibited when IL-4 and/or IL-13 are present.62 The fact that IL-4/IL-13-driven 

inflammation can truncate these key Th1 (IFN-γ) and Th17 (IL-17) dependent skin defense 

mechanisms in AD, as well as the successful treatment of AD with dupilumab, which blocks 

receptor binding of both IL-4 and IL-13,23–25 proves their central role in disease 

pathogenesis.

Th17-associated molecules (IL-17A, PI3/elafin, CCL20) are consistently up-regulated in 

both acute and chronic AD, but at lower levels than in psoriasis (as compared to normal 

skin).66,67 IL-17A could possibly contribute to the immune dysregulation in AD by 

synergistically upregulating S100A7/8/9 together with IL-22.68 The S100A proteins, which 

are highly upregulated in AD, can act as both antimicrobials and inflammatory molecules.69 

There is also evidence that IL-17 can contribute to barrier abnormalities by down-regulating 

filaggrin, and by affecting keratinocyte expression of genes associated with cellular 

adhesion.34

Th2 and Th22 responses are intensified in chronic AD lesions, with parallel activation of the 

Th1 axis (IFN-γ, CXCL9, CXCL10), rather than a “switch” to a Th1-only signature.66,70 

IL-22 has also been identified as a key mediator of epidermal hyperplasia.68 IL-31, a 

cytokine associated with itch,71,72 shows large increases in acute lesions, correlating with 

disease severity in some studies.29,66,73,74
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AD shows phenotypic variations

Several AD subtypes have been described, with considerable variations (Figure 1).8,75 These 

are based on IgE levels (intrinsic versus extrinsic AD),76 filaggrin mutations status, race, and 

age.3,29,77–79

Mutations in the FLG gene, leading to a deficiency in filaggrin, have been associated with 

AD that is more severe and persistent than its wild type counterpart. This includes a higher 

degree of immune dysregulation with type 1 interferon-mediated stress responses and higher 

IL-1 cytokine levels, and higher rates of skin infections and allergies.28,29,34,35,80–84 

However, FLG mutations are only detected in up to 30% of individuals (and rarely occurs in 

African-American populations with AD),84 and patients with FLG mutations have been 

shown to outgrow their disease.35 Consistently, dupilumab treatment was demonstrated to 

work equally well independent of filaggrin status.24

Extrinsic AD is characterized by an increase in total and allergen-specific IgE levels, higher 

rates of eosinophils, and a family history of atopic diseases. In contrast, intrinsic AD shows 

normal IgE levels, and patients usually lack a personal or familial history of atopy.85 Both 

intrinsic and extrinsic subtypes show strong Th2 activation,79 consistent with similar 

treatment efficacy of dupilumab in both conditions.25 However, intrinsic AD shows a 

stronger activation of Th17 and Th22 responses, with levels of some Th17-related mediators 

(i.e. CCL20) correlating with AD disease severity.79

Ethnic differences have also been demonstrated to contribute to AD disease 

heterogeneity.86–90 In Asian AD patients, the Th17 axis was significantly increased 

compared to European American patients, and its overall cytokine profile, together with 

features atypical for AD such as parakeratosis, suggest that Asian AD is likely a blend 

between AD and psoriasis.78 Future studies will show whether this effect is genetic or 

environmental, and whether Asian AD can be successfully targeted with the IL-17-targeting 

drugs originally developed for psoriasis.91–93

Pediatric versus adult AD – Different immune phenotypes on a common 

Th2 background

Despite the fact that AD usually starts early in childhood, most AD studies have only 

investigated adult patients. However, there are some clinical clues for differences between 

early pediatric and adult AD, such as lesions on extensor surfaces in infants, whereas adults 

typically show flexor involvement.3 Furthermore, the skin microbiome differs in pediatric 

vs. adult AD.94 Most studies in AD children are limited to studies of peripheral 

blood,80,95–107 demonstrating that disease activity correlates with several serum biomarkers 

(i.e. IL-31, CCL17, CCL22, CCL27, eosinophils, IgE), and a limited array of Th2/Th1 

markers using mRNA expression.108–112 Recently, the peripheral blood phenotype of early 

pediatric AD has been characterized only by Th2 expansion, without other polar T-cell 

subsets in blood.113 In contrast, adult AD blood also shows increases in Th22 polarization, 

possibly reflecting continuous immune stimulation over time.113 Remarkable differences 

also have been detected in a recent study between the skin profiles of infants and adults.114 
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While both early-onset pediatric as well as adult AD show a strong Th2 activation, there is 

increased innate and IL-17-related inflammation in early AD lesions of infants. This dual 

upregulation of both Th2 and Th17 responses might be explained by profoundly increased 

levels of IL-19, a cytokine that can be induced by both IL-17 and IL-4/IL-13, and which has 

been shown to amplify the effects of IL-17 on keratinocytes.115 Besides Th17 responses, 

early-onset pediatric AD showed increased levels of antimicrobial peptides (AMP),114 

comparable to levels in adult psoriasis. This increase in AMP might serve as a danger signal 

triggering disease, as demonstrated in psoriasis, where complexes of AMP with either self-

DNA or RNA can stimulate dendritic cell activation.116,117 However, control skin from 

healthy infants also showed elevated levels of Th17 and Th22 associated mediators, 

including AMPs,114,118,119 possibly rooted in the necessity of newborn skin to combat 

infections when the skin immune system is not yet fully developed. Thus, the pathogenic 

role of these immune axes in children need to ultimately be evaluated through clinical trials.

Strikingly, the filaggrin deficiency of adult AD was missing in early AD,114 perhaps 

challenging the notion of defective filaggrin as primary factor for disease elicitation and an 

instigator of the atopic march. Future studies will need to further characterize epidermal 

barrier features in early-onset AD.

Surprisingly, the non-lesional skin of infants and young children also showed significant 

hyperplasia, and activated cytokines to levels as high or even higher than in adult non-

lesional skin.114 Thus, the non-lesional skin of children with early AD can be viewed as a 

true state of disease initiation. Interestingly, at 2 months of age prior to onset of AD, infant 

non-lesional skin contain increased TSLP, a cytokine that drives differentiation of Th2 

cells.120 In sum, the Th2 axis seems to be pathogenic across all AD phenotypes. But, other 

cytokine axes may have a pathogenic role is some AD subtypes. Clinical trials with specific 

Th2, Th17/IL-23 and Th22 antagonists are needed in different parts of the world and in 

different phenotypes to be able to dissect the pathogenic contribution of each axis to the 

disease.

AD as a systemic disease

Often AD begins during early infancy or childhood, and adult patients usually have 

longstanding disease for decades.121,122 Circulating skin homing T-cells, marked by 

cutaneous lymphocyte antigen/CLA, in severe AD patients show significant increases in 

activation markers, and polar cytokines, even compared to those seen in psoriasis, as 

compared to healthy individuals.123 Significant increases in B-cells in blood are also seen in 

AD, but not in psoriasis, perhaps reflecting the atopic or allergic associations characterizing 

the disease,124 and the atopic march.4,125 The systemic nature of AD is also reflected in the 

wide abnormalities seen in the non-lesional skin of adult patients with severe, chronic 

disease, since even non-lesional skin harbors considerable immune activation and terminal 

differentiation defects.114,126 Non-lesional AD shows increased expressions levels of Th2 

(CCL22, CCL18, and IL-13), Th22 (L-22), and Th1 (MX-1) cytokines, significantly 

correlating with disease severity.126 In addition, it is characterized by profound decreases in 

terminal differentiation genes, and their expression is inversely correlation to disease activity 
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as defined by SCORAD.126 These non-lesional abnormalities have therapeutic implications, 

suggesting the need for systemic treatments for patients with severe AD.

AD is increasingly recognized to also be associated with other, non-allergic 

conditions.127,128 Similar to psoriasis, adult AD patients harbor an increased risk of 

cardiovascular disease.129 So far, people suffering from AD were shown to have higher odds 

of heavy smoking, increased alcohol intake, and decreased rates of vigorous physical 

activity compared to non-AD individuals.130 In line, adult AD patients were identified to 

have increased cardiovascular risk factors such as a higher BMI, higher odds of arterial 

hypertension and lifetime pre-diabetes, and a sedentary lifestyle.131–134 Recently, an 

increased prevalence of coronary artery disease has been reported in severe AD patients 

without known cardiovascular disease, showing the presence of coronary plaques in 48.1% 

of AD patients, being significantly increased compared to healthy controls which showed a 

rate of 21.2%, as assessed by coronary computed tomography angiography.135

It is now well established that chronic inflammation accelerates atherosclerosis due to 

repetitive vascular injury.136 Mechanistically, elevated levels of TNF-α, IL-17 and IL-22 are 

currently thought to contribute to the increased cardiovascular risk in chronic plaque-type 

psoriasis, another chronic inflammatory skin disease.137,138 These cytokines are also 

activated in skin of AD patients, and circulating T cells skewed towards the production of 

several of these markers are also increased in AD,79,139–142 possibly mediating endothelial 

damage in this patient population. In vitro data suggest that IL-17 can indeed contribute to 

pro-inflammatory changes in endothelial cells, and the inhibition of IL-17 in a mouse model 

of atherosclerosis significantly decreased disease.143,144

It will be important to characterize serum markers of cardiovascular risk (and associated 

inflammatory markers) to better estimate disease risk, and to monitor therapeutics on their 

effect of cardiovascular risk factors.

Targeted therapies as milestones in understanding pathogenesis

Due to the advent of new, targeted therapeutics (Figure 2A), our knowledge in key disease 

pathways is rapidly expanding. Ongoing or recently published controlled trials are 

summarized in Table 1.

IgE, which is profoundly increased in 80% of patients suffering from extrinsic disease, has 

long been regarded as key in the development of eczema.145 So far, two randomized-

controlled studies failed to show clinical effects of the IgE-blocker omalizumab,146,147 

suggesting that increased IgE levels are an epiphenomenon of AD, mediating comorbidities 

such as food allergy, asthma and rhinoconjunctivitis, but not AD itself. However, results 

from a current trial with a higher affinity anti-IgE antibody (QGE031) are currently pending. 

Eosinophils, which can be found at increased levels in AD patients both in blood and skin, 

are also likely not central to disease development. In this regard, IL-5 which specifically acts 

on eosinophils resulting in accelerated eosinophilopoiesis, chemotaxis, cell activation, and 

delayed apoptosis,148 may not play a key role in AD as mepolizumab, a monoclonal IL-5 

antagonist did not show efficacy in early trials.149 However, more definitive longer trials are 
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needed to define the role of IL-5 in AD, since the initial studies were of only two-week 

duration, which may be potentially too short a time frame to judge treatment effect in this 

disease.149,150

On the other hand, dupilumab, a monoclonal antibody that specifically targets IL-4Rα, 

thereby blocking the two key mediators of the Th2 pathway, IL-4 and IL-13 is highly 

efficacious for controlling skin disease in moderate-to-severe AD patients (Figure 3).23–25 

Dupilumab has shown excellent safety and efficacy in phase II trials, with Eczema Area and 

Severity Index (EASI)50, EASI75 and EASI90 responses of 82.5%, 60.3% and 36.5%, 

respectively, after 16 weeks of treatment (300mg once a week), compared to 29.5%, 11.5%, 

and 3.3% of respective responses in the placebo group.23 These results have also been 

confirmed in two large phase III studies with dupilumab (SOLO1 and SOLO2) in 671 and 

708 moderate-to-severe AD patients, respectively (Table 2). Weekly doses of 300mg 

dupilumab (without concomitant topical glucocorticosteroids or calcineurin inhibitors) 

elicited a 72% and 69% improvement of baseline EASI, and 37% and 36% of patients 

achieved clearing or near-clearing of skin lesions, compared to only 10% and 8% in the 

placebo group (p<0.001).151

Current trials with monoclonal antibodies that exclusively target IL-13 (tralokinumab - 

NCT02347176, lebrikizumab - NCT02340234) will shed further light on the question 

whether IL-4 and IL-13 are redundant, or complementary, in the pathogenesis of AD. 

Blockade of IL-31 (BMS-981164), the Th2-associated itch cytokine,71 is also currently 

being investigated (NCT01614756).8 A single subcutaneous dose of CIM331 

(nemolizumab), a monoclonal antibody blocking IL-31 receptor A, was well tolerated in a 

phase I study in healthy volunteers and patients with AD, decreasing pruritus, sleep 

disturbance and topical use of glucocorticosteroids in the latter.152 Future studies should 

clarify the role of anti IL-31 treatment for AD disease activity, versus control of the itch 

associated with the disease.

The thymic stromal lymphopoietin (TSLP)-OX40 ligand (OX40L) pathway has recently 

been suggested to be an initiation factor for exacerbated Th2 immune activation.153,154 

Keratinocytes and Langerhans cells in lesional skin of AD patients were shown to highly 

express TSLP,155 triggering the expression of OX40L on dendritic cells. TSLP blockade is 

currently assessed in a phase I clinical trial (AMG-157, NCT00757042; MK-8226 

NCT01732510). OX40L and OX40 (a co-stimulatory receptor expressed on activated T 

cells) are important in generating and maintaining Th2 responses as well as in the 

development of adaptive and innate allergic inflammation.156 OX40-OX40L interaction has 

also been demonstrated in a variety of inflammatory conditions associated with allergy, 

including allergic asthma, rhinitis, and conjunctivitis.153,154 Blocking this Th2 biased 

costimulation might be a therapeutic target in the future, and is currently assessed in a 

clinical trial (NCT02683928).

The prostaglandin DP2 receptor CRTH2 (CD294), a G protein-coupled receptor expressed 

by CLA+ Th2 cells,157 has been shown to be important for allergic skin inflammation after 

epicutaneous antigen challenge.158,159 Polymorphisms in CRTH2 have been associated with 

allergic sensitization.160 CRTH2 blockade (Figure 2B) via the small molecules fevipiprant 
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(QAW039, NCT01785602) and OC000459 (NCT02002208) are currently being assessed in 

clinical trials.

While the efficacy of dupilumab proves the pathogenic role of type 2 immune responses in 

AD, the role of other cytokine pathways remains to be elucidated, as dupilumab not only 

reduces Th2 associated molecules such as CCL17, CCL18 and CCL26, but also strongly 

decreased mediators associated with Th17 and Th22 responses, such as S100A proteins, PI3/

elafin and IL-23p19 (Figure 4).24 Th17/IL-23 axis is up-regulated in AD patients and might 

have a role in AD development, in line with recent findings in a flaky tail mouse model 

showing that IL-4 signaling can be regulated by the IL-17 pathway,161 and the up-regulated 

Th17 responses in early-onset AD in children.114

Ustekinumab is an IL-12/IL-23p40 blocker inhibiting Th1 and Th17/Th22 responses, 

successfully used for the treatment of moderate-to-severe psoriasis.162 In a small phase II 

study163 using the FDA-approved psoriasis dosing, ustekinumab had clear and sustained 

clinical and molecular effects,163 but outcomes (as compared to the “placebo” arm) were 

likely obscured by the allowed background topical glucocorticosteroid use,21 and waning 

treatment effects after 8–10 weeks from each ustekinumab administration, suggesting under-

dosing of the drug. Interestingly, ustekinumab treatment in AD163 and alopecia areata 

patients164 induced significant reductions in Th2 axis, in addition to the expected reductions 

in Th1, Th17 and Th22 axes.

Since Th22 and Tc22 T-cells have been correlated with AD disease severity,32 and the Th22 

cytokine, IL-22, is involved in epidermal hyperplasia and barrier defects in AD,32,68 an anti 

IL-22 treatment might prove to be effective in chronic AD patients. This approach is 

currently being investigated using the IL22 blocking antibody ILV-094 (NCT01941537). 

Anti-IL-17 (secukinumab - NCT02594098) treatment is also being explored for AD in both 

intrinsic and extrinsic AD patients.68

Broader treatment approaches (Figure 2B) that show first, promising results, but need to be 

verified in larger, controlled studies, include apremilast (anti-phosphodiesterase 

(PDE)-4),165,166 JAK inhibition,167,168 and H4R antagonists.169

Apremilast, which showed treatment effects in psoriasis170 and is currently being evaluated 

in a controlled trial in AD (NCT02087943), inhibits PDE-4, thereby increasing the 

intracellular cAMP levels, which in turn results in a reduction in inflammatory mediators 

(e.g. IFN-γ, TNF-α, IL-12, IL-17, IL-23), and an increase in anti-inflammatory effects.15 

Crisaborole, a topical PDE-4 inhibitor, demonstrated a favorable safety profile and 

improvement in clinical disease severity in phase III studies, both in children and adults with 

AD.171

In AD, the JAK-STAT signaling pathway is thought to have multiple effects, including the 

induction of Th2 polarization and skin barrier disruption,172 the activation of eosinophils 

and B cell maturation, the upregulation of epidermal chemokines, and the downregulation of 

AMPs.173 Topical tofacitinib, a JAK1/3-inhibitor, showed promising results in a placebo 

controlled phase II trial.167 Several oral JAK 1 and 2 inhibitors are now in phase II trials in 
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moderate-to-severe AD patients (baricitinib - NCT02576938; PF-04965842 - 

NCT02780167).

The histamine H4 receptor has recently been identified to be involved in keratinocyte 

proliferation174 in patients with AD. ZPL389, a small molecule blocking this receptor, is 

currently evaluated in clinical trials for psoriasis (NCT02618616) and AD (NCT02424253). 

In AD, significant improvement of EASI and SCORAD over placebo have been announced 

in a congress report.8

Outlook

Currently, clinical trials with targeted therapeutics have become key in the advancement of 

understanding the pathophysiology of this debilitating skin disease. Both successful 

treatment approaches, as well as failing therapies, have profoundly increased our 

understanding of AD, and will help to shape future therapies, hopefully at a similar 

successful pace as seen for psoriasis in the last 15 years.
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Abbreviations

AD Atopic dermatitis

AMP Antimicrobial peptide

CLA Cutaneous lymphocyte antigen

CRTH2 Prostaglandin DP2 receptor

EASI Eczema Area and Severity Index

EDC Epidermal differentiation complex

FLG Filaggrin

GCS Glucocorticosteroid

HBD Human beta-defensin

H4R Histamine H4 receptor

ILC Innate lymphoid cells

IL4R Interleukin 4 receptor

JAK Janus kinase

NB-UVB Narrow-band ultraviolet B
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OX40L OX40 ligand

PDE Phosphodiesterase

PGD2 Prostaglandin D2

PI3 Peptidase inhibitor 3

SCORAD SCORing Atopic Dermatitis

STAT Signal Transducer and Activator of Transcription

TSLP Thymic stromal lymphopoietin

TSLPR Thymic stromal lymphopoietin receptor
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Figure 1. 
Schematic representation/activation levels of selected immune pathways and epidermal 

responses in lesional and non-lesional skin in (A) infant, (B) early-onset AD and (C) Asian 

AD, (D) compared to psoriasis. AMP Antimicrobial peptide. K16 Keratin 16.
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Figure 2. 
Targets of (A) biologics and (B) small molecules recently published or currently being 

assessed in clinical trials. AMP adenosine monophosphate; cAMP cyclic adenosine 

monophosphate; CREB cAMP response element-binding protein; CRTH2 Prostaglandin 

DP2 receptor; FFA Free fatty acids; H4R Histamine H4 receptor; JAK Janus kinase; NF-kB 
Nuclear factor kappa-light-chain-enhancer of activated B cells; PGD2 Prostaglandin D2; 

PKA Protein kinase A; STAT signal transducer and activator of transcription.
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Figure 3. 
Clinical responses in an AD patient before (A) and after (B) treatment with dupilumab 

300mg eow. Hallmarks of AD such as widely distributed erythema and excoriations are 

largely relieved after 16 weeks of treatment.
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Figure 4. 
Effects of dupilumab on lesional AD skin. (A) Schematic representation of pathways 

influenced by dupilumab treatment. (B) Summary heat map of quantitative RT-PCR mRNA 

expression changes in placebo, 150mg and 300mg dupilumab after 4 weeks of treatment. 

Values represent mean fold change (FCH) +/− SEM. *p<0.1, **p<0.05, ***p<0.01. Figure 

reproduced with permission of publisher from Hamilton et al.24 FLG Filaggrin; K16 Keratin 

16; LOR Loricrin; MMP12 Matrix metalloproteinase-12; PI3 Peptidase inhibitor 3; TSLPR: 

Thymic stromal lymphopoietin receptor.

Brunner et al. Page 26

J Allergy Clin Immunol. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Brunner et al. Page 27

Ta
b

le
 1

R
ec

en
t 

co
nt

ro
lle

d 
tr

ia
ls

 in
 A

D

C
R

T
H

2 
Pr

os
ta

gl
an

di
n 

D
2 

re
ce

pt
or

 2
; H

4R
 H

is
ta

m
in

e 
H

4 
re

ce
pt

or
; J

A
K

 J
an

us
 k

in
as

e;
 P

D
E

4 
Ph

os
ph

od
ie

st
er

as
e 

4;
 T

SL
P 

th
ym

ic
 s

tr
om

al
 ly

m
ph

op
oi

et
in

; 

T
SL

PR
 th

ym
ic

 s
tr

om
al

 ly
m

ph
op

oi
et

in
 r

ec
ep

to
r;

A
ge

nt
T

ra
de

 n
am

e
Ta

rg
et

D
ru

g
P

ha
se

M
an

uf
ac

tu
re

r
C

lin
ic

al
T

ri
al

s.
go

v

D
up

ilu
m

ab
IL

-4
R
α

A
nt

i-
IL

-4
R
α

 m
A

b
Ph

as
e 

II
I 

pu
bl

is
he

d
R

eg
en

er
on

N
C

T
01

94
93

11

C
ri

sa
bo

ro
le

PD
E

4
To

pi
ca

l P
D

E
4 

In
hi

bi
to

r
Ph

as
e 

II
I 

pu
bl

is
he

d
Pf

iz
er

N
C

T
02

11
87

66
N

C
T

02
11

87
92

U
st

ek
in

um
ab

St
el

ar
a

IL
-1

2/
23

p4
0

A
nt

i-
p4

0 
m

A
b

Ph
as

e 
II

 p
ub

lis
he

d
Ja

ns
se

n
N

C
T

01
80

66
62

T
ra

lo
ki

nu
m

ab
IL

-1
3

A
nt

i-
IL

-1
3 

m
A

b
Ph

as
e 

II
 c

om
pl

et
ed

M
ed

Im
m

un
e

N
C

T
02

34
71

76

To
fa

ci
tin

ib
JA

K
1/

3
To

pi
ca

l J
A

K
1/

3 
In

hi
bi

to
r

Ph
as

e 
II

 p
ub

lis
he

d
In

no
va

de
rm

N
C

T
02

00
11

81

L
eb

ri
ki

zu
m

ab
IL

-1
3

A
nt

i-
IL

-1
3 

m
A

b
Ph

as
e 

II
 c

om
pl

et
ed

H
of

fm
an

n-
L

a 
R

oc
he

N
C

T
02

34
02

34

C
IM

33
1/

N
em

ol
iz

um
ab

IL
-3

1R
A

nt
i-

IL
-3

1R
 m

A
b

Ph
as

e 
II

 c
om

pl
et

ed
C

hu
ga

i
N

C
T

01
98

69
33

Q
G

E
03

1
Ig

E
A

nt
i-

Ig
E

 m
A

b
Ph

as
e 

II
 c

om
pl

et
ed

N
ov

ar
tis

N
C

T
01

55
26

29

A
pr

em
ila

st
O

te
zl

a
PD

E
4

PD
E

4 
In

hi
bi

to
r 

- 
O

ra
l s

m
al

l m
ol

ec
ul

e
Ph

as
e 

II
 c

om
pl

et
ed

C
el

ge
ne

N
C

T
02

08
79

43

Q
A

W
03

9/
Fe

vi
pi

pr
an

t
C

R
T

H
2

C
R

T
H

2 
In

hi
bi

to
r 

- 
O

ra
l s

m
al

l m
ol

ec
ul

e
Ph

as
e 

II
 c

om
pl

et
ed

N
ov

ar
tis

N
C

T
01

78
56

02

IL
V

-0
94

IL
-2

2
A

nt
i-

IL
-2

2 
m

A
b

In
 P

ha
se

 I
I

Pf
iz

er
N

C
T

01
94

15
37

G
B

R
83

0
O

X
40

A
nt

i-
O

X
40

 m
A

b
In

 P
ha

se
 I

I
G

le
nm

ar
k

N
C

T
02

68
39

28

Se
cu

ki
nu

m
ab

C
os

en
ty

x
IL

-1
7

A
nt

i-
IL

-1
7 

m
A

b
In

 P
ha

se
 I

I
N

ov
ar

tis
N

C
T

02
59

40
98

O
C

00
04

59
C

R
T

H
2

C
R

T
H

2 
In

hi
bi

to
r 

- 
O

ra
l s

m
al

l m
ol

ec
ul

e
In

 p
ha

se
 I

I
A

to
pi

x
N

C
T

02
00

22
08

B
ar

ic
iti

ni
b

JA
K

1/
2

Ja
k1

/2
 in

hi
bi

to
r 

– 
O

ra
l s

m
al

l m
ol

ec
ul

e
In

 P
ha

se
 I

I
E

li 
L

ill
y

N
C

T
02

57
69

38

PF
-0

49
65

84
2

JA
K

1/
2

Ja
k1

/2
 in

hi
bi

to
r 

– 
O

ra
l s

m
al

l m
ol

ec
ul

e
In

 P
ha

se
 I

I
Pf

iz
er

N
C

T
02

78
01

67

Z
PL

38
9

H
4R

H
is

ta
m

in
e 

H
4 

re
ce

pt
or

 in
hi

bi
to

r 
– 

O
ra

l s
m

al
l m

ol
ec

ul
e

Ph
as

e 
II

 c
om

pl
et

ed
Z

ia
rc

o 
Ph

ar
m

a
N

C
T

02
42

42
53

B
M

S-
98

11
64

IL
-3

1
A

nt
i-

IL
-3

1 
m

A
b

Ph
as

e 
I 

co
m

pl
et

ed
B

M
S

N
C

T
01

61
47

56

A
M

G
15

7/
Te

ze
pe

lu
m

ab
T

SL
P

A
nt

i-
T

SL
P 

m
A

b
Ph

as
e 

I 
co

m
pl

et
ed

A
m

ge
n

N
C

T
00

75
70

42

M
K

-8
22

6
T

SL
PR

A
nt

i-
T

SL
PR

 m
A

b
In

 P
ha

se
 I

M
er

ck
N

C
T

01
73

25
10

J Allergy Clin Immunol. Author manuscript; available in PMC 2018 April 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Brunner et al. Page 28

Ta
b

le
 2

St
ud

y 
re

su
lt

s 
fr

om
 t

w
o 

in
de

pe
nd

en
t,

 r
an

do
m

iz
ed

, p
la

ce
bo

-c
on

tr
ol

le
d,

 p
ha

se
 3

 t
ri

al
s 

of
 id

en
ti

ca
l d

es
ig

n 
(S

O
L

O
1 

an
d 

SO
L

O
 2

)

16
 w

ee
ks

 tr
ea

tm
en

t, 
ra

nd
om

iz
ed

 1
:1

:1
 to

 s
ub

cu
ta

ne
ou

s 
du

pi
lu

m
ab

 3
00

m
g 

w
ee

kl
y 

(Q
W

),
 e

ve
ry

 o
th

er
 w

ee
k 

(Q
2W

),
 o

r 
pl

ac
eb

o.
 I

n 
ad

di
tio

n,
 e

ac
h 

pa
tie

nt
 

ra
nd

om
iz

ed
 to

 d
up

ilu
m

ab
 r

ec
ei

ve
d 

a 
si

ng
le

 lo
ad

in
g 

do
se

 o
f 

60
0m

g 
on

 d
ay

 1
. E

A
SI

 E
cz

em
a 

A
re

a 
an

d 
Se

ve
ri

ty
 I

nd
ex

; E
A

SI
-7

5 
Pr

op
or

tio
n 

of
 p

at
ie

nt
s 

w
ith

 

an
 E

A
SI

 im
pr

ov
em

en
t f

ro
m

 b
as

el
in

e 
at

 w
ee

k 
16

 o
f 

at
 le

as
t 7

5%
; I

G
A

 I
nv

es
tig

at
or

’s
 G

lo
ba

l A
ss

es
sm

en
t; 

L
S 

le
as

t-
sq

ua
re

s;
 N

R
S 

nu
m

er
ic

al
 r

at
in

g 
sc

al
e;

 

w
ks

 w
ee

ks
;

SO
L

O
 1

SO
L

O
 2

A
ll 

co
m

pa
ri

so
ns

Pa
tie

nt
s 

en
ro

lle
d

67
1

70
8

Pr
im

ar
y 

en
d 

po
in

t (
16

w
ks

):
 I

G
A

 o
f 

0/
1 

– 
cl

ea
r/

al
m

os
t c

le
ar

D
up

ilu
m

ab
 Q

2W
85

 (
38

%
)

84
 (

36
%

)

P<
0.

00
1

D
up

ilu
m

ab
 Q

W
83

 (
37

%
)

87
 (

36
%

)

Pl
ac

eb
o

23
 (

10
%

)
20

 (
8%

)

K
ey

 s
ec

on
da

ry
/c

op
ri

m
ar

y 
en

d 
po

in
t (

16
w

ks
):

 E
A

SI
-7

5

D
up

ilu
m

ab
 Q

2W
11

5 
(5

1%
)

10
3 

(4
4%

)

P<
0.

00
1

D
up

ilu
m

ab
 Q

W
11

7 
(5

2%
)

11
5 

(4
8%

)

Pl
ac

eb
o

33
 (

15
%

)
28

 (
12

%
)

L
S 

m
ea

n 
%

 c
ha

ng
e 

(±
SE

) 
in

 E
A

SI
 f

ro
m

 b
as

el
in

e 
(1

6w
ks

)

D
up

ilu
m

ab
 Q

2W
−

72
.3

±
2.

6
−

67
.1

±
2.

5

P<
0.

00
1

D
up

ilu
m

ab
 Q

W
−

72
.0

±
2.

6
−

69
.1

±
2.

5

Pl
ac

eb
o

−
37

.6
±

3.
3

−
30

.9
±

3.
0

L
S 

m
ea

n 
%

 c
ha

ng
e 

fr
om

 b
as

el
in

e 
in

 p
ea

k 
sc

or
e 

on
 N

R
S 

fo
r 

pr
ur

itu
s 

(1
6w

ks
)

D
up

ilu
m

ab
 Q

2W
−

51
.0

±
2.

5
−

44
.3

±
2.

3

P<
0.

00
1

D
up

ilu
m

ab
 Q

W
−

48
.9

±
2.

6
−

48
.3

±
2.

4

Pl
ac

eb
o

−
26

.1
±

3.
0

−
15

.4
±

3.
0

J Allergy Clin Immunol. Author manuscript; available in PMC 2018 April 01.


	Abstract
	Introduction
	The emerging immune map of AD
	AD shows phenotypic variations
	Pediatric versus adult AD – Different immune phenotypes on a common Th2 background
	AD as a systemic disease
	Targeted therapies as milestones in understanding pathogenesis
	Outlook
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Table 1
	Table 2

