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Abstract

Parasites such as Plasmodium and Toxoplasma possess a vestigial plastid homologous to the 

chloroplasts of algae and plants. The plastid (known as the apicoplast; for apicomplexan plastid) is 

non-photosynthetic and very much reduced, but has clear endosymbiotic ancestry including a 

circular genome that encodes RNAs and proteins and a suite of bacterial biosynthetic pathways. 

Here we review the initial discovery of the apicoplast, and recount the major new insights into 

apicoplast origin, biogenesis and function. We conclude by examining how the apicoplast can be 

removed from malaria parasites in vitro, ultimately completing its reduction by chemical 

supplementation.
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1. Introduction

The discovery of the vestigial plastid (apicoplast) in apicomplexan parasites such as malaria 

and Toxoplasma gondii gave us new insight into the origin of Phylum Apicomplexa, a large 

group of parasites. We now know that the group originated from photosynthetic ancestors, 

probably similar to modern dinoflagellate zooxanthellae. We have also learned that the 

apicoplast contains an ensemble of bacteria-like pathways to replicate and express its 

genome plus an anabolic capacity generating fatty acids, haem and isoprenoid precursors. 

Apicoplasts are essential, and perturbing them usually results in parasite death, thus making 

apicoplast metabolism an attractive target for drugs. Here, we focus on the discovery of the 

apicoplast, its origin and integration, the insights that tell what it does, and we examine how 

that knowledge has helped complete the reduction of the apicoplast that evolution didn’t 

quite manage.

2. Discovery of the apicoplast

The first inklings that the apicoplast even existed were images of circular, extrachromosomal 

DNA molecules in Plasmodium lophurae, a malarial parasite of ducks, published by Kilejian 
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(1975). Similar circles were described from T. gondii by Borst et al. (1984). The cross-

shaped configuration of the circles was due to the presence of inverted sequence repeats, 

which is a hallmark of plastid DNA (Williamson et al., 1985), but at the time, no one 

suspected that this genome could be from a plastid. Because malaria parasites were regarded 

as protozoa, the obvious presumption was that this small circular genome was the parasite’s 

mitochondrial genome (Kilejian, 1975; Williamson et al., 1985; Gardner et al., 1988). But 

all that changed when a linear molecule of 6 kb that encoded classical mitochondrial genes 

was subsequently found (Suplick et al., 1988; Aldritt et al., 1989; Vaidya et al., 1989; 

Feagin, 1992). Initial speculation held that both the linear and the circular genomes were 

mitochondrial, but sequence data from the circular genome challenged this concept in a 

strange and unanticipated way. Sequence of the 35 kb circle from Plasmodium falciparum 
proved that the genome did indeed have prokaryotic ancestry, but instead of the anticipated 

α-proteobacterial ancestry of the mitochondrial endosymbiont ancestor, the genes had closer 

ancestry to plastids of plants and algae (Gardner et al., 1991a,b, 1993, 1994).

Essentially the BLAST matches for the 35 kb sequences returning best matches to plastid 

genes were telling the mitochondrial DNA hunters that these aren’t the genes you’re looking 
for. Gradually they began to entertain the hypothesis that the circular genome was perhaps 

some cryptic relict from a plastid (Suplick et al., 1990; Gardner et al., 1991a,b; Wilson et al., 

1991; Howe, 1992; Wilson, 1993; Williamson et al., 1994). Eventually, the complete 

sequence of the P. falciparum 35 kb circular genome revealed that it was plastid-like in every 

detail, except that it lacked any genes involved in photosynthesis (Wilson et al., 1996). At 

about the same time, electron microscope in situ hybridisation localised the 35 kb circular 

genome to a four membrane bound compartment in T. gondii that was clearly not the 

mitochondrion (McFadden et al., 1996; Köhler et al., 1997). The inescapable conclusion was 

that this compartment was a vestigial plastid – likely once photosynthetic – that persists in 

intracellular parasites of animals. How could this be?

3. Origin of the apicoplast

The evolutionary origin of the apicoplast was contentious for many years but is now firmly 

resolved. Initially there was disagreement about the number of bounding membranes, but it 

is now widely accepted that there are four (Fig. 1). The number of membranes is important 

to understand the evolutionary origin of the apicoplast, since more than two membranes is a 

hallmark of secondary endosymbiosis, in which the plastid is derived by eukaryote/ 

eukaryote endosymbiosis (Gould et al., 2008). In addition to the controversy about the 

number of membranes, a vigorous debate about the evolutionary affinity of the 

endosymbiont that became the apicoplast ensued (Wilson, 1993; Williamson et al., 1994; 

Köhler et al., 1997; McFadden et al., 1997; Funes et al., 2002, 2004; Cai et al., 2003; Waller 

et al., 2003; Waller and Keeling, 2006). Two alternatives were presented: the engulfed alga 

was either a member of the green algae (a relative of Chlamydomonas or Chlorella for 

instance), or was a red alga from a large group of seaweeds and unicellular algae with red 

pigmentation, perhaps the best known of which is Porphyra, the seaweed used to wrap 

savoury rice in the Japanese dish known as nori. The issue, which was important for an 

overall understanding of the origins and evolutionary history of this large parasitic group, 
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remained moot until a genuine missing link came along in the form of a photosynthetic 

ancestor of the apicomplexan parasite lineage, namely Chromera velia (Moore et al., 2008).

Chromera velia is one of the most important protist discoveries in decades. In addition to 

being a totally new group of algae (probably a new Phylum) with unique pigments, structure 

and ecology, it also served to clarify the origin of apicomplexan parasites and confirm the 

hypothesis that they arose from symbiotic algae that converted to parasitism (McFadden and 

Waller, 1997; Okamoto and McFadden, 2008). When the apicoplast was first identified, we 

proposed that an ancestor of the obligate intracellular parasites belonging to Phylum 

Apicomplexa was photosynthetic and lived as a mutualistic symbiont within invertebrate 

animals, similar to the way zooxanthellae dinoflagellates are symbionts in corals and other 

invertebrates (McFadden and Waller, 1997). Chromera velia is apparently the living 

descendant of such an ancestor (Okamoto and McFadden, 2008; Woo et al., 2015). 

Chromera velia is thought to live in corals, is sister to the Apicomplexa, and has a 

photosynthetic plastid bounded by four membranes (Moore et al., 2008; Janouskovec et al., 

2010; Obornik et al., 2011). Importantly for the apicoplast origin debate, Chromera plastids 

share the same ancestry as apicoplasts and dinoflagellate plastids; Chromera (and related 

algae) undoubtedly harbour a red algal endosymbiont (Janouskovec et al., 2010). The 

apicoplast thus derives from an engulfed red alga and was acquired before dinoflagellates 

and the Apicomplexa diverged (Moore et al., 2008; Janouskovec et al., 2010). Since 

dinoflagellates diverged from the Apicomplexa at about the same time as animals arose, we 

can assume that the earliest invertebrates had symbionts, probably ancestors of modern 

symbiotic dinoflagellates and apicomplexan parasites, and that these symbionts were 

originally photosynthetic. At some stage a parasitic branch (the Apicomplexa) lost 

photosynthesis but (largely) retained the plastid, which we now know as the apicoplast. 

Intriguingly, symbiotic dinoflagellates reside within a membranous vacuole (the 

symbiosome) in animal host cells, and apicomplexan parasites reside within a membranous 

vacuole (the parasitophorous vacuole) in animal host cells. It will be interesting to learn 

whether there are homologies between how these vacuoles are established and maintained 

for their two different types of residents.

4. Integration of the apicoplast into the parasite

When the common ancestor of the Apicomplexa and dinoflagellates initially acquired its red 

algal endosymbiont, the alga would have been a fully autonomous, free-living eukaryotic 

organism. Today the endosymbiont is much reduced, having lost its nucleus, cytoplasm, wall 

and cytoskeleton. We understand a good deal about this reduction process thanks to the 

existence of two transitional forms, namely cryptomonads and chlorarachniophytes, in 

which the reduction process after secondary endosymbiosis is only partially complete 

(Douglas et al., 2001; Gilson et al., 2006; Curtis et al., 2012). Unlike these transition forms 

though, all that remains of the red algal endosymbiont that became the apicoplast is the 

genome and stroma of its plastid plus four bounding membranes. Counting from the inside, 

the four membranes are believed to represent the two membranes bounding the original red 

algal plastid, the plasma membrane of the endosymbiont (referred to as the periplastid 

membrane), and the outermost membrane is believed to derive from the host’s 

endomembrane, perhaps even representing the phagocytotic vacuole into which the original 
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red alga symbiont was initially taken up. For an extended discussion of the multiple 

membranes readers are directed to Gould et al. (2015). Apicoplasts completely lack the 

pigment-loaded thylakoid membranes, which makes sense as they are non-photosynthetic. 

Clearly, there has been substantial reduction of the endosymbiont, and the theory of 

endosymbiosis holds that many of these reductive steps follow a pattern.

The pattern of endosymbiont reduction is believed to occur in at least three steps: (i) the host 

must tap the endosymbiont’s resources, (ii) division of the endosymbionts must be regulated 

to optimise numbers, and (iii) the partners must somehow be locked together as a single unit 

of selection. Once these three steps are achieved, the endosymbiont can be regarded as a 

stable, integrated part of the host cell – a genuine organelle. The first step is believed to have 

occured through insertion of sugar transporters into the membrane(s) bounding the 

endosymbiont, allowing the host to tap photosynthate from its guest (Weber et al., 2006; 

Gross and Bhattacharya, 2009). Intriguingly, when the ancestor of the Apicomplexa 

converted to parasitism and stopped photosynthesising, this “tap” had to be switched to work 

in the opposite direction. The cytosol of the parasite now supplies the plastid rather than vice 

versa, and a useful analogy to this has been plant cells in darkness, which also have to “feed” 

their plastids when they can’t photosynthesise (Mullin et al., 2006).

Regulating endosymbiont division, thought to be the second step in taming the 

endosymbiont, is no less crucial. If the endosymbiont multiplies too rapidly within the host 

cell, it could overrun it. Conversely, if the host cells grow faster than their endosymbiont, not 

all hosts would inherit an endosymbiont and new endosymbionts would need to be acquired 

each generation. Again, a transition form in which partially integrated symbionts are only 

unilaterally inherited helps us understand this process (Okamoto and Inouye, 2005). We 

understand the division machinery, and dissemination of plant plastids during cytokinesis, 

quite well, and control is largely managed by ancient bacterial division genes now relocated 

by endosymbiotic gene transfer to the host nucleus (Okazaki et al., 2010). Apicoplasts 

however don’t use this same machinery, which is curious because much of it (FtsZ, ARC 

and Min systems) derives from bacterial binary fission and is evolutionarily conserved in 

derivative plastid of plants and algae (Vaishnava and Striepen, 2006). Apicoplasts do 

resemble plant plastids in using a dynamin like pinchase during division (Striepen et al., 

2000; van Dooren et al., 2009), but how they divide and are distributed is not well 

understood. Apicoplasts have a physical connection between their genome and the centrioles 

in the cytoplasm, which neatly ensures crucial partitioning of the organelle genome into 

daughter cells, and this machinery likely works in similar ways in unicellular algae (Francia 

et al., 2012).

5. Protein translocation

The last step in the domestication of an endosymbiont is to lock it in; to prevent it from 

reverting to a free-living existence. We understand both the drivers and mechanisms of lock-

in quite well. Selection favours lock-in whenever the partnership between endosymbiont and 

host is evolutionarily more fit than the independence. A simple lock-in scenario is for the 

endosymbiont to lose autonomy and become dependent on the host. Plastids and 

mitochondria are all only partially autonomous; none can survive solo. The obvious lock-in 
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mechanism is loss of genetic autonomy of the endosymbiont by gene transfer, and plastids 

(including apicoplasts) have clearly lost DNA to the host cell nucleus (Martin and 

Herrmann, 1998; Howe et al., 2000; Huang et al., 2003; Martin, 2003). This loss is not 

detrimental so long as the plastid (even an incipient one) remains within its host, and the 

host supplies the plastid with the required gene products from the DNA the plastid has lost. 

In the case of the apicoplast about 480 genes in the P. falciparum nucleus derive from the 

endosymbiont, and their products are believed to be targeted into the apicoplast (Gardner et 

al., 2002; Foth and McFadden, 2003; Ralph et al., 2004).

The mechanism to restore essential factors to the plastid that are encoded by nuclear genes 

involves elaborate targeting mechanisms, nowhere more so than in the case of the four 

membrane-bound apicoplasts. Targeting is canonically achieved by address tags encoded 

within the cargo protein, and these tags engage with machinery and translocons that escort 

the gene product to its appropriate destination in the cell. For apicoplasts this tag is typically 

a two part N-terminal extension that is fortunately very distinctive in P. falciparum and 

Toxoplasma, allowing bioinformatic prediction of targeting (Foth et al., 2003). The 

trafficking and processing machinery from the parasite cytosol to the apicoplast is also quite 

well characterised with much of it deriving from the plastid of the red alga (van Dooren et 

al., 2002, 2008; McFadden and van Dooren, 2004; Kalanon and McFadden, 2008; Glaser et 

al., 2012; Sheiner et al., 2015) and some innovative retooling of endomembrane translocons 

to deal with the residual plasma membrane of the red alga (Sommer et al., 2007; Agrawal et 

al., 2009, 2013; Hempel et al., 2009; Spork et al., 2009; Bullmann et al., 2010; van Dooren 

and Striepen, 2013). Several proteins are also resident in the outer apicoplast membrane, but 

little is understood about how they get there other than that the mechanism differs from the 

canonical N-terminal tag system (Mullin et al., 2006; Karnataki et al., 2007b, 2009; Lim et 

al., 2009, 2016).

6. Function of the apicoplast

What does the apicoplast do? The short answer is that it makes things the parasite cannot do 

without. But exactly what these things are, and why the parasite cannot survive without 

them, are not fully clarified. Scrutiny of the apicoplast genome provided no real clue as to 

the purpose of the organelle (Wilson et al., 1996; Köhler et al., 1997). Photosynthesis had 

clearly been lost, but no functional pathways, beyond self-perpetuation, could be identified 

in the handful of genes encoded by the organelle genome (Wilson et al., 1996; Köhler et al., 

1997). Meanwhile, pharmacological and genetic perturbation of the apicoplast was clearly 

shown to lead to parasite death (Fichera and Roos, 1997; He et al., 2001), robustly 

demonstrating that the organelle is essential. Efforts then turned to finding this essential 

function. It was here that the genome projects underway for T. gondii and P. falciparum 
became an invaluable resource. Genes for an apicoplast fatty acid biosynthesis (FAS) system 

indicated that the organelle probably made lipids (Waller et al., 1998), refuting the widely 

held belief that malaria parasites were unable to synthesise fatty acids de novo. As it turns 

out, malaria parasites do not make appreciable amounts of fatty acids during their blood 

stage (the stage analysed biochemically) and the machinery becomes active only in later life 

cycle phases (see below). An apicoplast pathway to synthesise isopentenyl diphosphate 

(IPP) – a precursor of isoprenoids for prenylation of proteins, ubiquinone side chains, 
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dolichols and modification of tRNAs (Ralph et al., 2004) – was also identified from the 

genome data (Jomaa et al., 1999; Guggisberg et al., 2014a; Imlay and Odom, 2014; 

Armstrong et al., 2015; Imlay et al., 2015). Subsequent data mining revealed that the 

apicoplast of malaria parasites makes iron sulphur complexes (Seeber, 2002, 2003; Ralph et 

al., 2004) and cooperates with the mitochondrion in the synthesis of haem (Ralph et al., 

2004; Sato et al., 2004; van Dooren et al., 2006; Nagaraj et al., 2008, 2009a,b; Shanmugam 

et al., 2010). These four anabolic roles for the apicoplast hinted that synthesis of crucial 

precursors was the essential role of the apicoplast, but the genes did not tell us exactly what 

was made and how it was essential. The genome did, however, allow construction of 

hypothetical maps of these plastid-like pathways (Ralph et al., 2004), and much of the detail 

of these maps has been confirmed through biochemical reconstructions, molecular genetics 

and metabolomics (reviewed in Lim and McFadden, 2010; Sheiner et al., 2013).

These anabolic apicoplast pathways are fuelled with phosphorylated three carbon sugars 

imported from the parasite’s cytosolic glycolytic pathway. Plastid-like transporters (plastidic 

phosphate translocators, pPTs), located in the membranes of the apicoplast, import reduced 

carbon compounds in a manner analogous to plant plastids in the dark (Mullin et al., 2006; 

Karnataki et al., 2007a; Brooks et al., 2010; Lim et al., 2010). Knock down of the apicoplast 

translocator gene in Toxoplasma resulted in immediate death of the parasites (Brooks et al., 

2010). Curiously, there are two pPT-type translocators in the Plasmodium apicoplast that are 

apparently located in different membranes (Mullin et al., 2006), and the translocator in the 

outer membrane appears to be essential, whereas the one putatively located in the inner 

membrane is dispensable in rodent malaria, Plasmodium berghei (Banerjee et al., 2012). In 

summary, we now know that the apicoplast harbours a collection of plastid-like metabolic 

pathways that are supplied with carbon, energy and reducing power in a manner identical to 

a non-photosynthetic plant or algal plastid. The next challenge was to tease out which of 

these pathways is essential, when in the life cycle a pathway is essential, and why.

7. The apicoplast as a drug target

When first discovered, the apicoplast engendered much excitement as a novel target for 

therapeutic drugs (Gardner et al., 1991a, b; McFadden et al., 1996; Wilson et al., 1996). The 

cyanobacterial pathways therein, and the novel ways it was supplied with carbon, energy, 

reductants and proteins, are all very distant from human host metabolism and cellular 

processes, leaving room to design or discover specific inhibitors that would perturb the 

apicoplast but have no side effects (Jomaa et al., 1999; McFadden and Roos, 1999; Ralph et 

al., 2001, 2004; Gornicki, 2003; Seeber, 2003; Goodman and McFadden, 2007; Goodman et 

al., 2007).

The apicoplast is essentially a reduced bacterium inside the parasite. This modified 

bacterium, now an endosymbiont, possesses a circular genome that has to be replicated and 

expressed (Wilson et al., 1996). Numerous antibacterials target these processes, and many 

are parasiticidal, and several (clindamycin, azirthromycin and doxycycline) are used as an 

antimalarial therapy or prophylaxis (Wiesner et al., 2008). Here we examine the more recent 

insights.
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Apicoplast type II fatty acid biosynthesis initially attracted intense drug attention when it 

was discovered (Waller et al., 1998). A flurry of reports described various putative inhibitors 

of FASII as parasiticidal, but in hindsight we now recognise that all these particular 

inhibitors are off-target (Shears et al., 2015). The crunch for FASII as a therapeutic drug 

target came with gene knockout studies showing that malaria parasites can do without vital 

enzymes of the fatty acid biosynthesis pathway during the red blood cell portion of their life 

cycle, implying that parasites do not need to synthesise fatty acids at this stage (Yu et al., 

2008; Vaughan et al., 2009; Lindner et al., 2014). Nevertheless, FASII is crucial for the liver 

stage in rodent malarias and for the proper development of mosquito stage oocysts in human 

P. falciparum (Yu et al., 2008; Vaughan et al., 2009; van Schaijk et al., 2013).

Ablation of apicoplast FASII in the blood stages was the first hint that not all pathways 

would be essential in all malaria life cycle stages. By contrast, apicoplast fatty acid 

biosynthesis is essential in T. gondii in mice since ablation of the acyl carrier protein in vivo 

clears the infection (Mazumdar et al., 2006). It remains uncertain why so many bacterial 

FASII inhibitors kill blood stage malaria parasites even though they have mostly been shown 

to be off-target (Shears et al., 2015). One suggestion is that these compounds could be 

targeting cytosolic fatty acid elongases used to modify scavenged fatty acids (Shears et al., 

2015). Another open question is whether FASII can be targeted in liver stages, where it is 

essential in rodent malarias (and probably human malaria parasites) for prophylaxis.

Following the revelation that apicoplast FASII is dispensable in three species of blood stage 

malaria parasites, it was also revealed that apicoplast-localised steps of the multi 

compartment haem biosynthesis pathway (Ralph et al., 2004) were similarly dispensable 

during the blood stage (Nagaraj et al., 2013; Ke et al., 2014; Sigala and Goldberg, 2014; 

Smith et al., 2014). In rodent and human malaria parasites the final enzyme for haem 

biosynthesis is essential for oocysts (Nagaraj et al., 2013; Ke et al., 2014; Sigala and 

Goldberg, 2014). Haem biosynthesis and FASII were thus off the table for malaria blood 

stage therapy. Nevertheless, the apicoplast was clearly essential because perturbation of its 

housekeeping activities kills the parasite (Dahl et al., 2006; Goodman et al., 2007; Dahl and 

Rosenthal, 2008; Goodman and McFadden, 2012). What could be the essential function?

8. Making the apicoplast disappear

Gene knock out studies showed that FASII and haem biosynthesis seemed unessential at the 

blood stage, and the role of Fe:S cluster synthesis is widely thought to be one of self-

maintenance to generate reducing equivalents (Seeber, 2002, 2003; Ralph et al., 2004). This 

left IPP synthesis as the prime candidate for indispensable role of the apicoplast, during the 

blood stage at least. Moreover, isoprenoid precursor biosynthesis carried out by the 

prokaryotic MEP pathway is the only biosynthetic pathway conserved among apicomplexan 

parasites that harbor apicoplasts. Both Babesia and Theileria spp. contain an apicoplast, but 

their genomes lack type II fatty acid and haem biosynthetic genes and have significantly 

reduced suf genes required for Fe:S cluster biosynthesis (Brayton et al., 2007; Sato, 2011). 

Notably, both Babesia and Theileria parasites bypass liver stage infection in the mammalian 

host and only infect blood cells (typically, red blood cells in the case of Babesia and white 

blood cells in the case of Theileria). The reduction of apicoplast metabolism in Babesia and 
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Theileria spp. may have been the first clue that the blood-stage function of the Plasmodium 
apicoplast is limited, since the survival of these closely-related apicomplexan parasites in 

blood cells only requires an intact isoprenoid precursor biosynthetic pathway and an Fe:S 

cluster biosynthetic pathway, albeit somewhat reduced. The latter is presumably to provide 

enzymes in the MEP pathway with cofactor and therefore is only required as long as the 

MEP pathway is essential. Further evolutionary evidence that the parasite apicoplast is “on 

its way out” is the complete loss of the apicoplast in Cryptosporidium spp. parasites (Zhu et 

al., 2000; Riordan et al., 2003; Abrahamsen et al., 2004; Huang et al., 2004). In fact, 

Cryptosporidium was the first and, until recently (Gornik et al., 2015), only known example 

of plastid loss in any eukaryote.

In the end, biochemistry accomplished what evolution had yet to complete in Plasmodium – 

the elimination of the apicoplast. It had been well established that inhibition of apicoplast 

genome expression by antibiotics, such as doxycycline, disrupts apicoplast replication and 

inheritance during parasite cell division (Dahl et al., 2006). As a consequence, antibiotic-

treated parasites form daughter cells that lack apicoplasts and are not viable. Remarkably, 

these ‘apicoplast-minus’ parasites survive and continue to replicate when IPP, the product of 

isoprenoid precursor biosynthesis, is added to the growth media (Yeh and DeRisi, 2011). 

Thus IPP functionally replaces the apicoplast. This simple chemical rescue demonstrated 

that the only essential metabolic function of the apicoplast in blood-stage Plasmodium is the 

biosynthesis of isoprenoid precursors. IPP supplementation can apparently rescue parasites 

from any apicoplast dysfunction, making it a nifty tool to study apicoplast biology including 

identification of antimalarials with unknown targets as anti-apicoplast agents (Wu et al., 

2015), and even perturbations of essential gene products (e.g. expression of a dominant-

negative SufC, a member of the iron sulphur complex generating system in the apicoplast) 

(Gisselberg et al., 2013). Thus far it has only been possible to rescue in vitro cultured P. 
falciparum parasites, and the level of IPP required is remarkably high (200 μM) (Yeh and 

DeRisi, 2011). It remains to be established if this high concentration requirement in media is 

indicative of poor uptake by the parasites.

Given the evolutionary feat of taming an endosymbiont, and the complex cellular pathways 

required to maintain it, subsequently losing the organelle seems almost unimaginable. But 

that appears to be the trajectory of the apicoplast. A single metabolic product is the barrier to 

apicoplast loss in blood-stage Plasmodium and likely all life stages of Babesia and Theileria. 

The degeneration of the apicoplast can be compared with remnant mitochondria called 

mitosomes that have been described in several eukaryotes (Tovar et al., 1999; Riordan et al., 

2003). Although mitochondria are often recognised as the “powerhouse” of the cell, their 

function in oxidative phosphorylation of ATP is often the first to go, and the mitosomes of 

Giardia and Trichomonas appear only to preserve Fe–S cluster biosynthesis, while lacking 

even a mitochondrial genome (van der Giezen and Tovar, 2005). Thus far only one organism 

is known to have lost the mitochondrion completely (Karnkowska et al., 2016). Similarly, a 

recent reconstruction of the evolution of apicoplast function by deciphering the pattern of 

loss of photosynthesis, plastid genomes, and plastid organelles amongst diverse organisms in 

this secondary plastid lineage showed that plastid retention is strongly linked to dependency 

on plastid isoprenoid precursor biosynthesis (Janouskovec et al., 2015; Waller et al., 2016). 

Once Cryptosporidium overcame this dependence by scavenging isoprenoid intermediates 
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from the host, it lost its apicoplast (Bessoff et al., 2013). It was recently demonstrated that 

Hematodinium spp. also found a non-plastid source for isoprenoids and is the only other 

documented case of plastid loss (Gornik et al., 2015). Thus, isoprenoid precursor 

biosynthesis appears to be the “last person standing” in the devolution of the apicoplast. It is 

important to note however that the other biosynthesis pathways in Plasmodium apicoplasts 

(haem and FASII), make the organelle indispensable for completion of the life cycle and 

hence ability to spread from host to host. Until Plasmodium parasites can find a way to 

scavenge IPP, haem and fatty acids in sufficient quantities across each stage of their life 

cycle, the apicoplast will remain indispensable and therefore a vulnerability susceptible to 

drug attack.

Apicoplast IPP synthesis is also essential for gametocytogenesis in P. falciparum and 

subsequent development of the oocyst phase in mosquitoes (Wiley et al., 2015). Whether 

IPP synthesis is essential in liver stage human malarias, and therefore of potential utility as a 

prophylaxis target, is moot with one group claiming an effect for fosmidomycin in P. berghei 
liver stages (Nair et al., 2011) and another group claiming no effect (Baumeister et al., 

2011).

For now, Plasmodium and other apicomplexan human pathogens (T. gondii, Babesia spp.) 

still require plastid isoprenoid precursor biosynthesis and are therefore obliged to retain their 

apicoplasts (Nair et al., 2011; Yeh and DeRisi, 2011; Agrawal et al., 2013). This makes the 

IPP synthesis pathway a viable drug target for treatment of acute malaria and other 

apicomplexan parasitic infections, with the exception of Cryptosporidium. Fosmidomycin, 

an inhibitor of the MEP pathway, has been tested in several clinical trials for malaria 

treatment (Borrmann et al., 2004a,b, 2005, 2006). Resistance to fosmidomycin has been 

selected for in vitro (Guggisberg et al., 2014b). Unexpectedly, resistance did not involve 

mutations in deoxyxylulose 5-phosphate reductoisomerase, the target of fosmidomycin, but 

an alteration in processing of the upstream substrate in the parasite cytoplasm (Guggisberg 

et al., 2014b). By developing therapies that prevent the apicoplast from fulfilling this role, 

we can take advantage of the parasite’s dependence on an organelle of extremely limited and 

vanishing function.

9. Conclusion

Since it was first identified in 1996, the apicoplast has revealed how the parasitic Phylum 

Apicomplexa arose, why antibacterials such as doxycycline kill malaria, and how an 

endosymbiotic alga can go from a photosynthetic asset to a vestigial organelle. Despite its 

diminishing role over evolutionary time, the apicoplast remains vital for making a few 

essential molecules unable to be scavenged in sufficient quantity from at least one of the 

hosts in the digenetic life cycle. Despite the fact that the apicoplast has a single, simple role 

in the blood stage of Plasmodium parasites (making IPP), it continues to have tremendous 

potential for therapeutic intervention because anything that blocks this role kills the parasite.
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Fig. 1. 
Transmission electron micrographs of the apicoplast in red blood cell stages of the human 

malaria parasite Plasmodium falciparum. (A) Cross section of an apicoplast (Ap) with four 

bounding membranes visible sitting close to the nucleus (Nu), which is bound by two 

membranes. (B) Longitudinal section of a dumbell shaped apicoplast (Ap) in close 

proximity to the mitochondrion (Mit) and the nucleus (Nu). Scale bars: 200 nm.
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