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Data-driven discovery of partial differential equations

Samuel H. Rudy,'* Steven L. Brunton,? Joshua L. Proctor,? J. Nathan Kutz'

We propose a sparse regression method capable of discovering the governing partial differential equation(s) of
a given system by time series measurements in the spatial domain. The regression framework relies on sparsity-
promoting techniques to select the nonlinear and partial derivative terms of the governing equations that most
accurately represent the data, bypassing a combinatorially large search through all possible candidate models.
The method balances model complexity and regression accuracy by selecting a parsimonious model via Pareto
analysis. Time series measurements can be made in an Eulerian framework, where the sensors are fixed spa-
tially, or in a Lagrangian framework, where the sensors move with the dynamics. The method is computationally
efficient, robust, and demonstrated to work on a variety of canonical problems spanning a number of scientific
domains including Navier-Stokes, the quantum harmonic oscillator, and the diffusion equation. Moreover, the
method is capable of disambiguating between potentially nonunique dynamical terms by using multiple time
series taken with different initial data. Thus, for a traveling wave, the method can distinguish between a linear
wave equation and the Korteweg-de Vries equation, for instance. The method provides a promising new tech-
nique for discovering governing equations and physical laws in parameterized spatiotemporal systems, where
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first-principles derivations are intractable.

INTRODUCTION

Data-driven discovery methods, which have been enabled in the
past decade by the plummeting cost of sensors, data storage, and com-
putational resources, have a transformative impact on the sciences, fa-
cilitating a variety of innovations for characterizing high-dimensional
data generated from experiments. Less well understood is how to un-
cover underlying physical laws and/or governing equations from time
series data that exhibit spatiotemporal activity. Traditional theoretical
methods for deriving the underlying partial differential equations
(PDEs) are rooted in conservation laws, physical principles, and/or
phenomenological behaviors. These first-principles derivations lead
to many of the canonical models ubiquitous in physics, engineering,
and the biological sciences. However, there remain many complex sys-
tems that have eluded quantitative analytic descriptions or even charac-
terization of a suitable choice of variables (for example, neuroscience,
power grids, epidemiology, finance, and ecology). We propose an alter-
native method to derive governing equations based solely on time series
data collected at a fixed number of spatial locations. Using innovations
in sparse regression, we discover the terms of the governing PDE that
most accurately represent the data from a large library of potential can-
didate functions. Measurements can be made in an Eulerian framework,
where the sensors are fixed spatially, or in a Lagrangian framework,
where the sensors move with the dynamics. We demonstrate the success
of the method by rediscovering a broad range of physical laws solely
from time series data.

Methods for data-driven discovery of dynamical systems (1) in-
clude equation-free modeling (2), artificial neural networks (3), non-
linear regression (4), empirical dynamic modeling (5, 6), normal form
identification (7), nonlinear Laplacian spectral analysis (8), modeling
emergent behavior (9), and automated inference of dynamics (10-12).
In this series of developments, seminal contributions leveraging sym-
bolic regression and an evolutionary algorithm (13, 14) were capable
of directly determining nonlinear dynamical system from data. More
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recently, sparsity (15) has been used to robustly determine, in a highly
efficient computational manner, the governing dynamical system
(16, 17). Both the evolutionary (14) and sparse (16) symbolic regres-
sion methods avoid overfitting by selecting parsimonious models that
balance model accuracy with complexity via Pareto analysis. The
method we present is able to select, from a large library, the correct
linear, nonlinear, and spatial derivative terms, resulting in the identi-
fication of PDEs from data. Only those terms that are most informa-
tive about the dynamics are selected as part of the discovered PDE.
The innovation presented here is critically important because it effi-
ciently handles spatiotemporal data, which is a fundamental charac-
teristic of many canonical models. Previous sparsity-promoting methods
are able to identify ordinary differential equations (ODEs) from data
but are not able to handle spatiotemporal data or high-dimensional
measurements (16). Our novel methodology has several advantageous
practical characteristics: Measurements can be collected in either a
fixed or moving frame (Eulerian or Lagrangian), allowing for a broad
application to a variety of experimental data; the algorithm can also
efficiently handle high-dimensional data through innovative sampling
strategies. The algorithm, PDE functional identification of nonlinear dy-
namics (PDE-FIND), is applied to a wide range of canonical models.

RESULTS
We consider a parameterized and nonlinear PDE of the general form

”t:N(uvuxvuxxv"'vxvu) (1)

where the subscripts denote partial differentiation in either time or
space, and N(-) is an unknown right-hand side that is generally a non-
linear function of u(x, ), its derivatives, and parameters in y. Our ob-
jective is to construct N(-) given time series measurements of the
system at a fixed number of spatial locations in x. A key assumption
is that the function N(-) consists of only a few terms, making the func-
tional form sparse relative to the large space of possible contributing
terms. As an example, Burgers’ equation (N = —uu, + pu,,) and the
harmonic oscillator (N = —iux? — ifiu,,/2) each have two terms.
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Thus, given the large collection of candidate terms for constructing
PDEs, we use sparse regression methodologies to determine which
right-hand-side terms are contributing to the dynamics without an in-
tractable (np-hard) combinatorial brute-force search across all possible
term combinations.

Upon discretization, the right hand side of Eq. 1 can be expressed
as a function of U, which is the discrete version of u(x, t) and its de-
rivatives, through the matrix ©(U, Q), where the column vector Q
contains any additional input terms to the right hand side. Each col-
umn of the library @(U, Q) corresponds to a specific candidate term
for the governing equation, as shown in Fig. 1 (1b). The PDE evolu-
tion can be expressed in this library as follows

(2)

Each nonzero entry in & corresponds to a term in the PDE, and for
canonical PDEs, the vector & is sparse, meaning that only a few
terms are active. We explicitly show in Materials and Methods how
to construct @(U, Q) and solve for the vector &, thus identifying the
terms in the PDE.

Discovering the Navier-Stokes equations

Figure 1 demonstrates the algorithmic procedure for successfully
identifying the correct PDE dynamics for a given set of measurements
from a physical system. Specifically, fluid flow around a cylinder is
simulated at a given Reynolds, and measurements of the vorticity
and velocity can be densely or sparsely sampled to correctly recon-
struct the well-known Navier-Stokes equations. Remarkably, the coef-
ficients of the PDE and Reynolds number are identified within a

fraction of a percent accuracy. This figure represents our innovative
mathematical structure that combines sparse regression, a library of
potential functional forms, and parsimonious model selection.

Figure 1 also demonstrates that, for large data sets, such as those
generated from two- and three-dimensional problems, PDE-FIND
can be effectively used on subsampled data. This distinction is funda-
mentally important because full-state measurements are often compu-
tationally and experimentally prohibitive to collect and may also make
the regression needlessly expensive. We randomly select a set of spatial
points and uniformly subsample in time, resulting in the use of only a
fraction of the data set. Mathematically, this amounts to ignoring a
fraction of the rows in the linear system U, = (U, Q)&, as illustrated
in Fig. 1 (2a and 2b). Although we only use a small fraction of the
spatial points in the linear system, nearby points are needed to eval-
uate the derivative terms in the library. The derivatives are computed
using a small number of spatially localized points near each mea-
surement position via polynomial interpolation. Therefore, whereas
subsampling uses only a small fraction of the points in the regression,
we are using local information around each measurement.

Previous sparse identification algorithms (16) faced a number of
challenges: They were not able to handle subsampled spatial data,
and the algorithm did not scale well to high-dimensional measure-
ments. Standard model reduction techniques such as proper orthogonal
decomposition (POD) were used to overcome the high-dimensional
measurements, allowing for a lower-order ODE model to be con-
structed on energetic POD modes. This procedure resembles the
standard Galerkin projection onto POD modes (I8). In contrast, the
PDE-FIND algorithm identifies a PDE directly from subsampled mea-
surement data.
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Fig. 1. Steps in the PDE functional identification of nonlinear dynamics (PDE-FIND) algorithm, applied to infer the Navier-Stokes equations from data. (1a)
Data are collected as snapshots of a solution to a PDE. (1b) Numerical derivatives are taken, and data are compiled into a large matrix @, incorporating candidate terms
for the PDE. (1¢) Sparse regressions are used to identify active terms in the PDE. (2a) For large data sets, sparse sampling may be used to reduce the size of the problem.
(2b) Subsampling the data set is equivalent to taking a subset of rows from the linear system in Eq. 2. (2c) An identical sparse regression problem is formed but with

fewer rows. (d) Active terms in & are synthesized into a PDE.
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Sensors moving with the dynamics

As a second demonstration of the method, we consider one of the
fundamental results of the early 20th century concerning the relation-
ship between random walks (Brownian motion) and diffusion. The
theoretical connection between these two was first made by Einstein
in 1905 (19) and was part of the Annus Mirabilis papers, which lay the
foundations of modern physics. We use the method proposed here to
sample the movement of a random walker, which is effectively a
Lagrangian measurement coordinate, to verify that it can reproduce
the well-known diffusion equation. By biasing the random walk, we
can also produce the generalization of advection-diffusion in one
dimension. Figure 2 shows the success of the method in identifying
the correct diffusion model from a random walk trajectory. Given a
sufficiently long time series with high enough resolution, the method
produces the heat equation that describes the temporal evolution of
the probability distribution function. It remains an open question
how one might estimate the length of time series necessary to derive
the underlying PDE. However, Fig. 2C suggests that a Pareto analysis,
where the error drops sharply, may serve as a practical guide.

This example is important in that the measurements are now moving
with the dynamics of the underlying governing equations. Specifically,
measurements are made in the frame of the random walker. For many
physical and engineering systems, fixed measurement locations may be
impractical to achieve. This is relevant for applications such as ocean
monitoring, where the change in spatial location of buoys due to ocean
currents can be informative about the underlying dynamical properties
of the system. These systems represent a Lagrangian framework for sen-
sor placement and data-driven discovery of dynamics.

Disambiguating dynamical systems
A third canonical example is the Korteweg—de Vries (KdV) equation
modeling the unidirectional propagation of small-amplitude, long or
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Fig. 2. Inferring the diffusion equation from a single Brownian motion. (A) Time
series is broken into many short random walks that are used to construct histo-
grams of the displacement. (B) Brownian motion trajectory following the diffusion
equation. (C) Parameter error (Hé — & x||1) versus length of known time series.
Blue symbols correspond to correct identification of the structure of the diffusion
model U; = Clyy.
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shallow-water waves. Discovered first by Boussinesq in 1877 and later
developed by Korteweg and de Vries in 1895, it was one of the earliest
models known to have soliton solutions. One potential viewpoint of
the equation is as a dispersive regularization of Burgers’ equation. The
KdV evolution is given by

U + 6Ully + Uy = 0 (3)

with soliton solutions u(x,t) = (c/2) sech?[(v/c/2)(x — ct — xo)],
which propagate with a speed proportional to their amplitude c. If
one observes a single propagating soliton, it would be indistinguishable
from a solution to the one-way wave equation u, + cu, = 0. Hence, it
presents a challenge to PDE-FIND, which would select the sparsest
representation, in this case, the one-way wave equation. This ambigu-
ity in selecting the correct PDE is rectified by constructing time series
data for more than a single initial amplitude. Figure 3 demonstrates
the evolution of two KdV solitons of differing amplitudes, which en-
ables the unique determination of the governing PDE (Eq. 3).

Discovery for canonical PDE models

Table 1 applies the methodology proposed to a wide range of canon-
ical models from mathematical physics and engineering sciences. The
PDE:s selected represent a wide range of physical systems, displaying
both Hamiltonian (conservative) dynamics and dissipative nonlinear
dynamics along with periodic to chaotic behavior. Aside from the
quantum oscillator (third row), all the dynamics observed are strongly
nonlinear. Each example is also identified after the addition of Gauss-
ian noise to the data set, which significantly complicates accurate dif-
ferentiation and library building. Remarkably, the method is able to
discover each physical system even if significantly subsampled spatial-
ly. The space and time sampling used (data set in C"*™), along with
the accuracy in recovering the PDE parameters with and without
noise, are detailed in Table 1. This highlights the broad applicability
of the method and the success of the technique in discovering
governing PDEs. Moreover, it demonstrates that a wide range of dis-
tinct physical observations can be captured by the regression
framework, thus allowing the method to be broadly applied across
the sciences, where spatiotemporal activity dominates.

U = 6UUL + Ugpy

WA v

Fig. 3. Inferring nonlinearity via observing solutions at multiple amplitudes.
(A) Example two-soliton solution to the KdV equation. (B) Applying our method to
a single soliton solution determines that it solves the standard advection equa-
tion. (C) Looking at two completely separate solutions reveals nonlinearity.
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Table 1. Summary of regression results for a wide range of canonical models of mathematical physics. In each example, the correct model structure is
identified using PDE-FIND. The spatial and temporal sampling of the numerical simulation data used for the regression is given along with the error produced in
the parameters of the model for both no noise and 1% noise. In the reaction-diffusion system, 0.5% noise is used. For Navier-Stokes and reaction-diffusion, the
percent of data used in subsampling is also given. NLS, nonlinear Schrédinger; KS, Kuramoto-Sivashinsky.

PDE Form

Error (no noise, noise)

Discretization

’ KdV

us + 6’U/LLZ + Uzgz = 0

140.2%,7 + 5% 2€[—30, 30], n =512, t€[0, 20], m=201

4 ‘ Burgers

Ut + Uy — EUgy = 0

0.15+0.06%, 0.8 + 0.6%

2€[—8, 8], n = 256, t€[0, 10], m =101

& Schrodinger

. 1 2
Ut + Uz — Fu=0

0.25 £ 0.01%, 10 + 7%

z€[—7.5,7.5],n. =512, t€[0, 10],m = 401

& s

tug + %um + |[ulPu=0

0.05+0.01%,3 + 1%

xz€[—5, 5], n =512, t€[0, 7], m =501

I .

Ut + Uz + Uge + Uzzae = 0

1.3+ 1.3%, 52+ 1.4%

z€[0, 100], n.= 1024, t€[0, 100], m = 251

uz = 0.1V2u + NA)u — w(A)v
vy = 0.1V20 + w(A)u + A(A)v
A?2=u2 0% w=—BAZ \=1— A2

4

U@ Reaction
v

0.02+0.01%, 3.8 £2.4%

z, y€[—10, 10], n = 256, t€[0, 10], m =201
subsample 1.14%

Navier- w4 (u- V)w = ﬁVQW

- —= Diffusion
(Y

Stokes

1+£0.2% , 7+ 6%

z€]0, 9], ne =449, y€(0, 4], n, =199,
€0, 30], m = 151, subsample 2.22%

DISCUSSION

PDE-FIND is a viable, data-driven tool for modern applications,
where first-principles derivations may be intractable (for example,
neuroscience, epidemiology, and dynamical networks) but where
new data recordings and sensor technologies are revolutionizing our
understanding of physical and/or biophysical processes on spatial do-
mains. To our knowledge, this is the first data-driven regression tech-
nique that explicitly accounts for spatial derivatives in discovering
physical laws, thus significantly broadening the applicability to a wide
variety of complex systems. Traditional approaches, such as reduc-
ing the model to a local linear embedding based on collected data,
fall short in achieving the fundamental goal of research scientists:
to construct a nonlinear model from observations, which charac-
terizes the observed dynamics and generalizes to unsampled areas
of parameter space. For instance, we can discover the Navier-Stokes
equations at Re = 100 and a particular boundary condition and use
this knowledge to accurately simulate new boundary conditions
where no data were collected. As in the study of Brunton et al. (16),
it may also be possible to sample the dynamics at a range of parameter
values and discover the fully parameterized system. The goal would
be to collect data at a range of flow conditions corresponding to dif-
ferent Reynolds numbers, and infer both the parameterized Navier-
Stokes equations and the Reynolds number, which is an exciting
avenue of future research.

The Kuramoto-Sivashinsky equation is particularly challenging to
identify with low error on the coefficients and illustrates a limitation of
the method. Although the correct terms are identified, there is sub-
stantial coefficient error in the case with noise. The true and identified
models are given by

Rudy et al., Sci. Adv. 2017;3:e1602614 26 April 2017

Up + Uty + Upy + U = 0 (True)
u; + 0.46uu, + 0.481,, + 0.49Uy 0y = 0 (Identified)
The high precision but substantial underestimation of the coeffi-
cients indicates significant error in numerical differentiation.

The success of this methodology suggests that many concepts from
statistical learning can be integrated with traditional scientific comput-
ing and dynamical systems theory to discover dynamical models from
data. This integration of nonlinear dynamics and machine learning
opens the door for principled versus heuristic methods for model con-
struction, nonlinear control strategies, and sensor placement techniques.

MATERIALS AND METHODS

The innovations presented here were built upon three key ideas: (i)
overcomplete libraries of candidate functions to represent the dynam-
ics, (ii) sparse regression for selecting a small number of terms, and
(iii) parsimonious selection of the governing equations via Pareto
analysis. The architecture is enabled by the ability to accurately com-

pute derivatives even when noise is present in the measurements. Each
method is detailed below.

Building libraries of candidate terms

The sparse regression and discovery method (see Fig. 1) begins by first
collecting all the spatial time series data into a single column vector
U € C™™, representing data collected over m time points and 7 spa-
tial locations. We also consider any additional input such as a known
potential for the Schrédinger equation, or the magnitude of complex
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data, in a column vector Qe C"*™. Next, a library ©(U, Q) € C"*P
of D candidate linear and nonlinear terms and partial derivatives
for the PDE is constructed. Derivatives are taken either using finite
differences for clean data or when noise is added with polynomial
interpolation. The candidate linear and nonlinear terms and partial
derivatives are then combined into a matrix @(U, Q), which takes
the form, for example

OU,Q=[1U0U1*..Q..U Ul ..] (4)

Each column of ® contains all of the values of a particular candi-
date function across all of the mn space-time grid points on which
data are collected. Therefore, if we have data on an n x m grid (for
example, a 256 x 100 grid represents 256 spatial measurements at
100 time points) and have 50 candidate terms in the PDE, then
@ e C*¢100%30 The time derivative U, was also computed and re-
shaped into a column vector. Figure 1 demonstrates the data col-
lection and processing. As an example, a column of (U, Q) may
be qzuxx.

If we assume that @ is an overcomplete library, meaning © has
a sufficiently rich column space that the dynamics will be in its range,
then the PDE should be well represented by Eq. 2 with a sparse vector
of coefficients &. This is equivalent to picking enough candidate
functions that the full PDE may be written as a weighted sum of library
terms. For an unbiased representation of the dynamics, we would sim-
ply solve the least-squares problem for & However, even with the only
error coming from numerical roundoff, the least-squares solution may
be inaccurate. In particular, & will have predominantly nonzero values,
suggesting a PDE with every functional form contained in the library.
Regression problems similar to Eq. 2 result in least-squares problems
that are poorly conditioned. Error in computing the derivatives (already
an ill-conditioned problem with noise) will be magnified by numerical
errors when inverting ©. Thus, a least-squares regression radically changes
the qualitative nature of the inferred dynamics.

Sparse regression

In general, we require the sparsest vector & that satisfies Eq. 2 with a
small residual. Instead of an intractable combinatorial search through
all possible sparse vector structures, a common technique was to relax
the problem to a convex £' regularized least squares (15); however, this
tends to perform poorly with highly correlated data. Instead, we ap-
proximate the problem using candidate solutions to a ridge regression
problem with hard thresholding, which we call sequential threshold
ridge regression (STRidge in Algorithm 1). For a given tolerance and
A, this gives a sparse approximation to &. We iteratively refined the
tolerance of Algorithm 1 to find the best predictor based on the selec-
tion criteria

£ = argénin [|0(U, Q)¢ — Ut||§ + ex(O(UQ))|[E][o (5)

where k(@) is the condition number of the matrix @, indicating stron-
ger regularization for ill-posed problems. Penalizing [IElly discourages
overfitting by selecting from the optimal position in a Pareto front.
Other methods for finding sparse solutions to least-squares problem
exist. Greedy algorithms were shown to exhibit good performance on
sparse optimization problems including PDE-FIND but, in some cases,
were less reliable than STRidge (20). Although STRidge with normaliza-
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tion works well on almost all of the examples we tested, we do not
make the claim that it is optimal. If additional information regard-
ing the PDE is known (for instance, if we know that one of the
terms is nonzero), then this may be incorporated into the penalty
on the coefficients.

Numerical evaluation of derivatives

Proper evaluation of the numerical derivatives is the most challenging
and critical task for the success of the method. This is particularly true
when the discretized solution contains measurement noise. Given the
well-known accuracy problems with finite-difference approximations,
we experimented with a number of more robust numerical differen-
tiation methods. Smoothing with a Gaussian kernel and Tikhonov dif-
ferentiation were both investigated but were difficult to implement
because of the difficulty in controlling the bias-variance trade-off.
Spectral differentiation with thresholding for high-frequency terms
was also considered but not used because of its restriction to periodic
domains and the difficulty in implementing an appropriate threshold-
ing function. The most reliable and robust method for computing de-
rivatives from noisy data was polynomial interpolation (2I). For each
data point where we compute a derivative, a polynomial of degree P
was fit to greater than P points, and derivatives of the polynomial were
taken to approximate those of the numerical data. Points close to the
boundaries, where it was difficult to fit a polynomial, were not used in
the regression. This method is far from perfect; data close to the
boundaries were difficult to differentiate, and we discovered that this
could strongly influence the results of PDE-FIND. For a more prin-
cipled but involved approach to polynomial differentiation, see the
study of Bruno and Hoch (22).

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/3/4/e1602614/DC1

Introduction

PDE-FIND

Examples

Limitations

fig. S1. Steps in the PDE functional identification of nonlinear dynamics (PDE-FIND) algorithm,
applied to infer the Navier-Stokes equations from data.

fig. S2. The numerical solution to the KdV equation plotted in space-time.

fig. S3. The numerical solution to the Burgers’ equation plotted in space-time.

fig. S4. The magnitude of the numerical solution to the Schrédinger’s equation plotted in
space-time.

fig. S5. The magnitude of the numerical solution to the nonlinear Schrédinger’s equation
plotted in space-time.

fig. S6. The numerical solution to the Kuramoto-Sivashinsky equation plotted in space-time.
fig. S7. The numerical solution to the reaction-diffusion equation plotted in space-time.

fig. S8. A single snapshot of the vorticity field is illustrated for the fluid flow past a cylinder.
fig. S9. A single stochastic realization of Brownian motion.

fig. S10. Five empirical distributions, illustrating the statistical spread of a particle’s expected
location over time, are presented.

fig. 11. Five empirical distributions, illustrating the statistical spread of a particle’s expected
location over time, are presented.

fig. $12. The numerical solution to the misidentified Kuramoto-Sivashinsky equation.

fig. S13. The numerical solution to the misidentified nonlinear Schrédinger equation.

fig. S14. Results of PDE-FIND applied to Burgers’ equation for varying levels of noise.

table S1. Summary of regression results for a wide range of canonical models of mathematical
physics.

table S2. Summary of PDE-FIND for identifying the KdV equation.

table S3. Summary of PDE-FIND for identifying Burgers’ equation.

table S4. Summary of PDE-FIND for identifying the Schrédinger equation.

table S5. Summary of PDE-FIND for identifying the nonlinear Schrédinger equation.

table S6. Summary of PDE-FIND for identifying the Kuramoto-Sivashinsky equation.

table S7. Summary of PDE-FIND for identifying reaction-diffusion equation.
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table S8. Summary of PDE-FIND for identifying the Navier-Stokes equation.
table S9. Accuracy of PDE-FIND on Burgers' equation with various grid sizes.
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