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Abstract

The global signal is widely used as a regressor or normalization factor for removing the effects of 

global variations in the analysis of functional magnetic resonance imaging (fMRI) studies. 

However, there is considerable controversy over its use because of the potential bias that can be 

introduced when it is applied to the analysis of both task-related and resting-state fMRI studies. In 

this paper we take a closer look at the global signal, examining in detail the various sources that 

can contribute to the signal. For the most part, the global signal has been treated as a nuisance 

term, but there is growing evidence that it may also contain valuable information. We also examine 

the various ways that the global signal has been used in the analysis of fMRI data, including global 

signal regression, global signal subtraction, and global signal normalization. Furthermore, we 

describe new ways for understanding the effects of global signal regression and its relation to the 

other approaches.
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1. Introduction

The development of methods to mitigate the effects of noise has played a key role in the 

development of functional magnetic resonance imaging (fMRI). One approach that has 

gained widespread adoption is the removal of a global signal component, either as a 

preprocessing step or through its inclusion as a nuisance regressor in general linear model 

analyses. This approach is commonly referred to as global signal regression (GSR). 

However, the use of GSR has sparked a great deal of controversy, especially in the analysis 
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of resting-state fMRI studies where some investigators routinely remove the effects of the 

global signal while others argue strongly against its use (Murphy et al., 2009; Fox et al., 

2009; Saad et al., 2012; Burgess et al., 2016; Murphy and Fox, 2016).

At first glance, it is rather surprising that such a simple signal should spark so much debate. 

After all the computation of the global signal is straightforward – it is simply the mean of 

the voxel time-series within the brain. What could be controversial about projecting out the 

effects of this global signal? We believe that there are several factors that have led to the 

continuing controversy. First, because the global signal is a “catch-all” signal that reflects 

the contributions of a variety of noise components, it is not always clear what exactly GSR is 

removing. Second, while GSR is a fairly straightforward mathematical operation, it still 

involves the regression of a mean time course (with hundreds of time points or more) from 

each voxel time series in the brain (ranging from tens to hundreds of thousands of voxels), 

where the exact numbers of time points and voxels depends on the duration and the temporal 

and spatial resolutions of the acquisition. Due to the large size of the signal space, it can be 

difficult to understand the effects of GSR not only on the signals themselves but also on the 

relation (e.g. correlation) between signals from different regions. Furthermore, it has not 

been clear how well the arguments made with relatively low-dimensional simulations apply 

to the high-dimensional datasets obtained in experiments. Finally, with the growing evidence 

supporting a link between neural activity and the global signal, there has been some concern 

that GSR may also be removing information that is of interest.

Our goal in this paper is to provide a deeper understanding of the characteristics of the 

global signal and its role in the analysis of fMRI studies. We will begin by examining the 

components of the global signal, focusing primarily on the contributions due to low-

frequency drifts, motion, physiological activity, and neural fluctuations. We will then review 

the use of the global signal in the analysis of both task-related and resting-state fMRI 

studies. Although our focus will be on GSR, we will also examine related methods such as 

global signal subtraction and global signal normalization. We will conclude with a look at 

emerging methods for understanding both the global signal and GSR.

2. What is the global signal?

In this section, we review the basic properties of the global signal. Although the basic 

definition of the global signal is rather straightforward, we will see that there is considerable 

variability in the implementation of this definition. We will also build up an intuitive picture 

of the global signal as a time-varying measure of spatial homogeneity.

2.1. Computation of the global signal

The concept of the global signal was first introduced into the fMRI literature by Zarahn et al. 

(1997), who defined the global signal as the mean time course computed over all voxels 

within the brain. While the global signal can be calculated from the raw image time series, it 

is usually computed after some degree of preprocessing. However, the extent of the pre-

processing can vary greatly across studies. In some studies, the global signal is computed 

after the application of a minimal set of preprocessing operations, typically consisting of 

some combination of image registration, slice-timing correction, and spatial smoothing 
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(Power et al., 2014; Satterthwaite et al., 2013; Fox et al., 2005). For these studies, the global 

signal has been found to be most strongly correlated with signals from gray matter regions, 

with lower and more variable correlations observed for signals from white matter and 

ventricular regions (Power et al., 2014, 2016). In other studies, the global signal is calculated 

after minimal preprocessing and the removal of additional nuisance regressors, such as low-

frequency trends, motion-related regressors, and white matter and cerebrospinal fluid signals 

(Erdogan et al., 2016; He and Liu, 2012; Zarahn et al., 1997). When external measures of 

cardiac and respiratory activity are available, additional physiological noise regressors can 

be removed from the data prior to the computation of the global signal (Wong et al., 2012, 

2013).

Examples of the global signal from a representative scan previously analyzed in (Wong et 

al., 2013) are shown in Figure 1. Four different variations of the global signal are presented, 

corresponding to different sets of nuisance regressors, ranging from an empty set for the 

minimal preprocessing case (shown in blue) to a full complement of regressors, consisting of 

low-frequency, motion-related, physiological, and white matter and cerebrospinal fluid 

nuisance terms (shown in cyan). As the set of regressors is expanded, there is a clear 

decrease in the overall amplitude of the signal. This trend can also be seen in Figure 2, 

where we have plotted the global signal amplitudes from 30 scans using each of the four 

preprocessing variations applied to data from (Wong et al., 2013). Note that for the purpose 

of this paper and consistent with the terminology used in (Wong et al., 2013), the term GS 

amplitude will refer to the standard deviation of the GS computed across all time frames 

within a scan. There is a wide range of amplitudes in the minimally processed data, and this 

range decreases as the set of nuisance regressors is expanded. By normalizing the amplitudes 

in each set by their respective values in the minimally processed case (i.e. the GS amplitude 

obtained with each pre-processing approach was divided by the amplitude obtained with 

minimal pre-processing), we can gain a sense of the average percent variance explained by 

each set of regressors. On average, the low-frequency and motion regressors explain 48% of 

the variance of the global signal. The addition of physiological noise regressors explains an 

additional 31% of the variance. Further addition of white matter and cerebrospinal fluid 

regressors explains another 14% of the variance. On average, only 7% of the variance of the 

minimally processed global signals remains after the contributions of the complete set of 

nuisance regressors have been removed.

What determines which form of the global signal should be used? When the primary goal is 

to remove global effects from the data, then the minimally processed version is typically 

used and the global signal is included as an additional nuisance regressor term in a general 

linear model (GLM) analysis of the data (Power et al., 2014). In this case there is no need to 

remove the other nuisance regressors from the global signal, since the GLM analysis 

projects out the signal component that lies in the signal subspace spanned by all of the 

nuisance regressors (including the global signal). On the other hand, when the primary goal 

is to further our understanding of the neural components of the global signal, then it is 

desirable to project out nuisance components that are thought to be unrelated to neural 

activity (Wong et al., 2013). However, as we shall discuss in more detail below, the 
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determination of whether or not a nuisance component is unrelated to neural activity is not 

necessarily straightforward.

2.2. Normalization Options

Another source of variabilty in the computation of the global signal arises from different 

choices in the normalization of the blood oxygenation level dependent (BOLD) fMRI signal. 

As the raw fMRI signal from the scanner is acquired in arbitrary units, it is necessary to 

perform some type of normalization to assess the relative change in the signal (Goebel, 

2015). A common choice is to compute the percent BOLD signal change from some 

baseline value, as the percent signal change has a meaningful connection with brain 

physiology (Buxton et al., 2004). For task-related studies, the baseline value is typically 

computed as the average signal during a control condition, whereas for resting-state studies, 

the baseline value is usually computed as the mean signal over the entire scan. In some 

studies, the normalization is performed on a per-voxel basis, so that a unique baseline value 

from each voxel is used to compute the local percent change BOLD signal time series 

(Goebel, 2015). These normalized time series are then averaged to compute the global signal 

as described in (Wong et al., 2013; Murphy et al., 2009). In other studies (Fox et al., 2009; 

Power et al., 2014), the data (from all voxels and time points within a scan) are normalized 

so that the mean or mode of all the signals value is equal to a pre-specified scalar (typically 

either 100 or 1000). (Note that when the scalar is equal to 100, then subtracting 100 from the 

grand-mean scaled value yields a percent change value). This later approach is sometimes 

referred to as grand-mean scaling and is equivalent to the per-voxel normalization method 

when baseline values are constant across voxels. In general, baseline values are not constant 

across across voxels, reflecting spatial inhomogeneities associated with the acquisition and 

underlying brain anatomy. As a result, the global signals computed after per-voxel 

normalization and grand-mean scaling will not be exactly the same. However, in most cases 

the differences are relatively small because the variation in baseline values tends to be 

moderate and the effects of baseline values that are greater than the grand-mean will tend to 

cancel out the effects of lower baseline values. For example, let us consider three voxels 

each with a change of 10 arbitrary units from their respective baseline values of 900, 1000, 

and 1100, with a grand-mean value of 1000. With grand-mean scaling, the average percent 

change across voxels is simply ((910 + 1010 + 1110)/(3 · 1000)) − 1 = 1%. With per-voxel 

normalization, the average percent change across voxels is (10/900 + 10/1000 + 10/1100)/3 

= 1.01%. Nevertheless, care does need to be taken when using per-voxel normalization to 

avoid voxels with abnormally small baseline values (e.g. due to susceptibility-related signal 

dropouts) that can exhibit abnormally high percent signal changes (e.g. a 20% BOLD signal 

change would typically be considered abnormal and beyond what is expected from the 

underlying physiology). This can be achieved through the application of a lower threshold 

on the baseline values and an upper threshold on percent change values.

Another normalization approach that is less commonly used is the z-normalization approach 

(Carbonell et al., 2011) in which the mean from each voxel time series is normalized to have 

zero mean and unit variance. This approach is useful when looking at the spatial correlation 

structure of the data as the correlation coefficient between the z-normalized time series is 

simply given by the respective inner product (He and Liu, 2012). However, this 
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normalization approach eliminates the physiological meaning of the amplitude of the global 

signal and therefore is not recommended for studies in which the amplitude is compared 

across subjects or conditions.

2.3. The Global Signal as a Measure of Spatial Homogeneity

Because it is defined as the mean time course over the brain, the value of the global signal at 

each time point reflects the spatial homogeneity at that time. When the spatial homogeneity 

is high (i.e. most voxels are either positive or negative), then the voxel values sum 

constructively and the global signal will tend to take on either positive or negative values. 

On the other hand, when the spatial homogeneity is low (i.e. there are roughly equal 

proportions of positive and negative voxel values), the voxel values tend to cancel out and 

the global signal value will tend to zero. These basic properties of the global signal are 

demonstrated in Figure 8(a), where the BOLD fMRI images from a representative subject 

and slice are shown over 17 time points in the top row of panel (a), along with colored bars 

above the images indicating the value of the global signal at each time point. At time point 

82 the image is relatively homogeneous with negative values, leading to a large negative 

value for the global signal. At time point 94 the image is mostly positive with a large 

positive global signal value. In contrast, the images from time points 85 to 90 are all 

relatively heterogeneous with a roughly equal mix of negative and positive values. As a 

consequence the global signal value is relatively small at these time points. We will examine 

this property of the global signal more closely in Section 5.5.

While any source of signal or noise in the fMRI time series can contribute to the global 

signal, the simple arguments presented above suggest that those sources that give rise to 

spatially widespread effects will lead to the largest increases or decreases in the global 

signal. As a result, in discussing potential contributions to the global signal, we will focus on 

sources that tend to have a spatially widespread effect on the fMRI time series.

3. Nuisance Components in the Global Signal

In this section we describe the unwanted nuisance components that can contribute to the 

global signal. These are termed “nuisance” components because they are generally thought 

to reflect fluctuations unrelated to the underlying neural activity that is of interest. However, 

as we will discuss below in Subsection 4.6, the line between nuisance and information can 

sometimes be difficult to delineate. Tables 1 and 2 provide a summary of the primary signal 

sources that are discussed both in this section and in Section 4, which will consider 

components of the global signal that may contain information of interest.

3.1. Low Frequency Drift and System-Related Artifacts

Low-frequency drift refers to slow time-varying components in the fMRI time series with 

periods on the order of 60 seconds or more. A portion of the drift term can arise from system 

instabilities, such as a slow drift in the shim system leading to slow time-varying distortions 

and shifts of the acquired images (Foerster et al., 2005). However, for a well maintained 

system these effects should be fairly minimal (Glover et al., 2012; Liu et al., 2015). Low-

frequency drifts can also reflect slowly varying changes in brain physiology due to factors 

Liu et al. Page 5

Neuroimage. Author manuscript; available in PMC 2018 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



such as fatigue (Evans et al., 2015; Yan et al., 2009). Both the system-related and 

physiological sources can give rise to low-frequency signal drifts with widespread spatial 

extent, thus contributing to the overall global signal. Low-frequency drifts are typically 

treated as nuisance components and removed with either high pass filtering or the inclusion 

of low-frequency drift terms as regressors in the analysis process. Common choices for the 

regressor terms are the low-order Legendre polynomials (e.g linear and quadratic terms) and 

low-frequency sine and cosine terms (Friston et al., 1995a; Cox, 1996).

In addition to low-frequency drifts, there are a host of system-related artifacts that can 

contribute to the global signal (Liu, 2016; Power et al., 2016). These include instabilities in 

the radiofrequency and gradient subsystems. Power et al. (2016) reported that maps of the 

spatial distribution of the global signal can be effective for identifying scans with system 

artifacts. For example, they found that instabilities in the radiofrequency subsystem resulted 

in pronounced asymmetries in the spatial distribution maps. As with the low frequency 

drifts, these types of instabilities should be minimized in a well operating system.

3.2. Motion

Motion has long been recognized as a significant source of artifactual signal changes in both 

task-related and resting-state fMRI studies (Hajnal et al., 1994; Power et al., 2015; Liu, 

2016). As noted by Power et al. (2015) motion typically causes nearby voxels to act in the 

same manner (i.e. correlated signal changes), while for distant voxels the signal changes can 

be correlated or anti-correlated. Motion that gives rise to widespread and similar changes 

over the entire brain will lead to changes in the global signal. In addition, for resting-state 

fMRI, this type of motion will cause an increase in the magnitude of correlation estimates 

between distant voxels (Satterthwaite et al., 2013; Power et al., 2015). Power et al. (2016) 

reported the motion could account for up to 49% of the variance (across different scans) in 

the global signal amplitude (i.e. standard deviation of the global signal across a scan). When 

high-motion timepoints were excluded from the analysis, the percent variance explained 

decreased to 16%.

When examining framewise displacement signals (an index of the motion differences over 

time), Power et al. (2014) found that time periods with pronounced increases in framewise 

displacment were often, but not always, associated with both global signal increases and 

decreases. The global signal response to motion was found to be complex and multi-phasic 

with a great deal of variability between incidents. Decreases were observed more than 

increases, and sometimes lasted for tens of seconds after an increase in displacement. 

Similarly, Satterthwaite et al. (2013) found that displacement increases led to global signal 

decreases, with the size of the decrease scaling with the magnitude of the displacement, but 

found that the duration of the decreases was less than 6 seconds. Power et al. (2014) 

attributed the discrepancy to the fact that Satterthwaite et al. (2013) looked at the average 

effects of displacement, whereas their study looked at individual examples of the global 

signal response to motion, which were highly variable in their signal characteristics, 

reflecting differences in the timing and duration of the motion, the trajectory of the motion, 

and the relative signal intensities of the affected voxels (Power et al., 2015).
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It should be noted that Hallquist et al. (2013) found that a mismatch between the frequency 

contents of the data and the regressors used in preprocessing could also give rise to motion-

related global signal changes, but this mismatch has been largely addressed by changes to 

the preprocessing approaches used in the more recent studies discussed here (Power et al., 

2015).

3.3. Cardiac and Respiratory Components

The primary source of cardiac-induced signal change is thought to be cardiac pulsations, 

which can lead to dynamic changes in the relative distribution of brain tissue, blood, and 

cerebrospinal fluid (Dagli et al., 1999; Hu et al., 1995; Bhattacharyya and Lowe, 2004). As 

these pulsation-related artifacts are fairly localized to regions around the large arteries (Dagli 

et al., 1999; Glover et al., 2000; Restom et al., 2006) their contribution to the global signal 

can be limited. On the other hand, fluctuations in the cardiac rate have been shown to exhibit 

spatially widespread correlations with the resting-state fMRI signal (Shmueli et al., 2007). It 

has been proposed that the observed effects reflect low-frequency changes in cerebral blood 

flow and metabolism driven by the heart rate variations (Chang et al., 2009). The variations 

in heart rate are in turn tightly linked to fluctuations in respiratory activity (Power et al., 

2016). Furthermore, variations in pulse pressure are also coupled with respiratory activity 

and a recent study found that they may also contribute to global signal fluctuations (Power et 

al., 2016). The same study reported that 30% of the variance (across different scans) in the 

global signal amplitude (i.e. standard deviation of the global signal across a scan) could be 

explained by the standard deviation (across a scan) in the heart rate time course. When high-

motion timepoints were excluded from the analysis, the percent variance explained 

decreased to 13%.

A number of potential mechanisms have been proposed to account for the effect of 

respiratory activity on the fMRI signal (Liu, 2016). The mechanisms that are most likely to 

produce spatially widespread signal changes include magnetic susceptibility-related effects 

due to expansions and contractions of the chest cavity and walls, and bulk motion of the 

head related to the action of breathing (Brosch et al., 2002; Raj et al., 2001; Hu et al., 1995; 

Windischberger et al., 2002; Glover et al., 2000). In addition, the respiratory modulation of 

carbon dioxide levels (a potent vasodilator) can lead to dynamic variations in cerebral blood 

flow levels. These in turn give rise to widespread fluctuations in the BOLD fMRI signal that 

can contribute to the global signal (Birn et al., 2006; Wise et al., 2004). For example, Birn et 

al. (2006) found that the global signal was significantly correlated (r = −0.5; at a latency of 

8.8s) with changes in respiratory volume per time (RVT). Power et al. (2016) recently 

reported that 20% of the variance (across different scans) in the global signal amplitude (i.e. 

standard deviation of the global signal across a scan) could be explained by the standard 

deviation (across a scan) in the RVT time course. When high-motion timepoints were 

excluded from the analysis, the percent variance explained increased to 34%.

3.4. Vascular Components

He et al. (2010) observed that the BOLD signal in the large draining veins was highly 

correlated with the global signal, reflecting the fact that the signal in the draining veins 

reflects fluctuations in the average deoxyghemoglobin content from the upstream venules. 
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An example of this phenomenon is shown in Figure 3 where the global signal (computed 

after exclusion of the draining vein regions) is highly correlated with the signals from both 

the great vein of Galen and the sagittal sinus. He et al. (2010) noted that differences between 

the global and draining vein signals might be partly attributed to spatial variations in the 

hemodynamic delays between the venules and the draining veins. It was later shown that the 

hemodynamic delays computed between the BOLD time series from each voxel and either 

the global signal or the sagittal sinus signal were similar to the delays assessed using 

contrast-based perfusion MRI (Amemiya et al., 2014; Christen et al., 2015; Lv et al., 2013; 

Tong et al., 2016). This effect has been used to map hemodynamic delays in patients with 

Moyamoya disease and acute strokes (Amemiya et al., 2014; Christen et al., 2015; Lv et al., 

2013). Although the global signal is typically assessed using BOLD fMRI, it has also been 

shown that a significant global signal exists in arterial spin labeling MRI measures of 

cerebral blood flow (Dai et al., 2016), with an average amplitude of 7.6% relative to the 

baseline level of blood flow.

Recently, Erdogan et al. (2016) have shown that the global signal in the brain is significantly 

correlated (mean r = 0.51 assuming optimal lags) with functional near-infrared spectroscopy 

(fNIRS) measures of low frequency oscillations (LFO) in oxygenation levels in the fingertip, 

suggesting a systemic hemodynamic contribution to the global signal. In prior related work, 

the same research group had shown widespread correlations of peripheral fNIRS measures 

(both from the fingers and the toes) with resting-state fMRI signals in the brain (Tong et al., 

2012). Due to the high temporal sampling rate of the fNIRS measures, the authors were able 

to filter out the primary effects of cardiac and respiratory fluctuations from their fNIRS 

measures and focus on low-frequency signals (0.01 Hz to either 0.10 Hz in (Erdogan et al., 

2016) or 0.15 Hz in (Tong et al., 2012)). However, it is important to note that low pass 

filtering does not eliminate the potential low-frequency contributions due to cardiac and 

respiratory variability. The origins of the LFOs are not completely understood, but it has 

been proposed that they reflect fluctuations in systemic circulation signals, due in part to the 

complex dynamics associated with the regulation of blood pressure and flow (Erdogan et al., 

2016). As cardiac and respiratory functions are regulated by the autonomic nervous system, 

part of the correlation between the global signal and the peripheral LFO signal may reflect 

the direct effects of autonomic activity on fMRI signals in the brain.

3.5. Region-based Nuisance Components

When direct measures of physiological sources are not available, estimates obtained from 

large vessels, white matter, the ventricles, and soft tissues of the face have been used as 

proxy measures (Anderson et al., 2011; Behzadi et al., 2007; Lund et al., 2006; Curtis and 

Menon, 2014; Bianciardi et al., 2009; Jo et al., 2010). Two main approaches have been 

proposed: (1) use of the mean signal from a nuisance region as a regressor and (2) use of the 

top principal components from the nuisance regions. In comparing these approaches, 

Muschelli et al. (2014) found that the component-based approach performed better than the 

mean signal approach, partly reflecting the fact that component-based approaches can 

preserve information that may otherwise be averaged out when using the mean signal. A 

specific example of the second approach is the aCompCor method (Behzadi et al., 2007), in 

which an anatomical mask is used to define regions that consist almost entirely of either 
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white matter or cerebrospinal fluid, a principal components analysis is performed on the 

time series in each region, and the top components are then selected as noise regressors. This 

method has been shown to be effective for identifying and removing signal components due 

to cardiac fluctuations, respiratory activity, and subject motion. Yeo et al. (2015) reported 

that aCompCor regressors explained an average of 62% of the variance of the global signal 

variance in their study. Furthermore, Chai et al. (2012) found that aCompCor could reveal 

anti-correlations in resting-state fMRI data without the need for GSR. A potential limitation 

of the region-based approaches is that they often rely on effective segmentation of different 

tissue types (e.g. differentiating gray matter from white matter). Any errors in the 

segmentation process can lead to partial voluming effects, in which signals of interest (e.g. 

from gray matter) can leak into estimates of the nuisance components Jo et al. (2010); Power 

et al. (2016). In addition, emerging work regarding the potential detection of functional 

signals in white matter suggests that some level of caution may be needed when using white 

matter signals as proxies for noise (Gawryluk et al., 2014).

4. Information in the global signal

In the section above we reviewed a number of the “nuisance-like” components that can 

contribute to the global signal. Because these components comprise such a large fraction of 

the variance of the global signal, approaches that use the global signal as a “catch-all” 

regressor are highly effective for minimizing the contributions of these nuisance 

components. However, there is also growing evidence for the existence of a significant 

neural component in the global signal, suggesting that there may be valuable information 

that may be lost when the global signal is removed.

4.1. Global correlation between neuroelectrical and fMRI signals

In a study using simultaneous measures of local field potentials (LFP) and BOLD signals in 

a non-human primate model, Schölvinck et al. (2010) found widespread correlations 

between the LFP power fluctuations from single cortical electrodes and the resting-state 

BOLD signals measured across the entire cerebral cortex. Consistent patterns of global 

correlation were found for both upper gamma-range frequencies (40 to 80 Hz) and lower 

frequencies (2 to 15 Hz), with a stronger degree of coupling when the animals’ eyes were 

closed. Because of the widespread nature of the correlations, the authors concluded that 

there was a tight coupling between underlying neural activity and the global component of 

resting-state fMRI activity.

Wen and Liu (2016a) used a novel algorithm (Wen and Liu, 2016b) to separate broadband 

and oscillatory components in the power spectra of electrophysiological signals, and applied 

this approach to the analysis of simultaneous resting-state EEG-fMRI data acquired in 

humans. They found that the broadband fluctuations in EEG power (across a frequency 

range of 1 to 100 Hz and averaged across channels) showed a spatially widespread and 

positive correlation with the fMRI data, with a time lag of approximately 5 seconds between 

the EEG power and fMRI signal. They also found a spatially widespread but negative 

correlation between the EEG power and the fMRI data with a time lag of about 12.5 

seconds, but the reason for the appearance of both positive and negative correlations was 
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deemed to be “entirely mysterious”. A potential limitation of the study is that only low 

frequency drift signals were removed prior to the computation of the correlation estimates. 

As a result, the observed correlations may have been affected by motion-related and 

physiological confounds.

4.2. Global Signal Amplitude and EEG vigilance

In simultaneous EEG-fMRI studies of human subjects, Wong et al. (2013) found that the 

amplitude of the global signal was inversely correlated with EEG measures of vigilance 

across subjects and experimental runs, with higher vigilance states characterized by lower 

global signal amplitudes (defined as the standard deviation of the global signal). In addition, 

they found that increases in EEG vigilance measures associated with the ingestion of 

caffeine were significantly correlated with decreases in the global signal amplitude. EEG 

vigilance was defined as the root mean squared (rms) amplitude in the alpha band divided by 

the rms amplitude in the delta and theta bands (Horovitz et al., 2008; Olbrich et al., 2009), 

which is equivalent to the alpha slow-wave index (ASI) used in prior studies (Jobert et al., 

1994; Larson-Prior et al., 2009; Muller et al., 2006). Prior to the computation of the global 

signal, the authors removed motion-related and physiological nuisance terms so as to 

minimize the impact of these potential confounds on their analysis.

In a follow-up study, Wong et al. (2015) compared measures of global signal amplitude and 

EEG vigilance in the eyes-open and eyes-closed states and found that changes (eyes-open 

minus eyes-closed) in the global signal amplitude were negatively correlated with the 

associated changes in EEG vigilance. Interestingly, the slope of this relation was found to be 

similar to that of the previously observed association between caffeine-related changes in the 

global signal amplitude and EEG vigilance, thus providing evidence for a fundamental 

relation between global signal amplitude and EEG vigilance. The existence of this inverse 

relation between global signal amplitude and EEG vigilance is also consistent with prior 

findings that have shown that both the amplitude of the BOLD signal (as measured in 

specific regions) and the amplitude of the global signal (measured across the whole brain) 

increases as subjects enter into light sleep stages and exhibit lower levels of vigilance 

(Fukunaga et al., 2006; Horovitz et al., 2008; Larson-Prior et al., 2009; Olbrich et al., 2009). 

Similarly, the global signal amplitude has been found to be significantly higher in subjects in 

a sleep deprived state as compared to a well-rested state (Yeo et al., 2015). In addition, the 

level of anti-correlation between the default mode network (DMN) and task positive network 

(TPN) has been shown to decrease (consistent with an increase in global signal) during the 

transition to light sleep (Larson-Prior et al., 2011; Sämann et al., 2011).

Wen and Liu (2016a) used the analysis approach discussed in the previous subsection to 

study broadband fluctuations in macaque electrocorticographic (ECoG) and human 

magnetoencephalographic signals. The strength of the correlations in the ECoG data was 

found to vary with arousal state, with the magnitude of the correlation decreasing as subjects 

moved from sleep to an eyes-closed awake state and then on to an eyes-open awake state. To 

first order, the ECoG findings are consistent with the fMRI findings of decreases in global 

signal amplitude (i.e. standard deviation) as vigilance increases.
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4.3. Dynamic fluctuations in arousal and the global signal

In a recent study that included a reanalysis of data from (Schölvinck et al., 2010), Chang et 

al. (2016) found evidence for a significant negative correlation between the global signal 

time course and LFP measures of arousal, where LFP arousal was defined by taking the ratio 

of the spectral amplitudes in the beta and theta bands. These LFP measures of arousal were 

tightly linked with time-varying behavior arousal measures (assessed as the degree of eye 

opening as the animals opened and closed their eyes spontaneously in nearly complete 

darkness). Using simultaneous EEG-fMRI data acquired in humans, Falahpour et al. (2016) 

demonstrated in a preliminary study the existence of a negative correlation between the 

global signal and EEG vigilance time courses over the course of a scan. An example of this 

relation is shown in Figure 4 where the correlation between the global signal (green) and 

EEG vigilance time course (after convolution with a hemodynamic response function; blue) 

is r = −0.28. Note that for display purposes the mean of the EEG vigilance time course has 

been removed and the resulting time course has been inverted (i.e. multiplied by −1). The 

global signal tends to exhibit positive peaks when vigilance is low and has negative peaks 

when vigilance levels are high. Examples of images near these peaks are also shown in the 

figure, revealing a trend towards images biased towards positive voxel values when vigilance 

is low and biased towards negative voxel values when vigilance is high. Although the two 

studies used different definitions of vigilance (i.e. different ratios of EEG bands), these 

findings are consistent with those of (Chang et al., 2016). The link between global activity 

and dynamic changes in arousal finds further potential support in the observations of Pisauro 

et al. (2016), who used pupilometry to measure arousal states in mice. They found that 

increases in arousal were associated with decreases in an optical measure of global 

hemodynamic activity.

While the neurobiological mechanisms linking vigilance to global fluctuations are not well 

understood, it is thought that the global nature of the fluctuations may reflect widespread 

projections of various arousal systems onto the cortex (Jones, 2005; Picchioni et al., 2013). 

Using large-scale simulations, Deco et al. (2014) found that globally coordinated activity in 

a model network increased as cholinergic neuro-modulation of arousal decreased. Although 

further work is needed, the existing evidence suggests that images with high GS magnitudes 

(i.e. uniformly positive or negative) may be associated with temporal peaks and valleys in 

the state of vigilance or arousal.

4.4. Quasi-periodic Patterns

In the dynamic analysis of resting-state fMRI, quasi-periodic spatiotemporal patterns have 

been observed in both animal and human studies (Majeed et al., 2011, 2009; Thompson et 

al., 2014). These are spatiotemporal motifs (i.e. a pattern defined across time and space) 

with a duration of tens of seconds that repeat in a somewhat periodic manner across the 

course of a scan. The motifs appear as quasi-periodic “waves” of activity that move across 

the brain. Although the origin of these spatiotemporal patterns is not well understood, they 

have been shown to be related to electrophysiological measures of resting-state activity in 

rats (Thompson et al., 2014). In addition, Matsui et al. (2016) recently used calcium-based 

imaging to identify globally propagating waves of activity in the neocortex of mice. Noting 

that the spatiotemporal patterns involved coordinated activity over the whole brain, Nalci et 
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al. (2016b) examined the relation between the patterns and the global signal. Using the 

approach of (Majeed et al., 2011), they identified spatiotemporal patterns in resting-state 

fMRI data and then used a sparse estimation approach to estimate the weighted sum of 

spatiotemporal patterns that provided the best fit to the original data. An example of this 

approach is shown in Figure 5 in which the global signal is highly correlated with the 

average of the weighted sum of templates. This preliminary finding suggests that the activity 

represented by quasi-periodic spatiotemporal patterns may account for a significant fraction 

of the global signal. However, further work is needed to understand both the origins of the 

quasi-periodic patterns and their potential link with the global signal.

4.5. Potential Diagnostic Information in the Global Signal

There is also some evidence that the global signal may carry diagnostic information. For 

example, Yang et al. (2014) reported that the variance of the global signal was significantly 

higher in patients with schizophrenia as compared to normal controls. Using biologically 

informed computational modeling, the authors argued that the increase in variance reflected 

an increase in neural coupling at both local and long-range scales. However, the authors also 

acknowledged that the potential confound of vigilance differences between groups would 

need to be carefully considered in follow-up work. Furthermore, Hahamy et al. (2014) 

reported a contradictory finding of reduced global connectivity (consistent with reduced 

global signal variance) in subjects with schizophrenia. In a study comparing adolescents 

with autism spectrum disorder to typically developing controls, Gotts et al. (2012) correlated 

the global signal with each voxel time series in the brain to study the spatial distribution of 

the global signal, and found that the correlation was significantly reduced in several brain 

regions for the autistic subjects. These clinical research studies used standard denoising 

approaches to reduce the effects of nuisance terms (e.g. motion, cardiac and respiratory 

activity). In light of the limitations of these methods, the contribution of residual nuisance 

effects cannot be ruled out as a source of the global signal differences (Power et al., 2016).

4.6. When Nuisance becomes Information

In the sections above we have made the implicit assumption that motion-related and 

physiological signal components should be viewed as nuisance terms, unrelated to the neural 

activity that is of interest. However, this assumption overlooks the reality that the brain, 

which is the object of study, is the generator of both the signals of interest and the so-called 

“nuisance” components (Liu, 2016). For example, signal fluctuations due to subject motion, 

respiration, and cardiac activity all have their origins in the brain networks that control these 

functions (Iacovella and Hasson, 2011; Yuan et al., 2013). In addition, it has been found that 

the likelihood that a subject’s data exhibits “nuisance” components (such as motion-related 

artifacts) may reflect an underlying neurobiological trait (Zeng et al., 2014). Thus, as our 

understanding of the neural mechanisms that give rise to “nuisance”-related activity 

increases, it is likely that our understanding of the information that is contained in the global 

signal will also expand.
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5. The Role of the Global Signal in fMRI Analysis

We now turn our attention to the role of the global signal in the analysis of fMRI studies. We 

take a largely historical approach and begin in Subsection 5.1 with a review of the initial 

application of the global signal in the context of task-related fMRI experiments. Although 

the global signal continues to receive some attention in this context, it has found much 

broader usage in the analysis of resting-state fMRI studies, most notably in the form of a 

widely used pre-processing approach known as global signal regression that is discussed in 

Subsection 5.2. However, there has also been quite a bit of controversy regarding the use of 

global signal regression, as described in Subsection 5.3. New insights into the relation 

between global signal regression and alternate approaches for addressing the effects of the 

global signal are provided in Subsection 5.4. In Subsection 5.5, we consider a recently 

introduced framework for understanding the effects of global signal regression. This is 

followed by a brief discussion in Subsection 5.6 of the role of the global signal in the 

emerging area of dynamic functional connectivity analysis.

5.1. The Global Signal in Task-Related fMRI Analysis

The first extensive treatment of the global signal in the analysis of fMRI studies was 

presented by Zarahn et al. (1997), who noted the prior use of global covariates in PET and 

fMRI studies by (Friston et al., 1995b, 1990). Zarahn et al. (1997) hypothesized that its use 

as a covariate could be useful for reducing the effects of spatially coherent noise, thereby 

improving the ability to detect functional activations in task-related fMRI studies. They 

demonstrated that the global signal reflected a large degree of spatial coherence between 

voxel time series, with a larger coherence observed for lower frequencies. In addition, the 

magnitude of the coherence was much greater than could be explained by spatial smoothing 

of the data. In correlating the global signal with individual voxel time series, they found that 

the correlations were largely positive, spatially widespread, and not limited to any signal 

tissue type or brain region. Furthermore, the spatial patterns of the correlations differed from 

those typically associated with motion-related artifacts, indicating that the correlations were 

not solely due to motion. When analyzing null data sets, they found that the inclusion of the 

global signal as a covariate in a general linear model (GLM) centered the observed test 

statistic distribution and reduced the variance of false positive rates across noise datasets.

In a companion paper (Aguirre et al., 1997) the authors went on to examine the effect of the 

global signal on the analysis of fMRI scans containing behavioral tasks. Across the sample 

that was studied, they found a significant correlation between the global signal and the 

behavioral paradigm. The presence of this correlation was expected to decrease sensitivity, 

since the global signal can explain some of the signal variance that would otherwise be 

explained by the behavioral paradigm. However, the authors found a trend towards increased 

sensitivity, suggesting that the inclusion of the global signal also removed some of the signal 

variance that would have otherwise been unexplained. They furthermore found that inclusion 

of the global signal led to an increase in the number of voxels that were found to be 

negatively correlated with the task.

This issue was further examined in (Aguirre et al., 1998) who stressed the following 

distinction between confounds and nuisance variables – the inclusion of a confound can 
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change the relationship between the data and the independent variable of interest whereas 

the inclusion of a nuisance variable will only affect the estimated error variance. This 

difference in effects is due to the correlation between the confound and the independent 

variables of interest. In the case of the intermittent button pressing task, the inclusion of the 

global signal as a covariate decreased the magnitude and spatial extent of positive task-

related activity and also led to the appearance of regions that showed negative task-related 

activations, thus suggesting that the global signal should be treated as a confound. Based on 

these observations, Aguirre concluded that when the global signal is used, areas of positive 

activity should be viewed as having a “suprathreshold” relationship with the experimental 

design that is above and beyond the correlation with the global signal. In addition, he noted 

that caution should be used when interpreting negative activations, since they can arise 

whenever the signal is less correlated with the task than with the global signal.

The reason for caution can be understood by considering a simple example in which the 

global signal g is the sum g = gT + gU of a task-related component gT and an uncorrelated 

component gU. Next we consider a voxel time series x = bgU that is a scaled version of the 

uncorrelated component of the global signal, where b is an arbitrary scalar. Expressed in this 

manner, the signal has zero loading onto the task and the corresponding voxel would have 

zero activation. To assess what happens when the global signal is included as a covariate, we 

rewrite the signal as x = bg − bgT, which has a positive loading onto the global signal but a 

negative loading onto the task. Thus a voxel that was considered to have no task-related 

activation prior to the inclusion of the global signal as a covariate can appear to have a 

negative task-related activation after inclusion of the global signal.

As we shall see below, the issues in interpreting negative task-related activations would find 

a parallel in later concerns about the interpreting negative correlations in resting-state fMRI. 

It is also interesting to note that the negative activations observed in (Aguirre et al., 1998) 

were located in regions that were later found to be part of the default mode network (DMN), 

a brain network that shows a decrease in metabolic activity during the execution of goal-

directed behaviors and is one of the main networks studied in resting-state fMRI (Raichle et 

al., 2001). Although the use of the global signal as a covariate is supported in some software 

programs, such as SPM, its use in task-related fMRI has been rather limited, due in part to 

the concerns raised above. As an example of a recent use case, Mayhew et al. (2016) used 

the global signal as a covariate to explain inter-trial variability in a task-related BOLD 

experiment. In contrast, the global signal would find wide adoption as a covariate in the 

analysis of resting-state fMRI studies.

5.2. Global Signal Regression

The process of GSR (in the form that is widely used at present) was first explicitly described 

in (Macey et al., 2004) for a task-related experiment designed to differentiate the global 

effects of hypercapnia from its local effects. In contrast to the prior work where both task 

and global signal covariates were employed, Macey et al. (2004) did not use a task covariate 

and simply regressed the global signal out of each voxel time series. They then computed the 

average fMRI signal after GSR in the dorsal medulla and were able to show that the 
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resulting signal peaked during the early phase of hypercapnia and was thus distinct from the 

longer lasting global effects of hypercapnia.

Erdogan et al. (2016) recently proposed a variation of GSR in which a voxel-wise delay is 

applied to the global signal prior to regression in order to take into account the vascular 

latencies described in Section 3.4. While the proposed method can increase the amount of 

global signal-related variance that is removed, there may be potential issues (i.e. handling of 

multiple comparisons) associated with the need to search over multiple delays to find the 

optimal delay on a per-voxel basis. Further work will be needed to determine if these issues 

can be adequately addressed. On a related note, it may also be useful to examine the effects 

of vascular latencies on the computation of the global signal and determine whether there are 

better approaches for computing the signal.

Because it does not require a task covariate, GSR is ideally suited for resting-state fMRI 

studies in which there is no explicit task. Researchers can simply apply GSR to reduce the 

effects of spatially correlated confounds in their time series prior to the computation of 

correlations between different brain regions. The application of GSR has been found to 

greatly improve the functional specificity of resting-state correlation maps (Fox et al., 2009; 

He and Liu, 2012). In addition, GSR has also been shown to reduce the effects of motion on 

functional connectivity estimates (Power et al., 2015; Yan et al., 2013a; Satterthwaite et al., 

2013). Power et al. (2014) demonstrated that GSR largely eliminated the spatially 

homogenous signal responses associated with motion, including long-lasting (e.g. tens of 

seconds) responses. These long-lasting responses were not attenuated by other types of 

correction methods, such as regression using signals from white matter and cerebral spinal 

fluid regions. In addition, current model-based methods do not appear to be as effective as 

GSR for removing global artifacts due to motion, cardiac activity, and respiratory activity 

(Power et al., 2016).

GSR has also been found to perform better than other state-of-the-art correction approaches, 

such as those based on independent component analysis, for removing globally distributed 

motion-related artifacts (Burgess et al., 2016; Power et al., 2016). Furthermore, Satterthwaite 

et al. (2013) found that GSR greatly reduced motion-related correlations between distant 

voxels. Finally, Yan et al. (2013b) reported that GSR outperformed partial correlation 

approaches in suppressing the effects of motion on estimates of network parameters.

GSR was also a key preprocessing step in the first studies reporting a negative correlation 

between resting-state times series in the default mode (DMN) and the task positive networks 

(TPN) (Fox et al., 2005; Fransson, 2005). These findings suggested an intriguing picture in 

which the brain alternates in time between a more introspective state where the BOLD signal 

is high in the DMN and low in the TPN and an externally directed state in which the signal 

is high in the TPN and low in the DMN. Because of this negative correlation, the DMN and 

TPN have been referred to as anti-correlated networks.

As shown in Appendix A, it is theoretically possible for GSR to inject artifactual 

components into resting-state voxel time series that did not originally contain these 
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components. However, further study will be needed to characterize the extent to which this 

phenomenon actually occurs in practice.

5.3. Controversy over global signal regression

In a seminal paper that first raised concerns about the use of GSR, Murphy et al. (2009) put 

forth the claim that the observed anti-correlation might be artifactual rather than reflecting 

the true relationship between the DMN and TPN. They showed that the mathematics of GSR 

imposed a constraint on the sum of the correlation values between the signal from a seed 

region and the signals from all other voxels (not including the seed voxels), such that the 

sum after GSR must be negative. As a result, even if there are no negative correlations prior 

to GSR, the GSR operation must necessarily lead to the existence of some negative 

correlations.

Fox et al. (2009) acknowledged the validity of the mathematical arguments, but argued that 

the characteristics of the correlation maps obtained with GSR were not solely determined by 

the mathematical constraint but instead reflected underlying neurobiological properties. For 

example, they showed that negative correlations between the DMN and TPN could be 

observed even without the application of GSR. This finding would be supported by later 

studies that also demonstrated the existence of anti-correlations without GSR (Chai et al., 

2012; Chang and Glover, 2009; Liang et al., 2012; Wong et al., 2012). For example, Wong et 

al. (2012) found that the administration of caffeine led to the presence of anti-correlations 

that were similar to those obtained with GSR.

Fox et al. (2009) also argued that the mathematical constraint pointed out by Murphy et al. 

(2009) could not account for the spatial distribution of the observed negative correlations, 

which are well confined to regions known to be modulated by tasks in the opposite direction 

to the response in the DMN. Furthermore, they argued that the constraint could not account 

for the consistency of the observed spatial patterns across subjects.

The discussion started by Murphy et al. (2009) and Fox et al. (2009) spawned a number of 

subsequent studies that further examined the effects of GSR. The concern about the spurious 

nature of the anti-correlations induced by GSR was echoed by several studies (Anderson et 

al., 2011; Weissenbacher et al., 2009; Saad et al., 2012) that used mathematical arguments 

and small-scale simulations similar to those of (Murphy et al., 2009). In addition Gotts et al. 

(2013) and Hahamy et al. (2014) argued that GSR could distort estimates of group 

differences in resting-state functional connectivity.

On the other hand, Carbonell et al. (2014) introduced a metric for assessing whether 

negative correlations were likely to be induced by GSR and used this metric to conclude that 

the anticorrelations between DMN and TPN were not simply a mathematical artifact. 

Similarly, Chen et al. (2012) proposed a method for determining when to use GSR. In 

analyzing functional connectivity networks, Hayasaka (2013) found that estimates obtained 

without GSR were positively biased and contained anomalous network characteristics (such 

as hub nodes along the superior edge of the interhemispheric fissure), providing further 

support for the use of GSR. Power et al. (2015) expressed concern that the bias attributed to 

GSR was largely based on results from low-dimensional simulations (e.g. two or three 
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regions were used in (Murphy et al., 2009; Saad et al., 2012)) and stated that further work 

was needed to see how well the mathematical arguments applied to the higher dimensional 

datasets that are typically acquired in actual studies (e.g. hundreds of regions, tens of 

thousands of voxels). Finally, Keller et al. (2013) found that GSR improved the correlation 

between the BOLD signal and measures of neural power fluctuations.

The concerns about GSR have led to the development of a number of alternate approaches 

for dealing with global signal confounds in resting-state fMRI. He and Liu (2012) noted the 

existence of a linear relation between the amplitude of the global signal (calculated as its 

standard deviation) and the mean amplitude of the voxel-wise resting-state BOLD time 

series and argued that this relation was consistent with a view of the global signal as an 

“additive” confound. (An additional consequence of this relation is that a reduction in global 

signal amplitude will lead to a reduction in the mean BOLD signal amplitude and related 

measures, such as the amplitude of low-frequency fluctuations (ALFF; Yang et al. (2007))). 

He and Liu (2012) further noted that the presence of this confound decreased the median 

angle between the voxel-time series and the global signal and used this insight to propose a 

median-angle shift approach for reducing the confound. Carbonell et al. (2011) proposed the 

use of the first principal component as a regressor in place of the global signal. However, 

because of the high degree of similarity between the first principal component and the global 

signal (Carbonell et al., 2011; He and Liu, 2012), regression using the first principal 

component necessarily produces results that are highly similar to those obtained with the 

global signal. Marx et al. (2013) introduced a method for removing both additive and 

multiplicative global components from fMRI time series and used simulations to show that 

their method had the potential to introduce less bias into the correlation estimates as 

compared to GSR. For group level analyses, Saad et al. (2013) proposed the use of the 

average brain-wide correlation as a covariate. Since the average brain-wide correlation is 

equivalent to the squared amplitude of the global signal (when all voxel time series have 

been normalized to unit norm), this approach essentially uses the squared amplitude as a 

covariate.

Despite the controversy regarding GSR, it is still a widely used approach (Power et al., 2015; 

Li et al., 2015). Indeed, Power et al. (2016) have argued that any potential drawbacks due to 

GSR must be weighed against the significant concerns about the global artifacts that are 

present in most fMRI scans. Due in part to the effectiveness of GSR in removing these 

artifacts, none of the alternatives that we have discussed so far has been broadly adopted. 

However, there is a related method that is quite commonly used in resting-state fMRI 

analyses. This is the global signal subtraction approach that is a standard pre-processing step 

in a number of software implementations of independent components analysis (ICA), a 

popular approach for the analysis of resting-state fMRI data (Remes et al., 2011). In the next 

section, we explore in detail the connection between GSR and global signal subtraction and 

also consider an additional related method known as global signal normalization.
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5.4. Relation between Global Signal Regression, and Global Signal Subtraction, and Global 
Signal Normalization

In comparing GSR to global signal subtraction (GSS), the key difference is that GSR finds 

the optimal fit (through regression) between each voxel time series and the global signal 

prior to removal of an appropriately scaled version of the global signal, whereas GSS simply 

subtracts the global signal from each voxel time series, without any voxel-specific scaling. 

The two processes are identical when the GSR fit coefficient equal to 1.0. As shown in 

Appendix B, the mean value (across voxels) of the GSR fit coefficient is equal to 1.0. 

However, the fit coefficient for any given voxel can be quite different from 1.0. In Figure 6, 

we show representative correlation maps formed using a seed voxel time series from either 

the posterior cingulate cortex (PCC) or a white matter (WM) region of interest after 

application of GSR, GSS, and global signal normalization (discussed below). The GSR fit 

coefficients (for the seed voxel time series) and the spatial correlations between the maps 

obtained with GSR and GSS are indicated below the plots. The cosine similarity values 

between PCC seed maps for GSR and GSS range from 0.60 to 0.97, while for WM seed 

maps the similarity values range from 0.53 to 1.0. Figure 7 shows the PCC and WM seed fit 

coefficients versus the cosine similarities between the corresponding connectivity maps 

obtained after GSR and GSS across 68 different scans. The degree of similarity between the 

GSR and GSS maps depends on the closeness of the fit coefficient to 1.0, with a high degree 

of similarity between GSR and GSS maps when the coefficient is close to 1.0. As the fit 

coefficient deviates from the ideal value of 1.0, the spatial correlations decrease sharply for 

the WM seed maps and more gradually for the PCC seed maps.

While more investigation is needed to understand the similarities between GSR and GSS, 

these preliminary findings indicate that the concerns that have been raised about studies that 

use GSR are also likely to apply to studies that use GSS. For example, as discussed above, 

some ICA implementations use the GSS approach as a pre-processing step and Remes et al. 

(2011) have reported differences in ICA results obtained with and without global signal 

subtraction, with slightly better performance observed with subtraction. On the other hand, 

some ICA implementations do not use GSS and the effect of the global signal on these 

implementations is not entirely clear (Remes et al., 2011). Two recent studies (Power et al., 

2016; Burgess et al., 2016) reported that the use of an ICA-based denoising algorithm (that 

did not use GSS) had limited effectiveness in removing global signal components, 

specifically those related to motion and respiration. Overall, further work is needed to 

provide a better understanding of the effect of the global signal on ICA-based analyses.

Global signal normalization (also referred to as frame-to-frame intensity stabilization) is an 

alternate method for accounting for the effects of global signal confounds (Fox et al., 2009; 

Desjardins et al., 2001; Gavrilescu et al., 2002; Dai et al., 2016). In the global signal 

normalization approach, all computations, including calculation of the global signal, are 

performed prior to the removal of the temporal means of the voxel time courses. At each 

time point, the image data are divided by the global signal and then a constant term 

(typically equal to 1.0) is subtracted from the normalized images prior to the computation of 

inter-voxel correlations. A key difference is that the global signal used in the normalization 

approach has a large positive mean while the global signal used in both GSR and global 
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signal subtraction typically has zero mean. (Note that even when the mean is not explicitly 

removed from the global signal, it is effectively removed through the inclusion of a constant 

term in analyses that use multiple linear regression to remove nuisance terms.) Taking into 

account this difference, it can be shown that the global signal normalization process can be 

well approximated by subtracting out the zero mean global signal from each demeaned 

voxel time series (see Appendix C). Thus, global signal normalization and global signal 

subtraction are essentially equivalent approaches. An example of this equivalence is 

provided in Figure 6. Furthermore, it can be shown that global signal normalization is 

similar to GSR when GSR is applied to the data before the temporal means have been 

subtracted (see Appendix D). However, as discussed above, it is important to note that GSR 

is typically applied after subtraction of the temporal means.

5.5. GSR as a Temporal Downweighting Process

As discussed above, in the prior studies and debates concerning the use of GSR, a 

combination of mathematical arguments, empirical findings, and simulations have been used 

to examine the strengths and limitations of the approach (Fox et al., 2009; Murphy et al., 

2009; Saad et al., 2012; He and Liu, 2012). However, the process of GSR has remained 

somewhat mysterious as it is not easy to visualize the process of regression with a global 

mean signal in a high-dimensional signal space.

We have recently proposed a new way of looking at GSR in which the main effects of GSR 

are approximated as a temporal downweighting process such that data from time points with 

relatively large global signal magnitudes are greatly attenuated while data from time points 

with relatively small global signal magnitudes are largely unaffected (Nalci et al., 2016a). 

(Note that here we use the term magnitude to refer to the absolute value of the global signal 

at each time point in a scan, which is distinct from our use of the term amplitude to refer to 

the standard deviation of the global signal over the course of the scan) An example of these 

effects is shown in rows 1 through 3 of panel (a) in Figure 8. Large global signal magnitudes 

(i.e. both large positive and negative values) occur at those time points where the 

uncorrected (i.e. prior to GSR) brain images in row 2 exhibit greater spatial homogeneity, 

while small global signal magnitudes correspond to images where there are similar 

proportions of negative and positive voxel values. After GSR (row 3), the voxel values in 

images at time points with large global signal magnitude are greatly attenuated, whereas the 

images with small global signal values are minimally affected. For each time point, we 

compute the average downweighting factor as the average across voxels of the ratio between 

the voxel value after GSR to the corresponding voxel value of the uncorrected image. We 

denote this metric as the GSR ratio and have plotted it in row 4 of panel (a). As shown in 

panel (b), the GSR ratio decreases in an approximately linear fashion with the magnitude of 

the global signal. In other words, the average degree of downweighting increases with global 

signal magnitude. Note that when the global signal magnitude is equal to zero the GSR ratio 

is equal to 1.0, since voxel time series are unaffected by GSR at these time points (i.e. 

subtracting zero has no effect).

In row 5 of panel (a) we have multiplied the uncorrected images from row 2 by the GSR 

ratio to obtain downweighted images. As a limiting case of the downweighting process, we 
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can also simply censor images from those time points where the degree of downweighting is 

large. Row 6 in panel (a) shows the effect of censoring (i.e multiplying by zero) images at 

time points where the expected GSR ratio is less than 0.5 (see (Nalci et al., 2016a) for 

details), while retaining the original uncorrected images for the remaining time points.

Resting-state correlation maps obtained with the seed signal from the posterior cingulate 

cortex (PCC) and after applying GSR and the downweighting and censoring approaches are 

shown in panel (c) of Figure 8 for a representative slice from each of 10 different scans. 

Maps obtained with the uncorrected data (i.e. after preprocessing but before GSR) are shown 

in the top row. From a qualitative viewpoint, the correlation maps obtained after GSR are 

very similar to those obtained after either downweighting by the GSR ratio or censoring. 

This suggests that the main effects of GSR on resting-state correlation maps are well 

approximated by both the downweighting and censoring approaches. More detailed 

comparisons are provided in (Nalci et al., 2016a).

By averaging the GSR ratio across the duration of a scan, we can obtain a measure of the 

overall degree of downweighting due to GSR for each scan. In Figure 8(d), we find that GSR 

ratio shows an inverse dependence on global signal amplitude (computed as the standard 

deviation over time of the global signal within the scan). Thus, for scans in which there are 

large global signal fluctuations, the average downweighting due to GSR will also be larger.

The temporal downweighting framework represents a simple and intuitive way of 

understanding the effects of GSR. Instead of having to visualize how regression affects each 

individual voxel time series, we can simply consider how the data from each time point is 

downweighted prior to the computation of functional correlations. For example, the 

downweighting framework may help to explain the effectiveness of GSR in attenuating 

motion-related artifacts, such as those shown in the signal intensity plots in Figure 7 of 

(Power et al., 2014). In the limit of global signal censoring, the data from each time point is 

either included in (weighting of 1.0) or excluded (weighting of 0.0) from the computation. 

Within the subset of retained images, there is no mathematical constraint that forces the 

existence of negative correlations, as these images are not modified by the censoring 

operation. Thus anticorrelations between the DMN and TPN that are seen in both the GSR 

and global signal censored PCC maps in Figure 8(c) are unlikely to be simply an artifact 

induced by GSR. Instead, the negative correlations are inherent in the data for the retained 

time points where the global signal magnitude is low. Indeed, the spatial patterns observed in 

the retained time points are similar to those that have been observed in studies showing that 

key features of resting-state functional connectivity maps can be obtained using a fraction of 

the original time points (Tagliazucchi et al., 2016; Liu and Duyn, 2013).

5.6. The Global Signal and Dynamical Functional Connectivity

In resting-state fMRI studies of dynamic functional connectivity, temporal variations in the 

correlation between signals from different brain regions or networks are examined, typically 

using a sliding-window type analysis (Hutchison et al., 2013). Although analysis methods in 

this relatively new research area are still evolving, many studies use some type of correction 

for global signal effects (e.g. either GSR or global signal subtraction for ICA-based 

approches) (Laumann et al., 2016; Shine et al., 2016; Wang et al., 2016), although there are 
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exceptions (Gonzalez-Castillo et al., 2015; Demirtaş et al., 2016). In a study that did not use 

GSR, Demirtaş et al. (2016) found that the relative magnitude of the global signal (e.g. high 

or low) was associated with the level of dynamic phase coupling between different brain 

regions. Even in studies that use GSR, the global signal may still have an effect on the 

analysis. As noted above, GSR can be approximated as a temporal downweighting process, 

in which the degree of the downweighting varies in time with the magnitude of the global 

signal. In a sliding window type analysis performed after GSR, the analysis window will 

move across temporal segments with varying levels of effective downweighting. For scans 

where there is a large degree of downweighting, the temporal variations in the 

downweighting are likely to have a significant effect on the time-varying correlation 

estimates. Further work to understand the impact of the global signal on dynamic functional 

connectivity measures is clearly needed.

6. Conclusion

The global signal currently plays an integral part in the analysis of fMRI studies. This is 

especially true for resting-state fMRI studies in which the efficacy of GSR has led to its 

widespread adoption for both standard resting-state analyses and emerging approaches, such 

as methods for characterizing dynamic functional connectivity. Yet despite its widespread 

use there is still a great deal of confusion and controversy regarding the use of the global 

signal in fMRI analyses. In some cases, this has led researchers to report two versions of 

their results, one version with GSR and another without GSR (Yeo et al., 2015; Yang et al., 

2014). Part of the confusion stems from the difficulty in understanding the effects of GSR in 

the large-dimensional signal space that researchers typically encounter in fMRI studies. The 

size of this signal space is rapidly increasing with improvements in fMRI acquisition 

methods. The temporal downweighting framework offers a simpler way to understand the 

effects of GSR and we expect that it will lead to further developments that will enable 

researchers to better address global signal effects in their studies.

At the same time, it will be critical to continue to develop our understanding of the sources 

that contribute to the global signal, as this will enable a better appreciation of the effects of 

GSR and other approaches. For example, the current evidence suggests that the global signal 

takes on large values (either positive or negative) when there are large deviations in vigilance 

levels. When considered in conjunction with the temporal downweighting framework, this 

observation suggests that a primary effect of GSR is to attenuate the effects of vigilance 

variations over the course of a resting-state fMRI time series, since GSR will largely 

downweight the data from those time points with large vigilance deviations.

Future investigations into the origins of the global signal will benefit not only from studies 

focused on the global signal but also from studies that aim to understand the basic 

mechanisms underlying resting-state fMRI. In this regard, a better understanding of the 

complex relations between the arousal system, the autonomic nervous system, and the 

resting-state fMRI signal will be very useful (Iacovella and Hasson, 2011; Yuan et al., 2013). 

At the same time, it is important to note that the investigation of a signal that has largely 

been considered a nuisance term has led to a better appreciation of the effects of vigilance 
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and arousal on resting-state fMRI measures. We anticipate that future studies will reveal 

more aspects of the information that lies in this global “nuisance” signal.
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Appendix A. Injection of Artifactual Components by GSR

Here we address the possibility of the injection of artifactual components by GSR that was 

raised by one of the reviewers of this article. Let the global signal g = gN + gM be the sum of 

a desired neuronal component gN and an undesired artifactual component gM (e.g. due to 

motion). We assume that gN and gM are zero-mean and uncorrelated, such that . We 

next consider a voxel time series x = bgN that is a scaled version of the neuronal component 

with no contribution from the artifactual component. Applying GSR to this time series 

results in the following:

(A.1)
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(A.2)

(A.3)

Thus, it is possible for GSR to inject an artifactual component into a voxel time-series.

Appendix B. Global Signal Subtraction and GSR

In the global signal subtraction (GSS) approach, the global signal is simply subtracted from 

each voxel to yield xGSS = x − g where xGSS, x, and g are column vectors representing the 

voxel time series after global signal subtraction, the original voxel time series, and the global 

signal, respectively. Note that without loss of generality, we assume that all signals are zero-

mean percent normalized time series (i.e. they represent percent BOLD signal changes).

The process of GSR is described as xGSR = x − αg where the fit coefficient α = (gTg)−1 gT 

x. GSR and GSS are equivalent when α = 1.0. For a given scan, we find that the mean value 

of the fit coefficient (computed over voxels) is equal to 1.0. The proof is as follows:

(B.1)

(B.2)

(B.3)

(B.4)

(B.5)

Liu et al. Page 29

Neuroimage. Author manuscript; available in PMC 2018 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where αi and xi denote the fit coefficient and time series, respectively, for the ith voxel and 

N is the number of voxels.

Appendix C. Global Signal Normalization and Global Signal Subtraction

In the global signal normalization approach, computations are performed prior to the 

removal of the voxel-wise temporal means or percent normalization. Thus, we can define the 

un-normalized global signal gU as the sum gU = ḡ1M + g̃ of a mean term ḡ and a zero-mean 

fluctuation term g̃, where 1M indicates a M × 1 column vector of ones. An un-normalized 

voxel time series is similarly defined as xU = x̄1M + x̃. The process of intensity stabilization 

(or GS normalization) is formally defined as

(C.1)

where diag (gU) denotes the matrix with gU along the diagonal (Fox et al., 2009).

To proceed, let g̃[i] and x̃ [i] denote the values of g̃ and x̃ at the ith time point. Then the 

normalized values are

(C.2)

(C.3)

(C.4)

(C.5)

(C.6)

where we have made use of the fact that the magnitude of the fluctuations in fMRI GS time 

series are typically only a few percent at most of the overall mean, so that ḡ ≫ g̃ [i]. In 
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addition we assumed that x̄ = ḡ, where this last relation holds because we can always scale 

the data such that the means of all the voxels are the same. Thus, to first order the process of 

GS normalization is equivalent to simply taking the difference between the percent change 

voxel time series x̃ [i]/x̄ and the percent change global signal g̃[i]/ḡ. Using vector notation, 

the approximation to GS normalization is expressed as the difference x − g of the percent 

normalized voxel time series and global signals. Thus, GS normalization and GS subtraction 

are nearly identical methods. Note that an initial version of this proof was presented in 

(Nalci et al., 2016a).

Appendix D. Comparing Global Signal Normalization with GSR

It turns out that global normalization and GSR give similar results when we leave the mean 

in prior to GSR. Borrowing the notation from the previous section, the proof is as follows:

(D.1)

where we have made use of the relations from the previous section ḡ ≫ g̃ [i] and x̄ = ḡ, as 

well as the related relation ḡ ≫ x̃[i]. In addition, we have made use of the facts that by 

definition g̃T 1M = 0, x̃T 1M = 0, and . Aside from the lack of normalization by 

the scalar ḡ this is identical to the result obtained for global normalization.
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Figure 1. 
Examples of global signal time series computed after (1) minimal preprocessing (MinProc, 

blue), (2) MinProc plus removal of low-frequency (Leg: Legendre polynomial) and motion-

related (Mo) nuisance terms (Leg+Mo; green), (3) MinProc plus removal of low-frequency, 

motion-related, and physiological (Phys) nuisance terms (Leg+Mo+Phys; red), and (3) 

MinProc plus removal of low-frequency, motion-related, physiological, and white matter and 

cerebral spinal fluid (WM/CSF) nuisance terms (Leg+Mo+Phys+WM/CSF; cyan). WM and 

CSF regions were defined using partial volume thresholds of 0.99 for each tissue type and 

morphological erosion of two voxels in each direction to minimize partial voluming with 

gray matter. Additional details about the processing are provided in (Wong et al., 2013).
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Figure 2. 
Global signal amplitude (in units of percent change) as a function of preprocessing approach 

for 30 scans. Bars indicate mean plus or minus one standard deviation. With respect to the 

MinProc set, the means of the normalized variances of the global signals are 0.52, 0.21 and 

0.07 for the Leg+Mo, Leg+Mo+Phys, and Leg+Mo+Phy+WM/CSF sets, respectively. As an 

example, this means that the variances of the global signal in the Leg+Mo set are on average 

52% of the respective variances of the global signals in the MinProc set. These data are from 

the eyes-closed scans in the pre-dose control, post-dose control, and pre-dose caffeine 

sessions described in (Wong et al., 2013)
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Figure 3. 
The global signal is highly correlated with the signals from the great vein of Galen (red) and 

the sagittal sinus (black).
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Figure 4. 
Global signal (green) is negatively correlated with EEG vigilance time course (blue; inverted 

for display) over the course of a scan. Examples of images that occur near vigilance peaks 

(and valleys in the global signal) are shown below the plot, while images that occur near 

vigilance valleys (and peaks in the global signal) are shown above the plot.
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Figure 5. 
Spatiotemporal templates (upper right) are estimated using the approach of (Majeed et al., 

2011). A sparse estimation approach is then used to estimate the optimal weighted sum of 

templates that best fits the original data, with the estimated weights shown in lower right of 

the figure. The global signal of the original data (blue) is highly correlated (r = 0.78) with 

the global signal of the weighted sum.
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Figure 6. 
Posterior-cingulate cortex (PCC) and white-matter (WM) seed correlation maps obtained 

prior to GSR and after the application of GSR, global signal normalization (GSN), and 

global signal subtraction (GSS). Consistent with the approximation shown in Appendix C, 

GSN and GSS yield nearly identical maps for all scans. The cosine similarities between the 

GSR and GSS maps are indicated by the values listed at the bottom along with the 

corresponding GSR fit coefficients for the seed time courses. As the fit coefficient values 

approach 1.0, the GSR and GSS maps become more similar.

Liu et al. Page 37

Neuroimage. Author manuscript; available in PMC 2018 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Cosine similarity between the connectivity maps obtained after GSR and GSS for PCC 

(blue) and WM (red) seed time courses versus the corresponding GSR fit coefficients. 

Similarity values are very high (r > .90) when the fit coefficients are close to 1.0 (at which 

point GSR and GSS are equivalent operations with respect to the seed time course). As the 

fit coefficient deviates from 1.0, the similarity values decrease for both seeds, rather sharply 

for the WM seed and relatively slowly for the PCC seed. A Gaussian fit R2 = 0.74 is shown 

by the black-dashed line.
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Figure 8. 
Approximating the effects of GSR with temporal downweighting and censoring. (a) 

Examples of brain images from a representative subject and slice prior to (uncorrected) and 

after the application of GSR (2nd and 3rd rows, respectively) are shown. Global signal 

values for the uncorrected images are indicated by the colored bars in the first row. The GSR 

ratios are indicated by the colored bars in the 4th row, and reflect the average 

downweighting due to GSR at each time point. Multiplication of the uncorrected images by 

the GSR ratio yields the downweighted images in the 5th row. In the 6th row, images at time 

points for which the expected GSR ratio is less than 0.5 are censored (i.e. multiplied by 

zero) while the uncorrected images are retained for the remaining time points. (b) The GSR 

ratio decreases as an approximately linear function of the global signal magnitude. Each dot 

represents the GSR ratio from a single time point from one of 68 scans (a total of 12580 

time points). The dashed red-line indicates a censoring function that multiplies images by 

zero when the expected GSR ratio (i.e. linear approximation) is less than 0.5. (c) PCC seed 

correlation maps obtained before GSR, after GSR, and after application of GSR ratio 

weighting, and GS censoring. Maps are shown for 10 representative scans. For GS 

censoring, time points with an expected GSR ratio of less than 0.5 were censored, and the 

percentage of time points censored is indicated at the bottom. (d) The average GSR ratio for 

each scan (computed as the mean of GS ratios across all time points within a scan) is plotted 

versus the global 50 signal amplitude for that scan (computed as the standard deviation of 

the global signal across the scan).
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