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Abstract

Background—The adaptability of the human brain to the constantly changing environment is 

reduced in patients with psychotic disorders, leading to impaired cognitive functions. Brain signal 

complexity, which may reflect adaptability, can be readily quantified via resting-state functional 

magnetic resonance imaging (fMRI) signals. We hypothesized that resting-state brain signal 

complexity is altered in psychotic disorders, and is correlated with cognitive impairment.

Methods—We assessed 156 healthy controls (HC) and 330 probands, including 125 patients with 

psychotic bipolar disorder (BP), 107 patients with schizophrenia (SZ), 98 patients with 

schizoaffective disorder (SAD) and 230 of their unaffected first-degree relatives (76 BPR, 79 
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SADR, and 75 SZR) from four sites of the Bipolar-Schizophrenia Network on Intermediate 

Phenotypes (B-SNIP) consortium. Using multi-scale entropy analysis, we determined whether 

patients and/or relatives had pathologic differences in complexity of resting-state fMRI signals 

toward regularity (reduced entropy in all time scales), or toward uncorrelated randomness 

(increased entropy in fine time scales that decays as the time scale increases) and how these 

complexity differences might be associated with cognitive impairment.

Results—Compared to HC subjects, proband groups showed either decreased complexity toward 

regularity or toward randomness. SZ probands showed decreased complexity toward regular signal 

in hypothalamus, and BP probands in left inferior occipital, right precentral and left superior 

parietal regions, whereas no brain region with decreased complexity toward regularity was found 

in SAD probands. All proband groups showed significantly increased brain signal randomness in 

dorsal and ventral prefrontal cortex (PFC), and unaffected relatives showed no complexity 

differences in PFC regions. SZ had the largest area of involvement in both dorsal and ventral PFC. 

BP and SAD probands shared increased brain signal randomness in ventral medial PFC, BP and 

SZ probands shared increased brain signal randomness in ventral lateral PFC, whereas SAD and 

SZ probands shared increased brain signal randomness in dorsal medial PFC. Only SZ showed 

increased brain signal randomness in dorsal lateral PFC. The increased brain signal randomness in 

dorsal or ventral PFC was weakly associated with reduced cognitive performance in psychotic 

probands.

Conclusion—These observations support the loss of brain complexity hypothesis in psychotic 

probands. Furthermore, we found significant differences as well as overlaps of pathologic brain 

signal complexity between psychotic probands by DSM diagnoses, thus suggesting a biological 

approach to categorizing psychosis based on functional neuroimaging data.
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1. Introduction

1.1 What is complexity and why study complexity?

Adapting to everyday stresses requires highly complex interactions between many 

physiological systems and their regulatory feedback loops operating across numbers of 

temporal and spatial scales (Goldberger et al., 2002b; Lipsitz, 2002). These dynamic 

interactions are typically non-linear. Changes in input can result in apparently 

“unpredictable” but rule-driven changes in the output that can be analyzed by complex 

statistical techniques such as fractal analyses and other so-called chaos theory-based 

approaches (Paulus and Braff, 2003). Such approaches have been used to analyze complex 

phenomena, both within and beyond medicine, ranging from weather and stock market 

fluctuations to electroencephalogram (EEG) and heart rhythms.

Complexity of physiological systems may be reduced in many disease states and aging 

(Goldberger et al., 2002a; Goldberger et al., 2002b), leading to degradation of their 

information processing, thereby making individuals less adaptable to the demands of 
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frequently changing environments. For example, patients with severe congestive heart failure 

have decreased heart rate variability characterized by low entropy (i.e., regularity or reduced 

information content) (Costa et al., 2002) and patients with atrial fibrillation have increased 

randomness in their heart rate that has high entropy (i.e., increased randomness but also 

reduced information content) (Costa et al., 2002; Goldberger et al., 2002b; Pincus, 1991). 

Relatively few studies have investigated the complexity of brain physiology in psychiatric 

disorders.

1.2 Why study complexity in psychosis?

The characteristic disorganization and unpredictability in thinking and behavior in 

schizophrenia (SZ) points to an intuitive connection between psychosis and chaos (Schmid, 

1991). Several investigators have examined complexity in psychotic disorders. More 

predictable (i.e., decreased complexity) behavior in a consecutive binary choice task has 

been reported in SZ (Paulus et al., 1996). Decreased nonlinear complexity has been observed 

during REM and wake periods while undergoing sleep polysomnography in first episode SZ 

patients (Keshavan et al., 2004). However, some studies showing increased complexity as 

well (For review see (Fernandez et al., 2013; Takahashi, 2013)). Variations across studies 

may be related to differences in the phase of illness studied, age, medications, and illness 

severity. Regional brain differences in complexity measures have not been well delineated. It 

is also unclear if complexity differs between different psychotic disorders. Mood ratings in 

bipolar disorder (BP) have less complex patterns compared to healthy persons (Gottschalk et 

al., 1995). On the other hand, increased EEG complexity has also been observed in bipolar 

mania (Bahrami et al., 2005). Few studies have directly compared brain complexity 

measures across diagnoses within the psychosis spectrum. Finally, it is not clear whether 

brain complexity measures reflect merely disease related markers, or whether they represent 

familial vulnerability markers. There is evidence that the dynamic complexity of brain 

oscillations may be heritable (Anokhin et al., 2006). This points to the value of examining 

brain complexity measures in non-psychotic first degree relatives of psychotic disorder 

probands.

1.3 How to quantify complexity?

Complexity is often assessed using entropy-based methods (Pincus, 1991; Richman and 

Moorman, 2000; Rosso et al., 2002) to quantify the regularity (orderliness) of a time series. 

Entropy, which is a measure of randomness, increases with the degree of irregularity, 

reaching its maximum in completely random systems. Physiologic output in healthy 

conditions usually exhibits a higher degree of entropy than output in a pathological state. 

However, this approach could yield contradictory results in which a high degree of entropy 

is also observed in pathological conditions, such as heart rate rhythm in atrial fibrillation 

(Goldberger et al., 2002b). Therefore, a generic approach to measuring global complexity 

involves considering multiple time scales in a given physical system (Costa et al., 2002, 

2005). Subsequently, MSE has been proposed based on sample entropy (Richman and 

Moorman, 2000) by measuring entropy over multiple time scales inherent in a time series 

(Costa et al., 2002).
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MSE analysis introduces the notion that neither the extremes of complete regularity nor 

complete randomness are complex (Costa et al., 2002), and the profiles of entropy changes 

across different time scales are different between regular and random signal in a variety of 

biological signals (Costa et al., 2005). In the case of regular signal, the entropy is low across 

all time scales, whereas in random signal the entropy is high in short time scale and its value 

decays as scale factors increase; indicating the absence of information flow across different 

time scales in the time series. MSE has been applied to various types of biomedical data, 

such as electromyograms (Istenic et al., 2010), the human gait (Costa et al., 2003) and 

postural sway (Costa et al., 2007), EEGs (Catarino et al., 2011; Escudero et al., 2006; 

Mizuno et al., 2010; Park et al., 2007; Protzner et al., 2011; Takahashi et al., 2010; Yang et 

al., 2013b), and resting-state fMRI signal (McDonough and Nashiro, 2014; Smith et al., 

2014; Yang et al., 2015; Yang et al., 2014; Yang et al., 2013a). Collectively, changes in 

signal dynamics toward regularity or randomness as two ways of reduced complexity may 

be ubiquitous in the pathology of biologic systems.

1.4 Why study the resting-state fMRI signal?

Brain complexity in SZ has been examined using electroencephalography (Keshavan et al., 

2004; Takahashi et al., 2010), magnetoencephalography (Fernandez et al., 2011), and gyral 

folding using structural MRI (Narr et al., 2004). A valuable approach to investigating the 

complexity of brain activity in SZ is resting-state fMRI. Sokumbi and colleagues (Sokunbi 

et al., 2014) showed that SZ had increased randomness of BOLD activity as indexed by 

single-scale sample entropy and the Hurst exponent, suggesting that brain complexity may 

be increased in patients with SZ. We have recently examined the complexity of resting-state 

fMRI signal in an independent sample of SZ patients (Yang et al., 2015) using multiscale 

entropy (MSE) (Costa et al., 2002, 2005), and have shown reduced MSE complexity toward 

either regular or random patterns. The two patterns of change in complexity correlated 

differently with positive and negative symptoms. However, the study was limited to SZ 

without their relatives, and the question of diagnostic specificity was not examined.

1.5 Current study

In the current study, we applied the MSE method to assess the complexity of resting-state 

fMRI data from the Bipolar Schizophrenia Network for Intermediate Phenotypes (BSNIP) 

study. We sought to address the following questions: 1) Do probands with psychotic 

disorders (SZ, schizoaffective; SAD, and psychotic BP) differ from healthy controls on the 

MSE complexity? 2) Do MSE complexity measures differ between diagnostic categories, 3) 

Do MSE complexity measures correlate with dimensional measures of psychopathology and 

cognition? and finally 4) Do non-psychotic first degree relatives of psychotic disorder 

probands have alterations in brain complexity?

2. Materials and methods

2.1 Participants

The recruitment strategy and subject characteristics of the BSNIP sample have been 

previously described (Tamminga et al., 2013). Patients were recruited from the community if 

they had a DSM IV-TR diagnosis of SZ, SAD or psychotic BP and at least one first-degree 
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relative between the ages of 15–65 willing to participate in the study. Healthy controls were 

recruited from the same local communities as where the patients were recruited. Diagnoses 

were determined using the Structured Clinical Interview for DSM Disorders (SCID) (First et 

al., 1997).

Inclusion criteria were: 1) no history of seizures or head injury with loss of consciousness 

(>10 minutes), 2) no diagnosis of substance abuse in the preceding 30 days or substance 

dependence in the preceding 6 months, 3) negative urine drug screen for common drugs of 

abuse on the day of testing, 4) clinically stable over the previous month, 5) no history of 

systemic medical or neurological disorder known to affect cognitive abilities, 6) age-

corrected Wide Range Achievement Test-IV Reading standard score >65, and 7) adequate 

fluency in English to complete testing. The study protocol was approved by the Institutional 

Review Board at each local site. After a complete description of the study was given to 

volunteers, their written informed consent was obtained.

Non-psychotic first-degree relatives of probands were included in this study as the relative 

groups. Those relatives of probands that also met the diagnostic criteria for an Axis-I 

psychotic disorder were added into the corresponding proband group. For fMRI data, sites 

were included if they satisfied the following criteria: 1) >200 time points and 2) a TR of 1.5. 

The Baltimore and Boston sites collected less than 200 time points, and were therefore 

excluded. The number of time points for the included sites was 204 and was consistent 

across four sites (Chicago, Hartford, Detroit, and Dallas).

2.2 Cognitive assessment

The Brief Assessment of Cognition in Schizophrenia (BACS) is a neuropsychological 

battery designed to evaluate global neuropsychological function in individuals with SZ that 

has been demonstrated to be reliable and valid (Keefe et al., 2004; Keefe et al., 2008). The 

BACS consists of six subtests covering four domains (Verbal Memory, Processing Speed, 

Reasoning, and Problem Solving, and Working Memory). Subtest scores were converted to 

z-scores using published norms (Keefe et al., 2008). To limit the impact of extreme values 

on group means, outliers were winsorized (Tabachnick and Fidell, 2007) to a maximum 

absolute value of 4.0 for subtest z-scores before BACS composite scores were computed to 

reduce outlier effects on data analyses. A previous report provides details of the BACS data 

in the full BSNIP sample (Hill et al., 2013).

2.3 Functional MRI scanning and image processing

All subjects at each site underwent a single 5-min run of resting-state fMRI on a 3-T scanner 

as described previously in articles that examined conventional functional MRI measures 

(Khadka et al., 2013; Meda et al., 2012). Preprocessing of fMRI and T1-weighted images 

were carried out using the Data Processing Assistant for Resting-State fMRI toolbox (Chao-

Gan and Yu-Feng, 2010) implemented in Matlab (MathWorks, Natick, MA). The initial six 

images, during which T2 effects stabilized, were removed. Images were then realigned and 

corrected for slice timing differences, with appropriate adjustments incorporated for between 

site variability in acquisition parameters such as repetition time, slice acquisition direction 

etc. Only subjects that exhibited a maximum displacement less than 1.5mm in each axis, and 
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less than 1.5 degree angular motion were included. A conservative motion limit was chosen 

to increase consistency of resting-state fMRI data across different sites. A total of 201 

subjects was excluded due to excess head motion (Chicago: 36; Dallas: 34; Detroit: 1; and 

Hartford: 130 subjects). Images were then co-registered to their corresponding structural T1-

weighted images. Resting-state images were normalized into a common 3mm isotropic MNI 

space. The CSF and white matter partitions generated during the segmentation process were 

used as regions of interest to extract the corresponding signal for nuisance covariate 

regression along with head motion to remove potential physiological noise.

2.4 Analysis of the resting-state fMRI signal complexity

MSE analysis (Costa et al., 2002, 2005) was developed to estimate sample entropy in 

multiple time scales by using a coarse-graining procedure. Sample entropy is used in MSE 

analysis because it provides greater consistency and is less dependent on a given signal 

length compared with other entropy methods (Richman and Moorman, 2000). MSE 

calculation can be summarized in the following three steps: (a) constructing coarse-grained 

time series according to different scale factors; (b) quantifying the sample entropy of each 

coarse-grained time series; and (c) examining the sample entropy profile over a range of 

scales. According to this method, the length of each coarse-grained time series is equal to 

the length of the original time series divided by the scale factor. For Scale 1, the time series 

is merely the original time series.

The MSE analysis of resting-state fMRI signal has been described previously (Yang et al., 

2015; Yang et al., 2014; Yang et al., 2013a) using parameters of m = 1, r = 0.35, and scale 

factor up to 5. We have shown that the parameters m = 1 and r = 0.20–0.45 provided reliable 

MSE estimates in short resting-state fMRI signal (e.g., 200 data points) (Yang et al., 2016).

A conceptual illustration of quantifying resting-state fMRI signal complexity using MSE is 

provided in Fig. 1. Using the MSE of resting-state fMRI signal from healthy subjects as the 

reference, we classified MSE profiles into three types: 1) increased complexity (i.e., 

increased entropy in all scales), 2) reduced complexity toward regularity (i.e., decreased 

entropy in all scales), or 3) reduced complexity toward randomness (i.e., increased entropy 

in fine scales followed by decay in entropy as the scale factors increase) (Yang et al., 2015). 

The random type of MSE profile quantifies uncorrelated randomness that cannot be fully 

captured by single-scale entropy and the slope of entropy decay was used as an indicator of 

complexity change in the random type of complexity changes (Yang et al., 2015).

2.5 Statistical analysis

Voxel-wise group differences in MSE parametric mapping were examined using an analysis 

of covariance (ANCOVA) model implemented within the Statistical Parametric Mapping 

software (version 8) adjusted for age, sex, and site. Post-hoc pair-wise t-contrasts were 

generated to visualize group differences in 1) respective proband groups with respect to 

controls and 2) between proband groups. If significant differences were noted in any 

proband group compared to controls then we sought to see if these regional differences were 

also found in their respective non-psychotic first-degree relatives. Significant brain clusters 

were reported if the nominal P value was less than .005 for any t test (uncorrected) on a 
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single voxel level with a cluster size greater than 30 voxels, and further corrected by 

familywise-error-rate (FWE) methods at P values of less than .05 at the cluster level. 

Additionally, we also implemented an ANCOVA model to visualize any main effects of site 

across controls only and a full-factorial model across controls, probands and unaffected 

relatives to test for any significant diagnosis × site interactions.

3. Results

3.1 Demographic data and cognitive assessment

Table 1 shows the demographic and cognitive data of probands and HCs. There was no 

significant between-group difference in age, handedness, age of onset, duration of illness, 

and socioeconomic status by Hollingshead score. SZ patients had a significantly lower ratio 

of females than other groups (X2 = 28.7; P < .001). Between-group differences in probands 

were found in, YMRS (F = 3.65; P = .027), MADRS (F = 6.4; P = .002), PANSS (total 

scores; F = 21.7; P < .001), chlorpromazine (CPZ) equivalent dose (F = 4.2; P = 0.017) and 

BACS (composite scores; F = 13.7; P < .001). In general, when compared to HC subjects, 

SZ patients had the lowest cognitive performance by BACS composite scores and its 

subscales, followed by SAD and BP patients.

3.2 Probands versus control differences in resting-fMRI signal complexity

Table 2 shows the observed differences in MSE profiles of each proband group versus HCs. 

There was no increased complexity of resting-state fMRI signal (i.e., increased entropy in all 

time scales) in proband groups in any brain region compared to HCs. Proband groups 

showed either decreased complexity toward regularity (i.e., decreased entropy in all time 

scales) or toward randomness (i.e., increased entropy in fine scales followed by decay in 

entropy as the scale factors increase), compared to HCs. No significant differences in MSE 

profiles were found between proband groups.

SZ probands showed decreased complexity toward regular signal in hypothalamus (t = 

−3.61). BP probands showed decreased complexity toward regular signal in left inferior 

occipital (t = −3.41), right precentral (t = −3.83) and left superior parietal (t = −3.31) 

regions. No brain region with decreased complexity toward regularity was found in SAD 

probands.

SZ probands showed decreased complexity toward random signal in the left inferior frontal 

(t = −4.29), left superior frontal (t = −4.17), and the left middle frontal cortex (t = −3.98). 

SAD probands showed decreased complexity toward random signal in the left dorsal medial 

frontal (t = −3.34), bilateral ventral medial frontal (t = −3.19), and left supplementary motor 

cortex (t = −3.91). BP probands showed decreased complexity toward random signal in the 

left inferior frontal (t = −3.80), left inferior frontal gyrus and anterior cingulate (t = −3.30), 

and left inferior frontal/pars triangularis (t = −3.20) (see Fig. 2).

When overlaying these identified brain regions from each proband group (Fig. 3), all 

proband groups shared a decreased complexity toward random signal in the dorsal or ventral 

prefrontal cortex (PFC). Specifically, Fig. 3 shows that BP and SAD probands shared 

abnormal brain signal complexity in ventral medial PFC (vmPFC), BP and SZ probands 
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shared abnormal brain signal complexity in ventral lateral PFC (vlPFC), and SAD and SZ 

probands shared abnormal brain signal complexity in dorsal medial PFC (dmPFC). Notably, 

only SZ probands showed a decreased complexity toward randomness in dorsal lateral PFC 

(dlPFC). Overall, SZ had the widest area of involvement in abnormal brain signal 

complexity in vlPFC, dmPFC, and dlPFC.

3.3 Relatives versus control Differences in resting-fMRI signal complexity

BP, SAD, and SZ relatives did not show any significant differences in resting-fMRI signal 

complexity compared to controls in PFC regions. It is worth noting that SZ relatives showed 

a trend of decreased complexity toward random signal in dmPFC (Fig. 4; peak voxel at x = 

−6, y = 54, z = 33; kE = 52) but this regional difference did not survive corrections for 

multiple comparisons.

3.4 Correlation of MSE complexity of resting-state fMRI signal with cognition and 
psychopathology

The slope of entropy values across all time scales were extracted from the dorsal (peak voxel 

at x = −9, y = −51, z = −33; kE = 268) and ventral PFC (peak voxel at x = −48, y = 21, z = 

−9; kE = 858) in which these brain regions showed significant brain signal randomness when 

comparing all probands and HCs. We then correlated the slope of entropy values (as an 

indicator of brain signal randomness; more negative slope represents increased brain signal 

randomness) with cognitive and psychopathology measures separately in each group (Supp. 

Table 1 and 2). In general, the correlation level was weak when correlating brain signal 

randomness with psychopathology or cognitive performance, and none of correlations 

survived Bonferroni correction for multiple comparisons (i.e., all P > 0.003; 0.05/16 tests). 

When examining effects in all proband groups combined, slope of entropy values in ventral 

PFC was correlated positively with BACS digit sequencing (r = .133; P = .018). The 

strongest level of correlation was found in SAD probands between BACS digit sequencing 

and brain signal complexity in dorsal (r = .250, P = .016) and ventral PFC (r = .249, P = .

016), indicating that increased brain signal randomness was associated with reduced 

cognitive performance. Of note, we did not find consistent patterns of correlations between 

increased brain signal complexity and psychopathology or average daily chlorpromazine 

(CPZ) equivalent dose.

3.5 Site effects

While sites were well matched for TR and TE values, due to variability in scanner 

manufacturer and a slight variation in voxel size (Hartford group used 3.4mm × 3.4mm × 

5mm), global site effects across all brain regions were observed across all groups. However, 

no significant diagnoses by site interactions were observed for any comparisons. The 

absence of interactions suggests that the MSE differences are robust against site effects.

3.6 Medication effects

We did not find the main effect of average dose of CPZ equivalents in regional differences 

between proband groups.
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4. Discussion

With MSE analysis, we quantified pathologic processes of resting-state fMRI signal that 

exhibited either increased regularity or increased randomness. The key finding emerging 

from this study is that psychotic probands (e.g., psychotic BP, SAD, and SZ) showed either 

decreased complexity toward regularity or randomness in various brain regions. Essentially, 

psychotic probands differentially shared pathologically decreased complexity of resting-state 

fMRI signal toward randomness in the vmPFC, vlPFC, or dmPFC, and only SZ patients 

exhibited increased brain signal randomness in dlPFC. The abnormal changes in brain signal 

complexity in the PFC regions of psychotic probands were not seen in their non-psychotic 

relatives, suggesting that the alteration of brain signal complexity in the PFC region may be 

an illness marker rather than a familial trait. Furthermore, we found that the increased brain 

signal randomness was associated with reduced cognitive performance in psychotic 

probands.

Collectively, these observations are in line with the loss of brain complexity hypothesis 

(Yang and Tsai, 2013) that brain signal oscillations in mental illness may exhibit pathologic 

dynamics toward regularity or randomness, and suggest that measures of brain signal 

complexity may serve as novel translational neuroimaging biomarkers that can potentially 

shed new insights into the pathophysiology of psychotic disorders. Recent approaches to 

psychiatric classification such as Research Domain Criteria (RDoC) have moved toward 

characterization of biomarkers that cut across symptom-based diagnoses but map on to 

translational domains from cellular to circuitry and behavioral levels (Insel, 2014). Our 

observations that alterations in brain signal complexity cut across DSM diagnoses, suggests 

that they are worth further investigation using the RDoC paradigms.

4.1 Clinical implications of altered complexity of resting-state fMRI signal in psychosis

A significant body of research has shown that SZ and BP share substantial overlap in clinical 

features, as well as in contributing genetic factors (Lichtenstein et al., 2009), and these two 

disorders may share some underlying neural substrates. The findings in the current work 

extend prior observations of abnormal brain signal complexity in SZ patients (Bassett et al., 

2012; Sokunbi et al., 2014; Takahashi et al., 2010; Yang et al., 2015) to other primary 

psychotic disorders showing that increased randomness of resting-state fMRI signal in 

psychotic probands was consistently observed in various PFC regions across disorders 

(Table 2). Affected regions partially overlapped between diagnostic groups (Fig. 4), 

suggesting a pivotal role of brain signal dysregulation in the PFC region and relevant 

diagnostic overlap observed in psychotic spectrum disorders.

Prior B-SNIP studies have shown shared aberrant functional connectivity in SZ and BP 

probands in meso/paralimbic or posterior default mode networks, and also found other 

networks that are unique to the individual proband groups (Khadka et al., 2013; Meda et al., 

2012). For example, midbrain/cerebellum and frontal-temporal/paralimbic were unique to 

SZ probands (Khadka et al., 2013), while paralimbic circuit was uniquely associated with 

BP probands (Meda et al., 2012).
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Our analyses based on temporal brain signal dynamics also revealed important overlap/non-

overlap patterns between proband groups. First, both SZ and BP showed increased brain 

signal randomness in vlPFC, a brain region that is associated with the selection and 

maintenance of goal-relevant item information (Blumenfeld et al., 2013), and SAD and BP 

showed increased brain signal randomness in vmPFC, a brain region that is associated with 

social decision making (van den Bos and Guroglu, 2009), theory of mind (Leopold et al., 

2012), as well as generating (Koenigs et al., 2007) or regulating emotions (Koenigs et al., 

2007; Phillips et al., 2008; Ritter et al., 2004). Although we did not find the consistent 

patterns of correlations between increased brain signal randomness and psychopathology, 

the overlap between SAD and BP in vmPFC may explain the clinical similarity of mood 

dysregulation exhibited in both disorders, and the overlap between SZ and BP in vlPFC may 

be associated with reduced working memory commonly seen in the broader category of 

psychotic disorders (Glahn et al., 2005; Hill et al., 2015).

The findings in abnormal brain signal complexity in ventral PFC may also add to prior 

research based on task-based fMRI or functional connectivity studies. Task-based fMRI 

studies have observed elevated activations in vlPFC in BP patients during an emotional Go-

NoGo task (Elliott et al., 2004) and while viewing emotional faces (Lawrence et al., 2004), 

suggesting that dysfunction of the vlPFC may underlie the deficit in mood regulation in BP 

patients. On the other hand, meta-analysis of task-based fMRI studies found that the most 

consistent reductions in task-related activation in SZ patients during encoding and retrieval 

were in the both dlPFC and vlPFC (Ragland et al., 2009). A prior resting-state fMRI study 

showed that altered functional connectivity between brain networks involved in cognitive 

and emotional processing was found in BP and SZ patients (Mamah et al., 2013).

Second, SAD and SZ share increased brain signal randomness in dmPFC, a brain region that 

is related to errors, near-misses, and response conflict (Modirrousta and Fellows, 2008). In 

contrast, only SZ showed increased brain signal randomness in dlPFC, a brain region that is 

consistently involved in decision making (Greene et al., 2001) and working memory (Barbey 

et al., 2013). The additional involvement of the dlPFC in SZ alone with the overlap between 

SZ and SAD in dmPFC may explain the greater impairment of cognitive performance in SZ 

compared to SAD that is observed in certain clinical samples (Bora et al., 2009), and is 

evidenced by ANOVA analysis of BACS in the current study.

4.2 Association of brain signal complexity with cognitive and behavioral measures

A recent systematic review of cognition in SZ and BP found that overall both SZ and BP 

patients present deficits on all neurocognitive measures compared to healthy controls (Hill et 

al., 2015; Hill et al., 2013; Vohringer et al., 2013). In particular, SZ patients showed more 

severe and pervasive cognitive deficits while BD patients present a milder and more 

confined impairment. Prior B-SNIP analysis showed that the excessive connectivity within 

brain networks coupled to the dlPFC and medial PFC was associated with cognitive deficits 

in persons at risk for SZ (Unschuld et al., 2014). We found a modest association between 

brain signal randomness in the dorsal or ventral PFC and the BACS digit span. However, we 

were unable to find consistent patterns of correlations between abnormal brain signal 

complexity and any of the symptom dimensions. These findings are consistent with our 
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recent study (Clementz et al., 2016), in which three distinct Biotypes of psychosis were 

identified that did not conform to traditional symptom-based diagnostic criteria but were 

associated with distinct severity of cognitive deficits. Therefore, our finding of modest 

associations of BACS with brain complexity by DSM diagnostic groups may warrant future 

studies to investigate the neurocognitive correlates of brain complexity based on novel 

categorization of patients, such as Biotypes (Clementz et al., 2016).

4.3 How brain signal complexity analysis can help understand the complex brain 
functions?

The advance in pathophysiology of mental illness has been hampered by a lack of biological 

markers (Singh and Rose, 2009). Despite substantial effort, the causes of numerous 

psychiatric disorders remain unclear; even precisely categorizing such disorders has been 

difficult. The diagnostic systems in psychiatry have mostly relied on descriptive 

phenomenology rather than their biological mechanisms, etiology, and possible genotypes. 

Increasingly, neuroimaging studies have established a better understanding of the complex 

brain functions in both healthy and pathological mental conditions, which include the 

Human Connectome Project (Van Essen et al., 2013), Autism Brain Imaging Data Exchange 

(Di Martino et al., 2014), or Bipolar & Schizophrenia Network on Intermediate Phenotypes 

(Tamminga et al., 2013). To understand the complex brain data, an approach that integrates 

mathematics, physics, and neuroscience is required. Complexity theory may have the 

potential to add a new dimension and provide a crucial tool to extract fundamental features 

from large nonlinear, spatio-temporal neuroimaging data at multiple levels. In fact, the 

overlap and non-overlap of brain regions with abnormal brain signal complexity between 

psychotic disorders by DSM diagnoses suggest a novel RDoC approach to potentially 

improve the DSM diagnoses by incorporating neuroimaging markers.

In recent years, advances in nonlinear dynamics have provided new analysis methods for 

measuring subtle changes in complex neurophysiological signals, thereby opening a new 

window through which to study the neurobiology of psychiatric disorders and potentially, 

for more clinically relevant assessments. Measures of complexity (including those developed 

in our research) have provided a useful tool for differentiating people of different age groups 

(McIntosh et al., 2008; McIntosh et al., 2014; Smith et al., 2014; Takahashi et al., 2009; 

Vakorin et al., 2011; Yang et al., 2013a) and with different clinical disorders including 

Alzheimer’s disease (Escudero et al., 2006; Mizuno et al., 2010; Yang et al., 2013b), autism 

(Bosl et al., 2011; Catarino et al., 2011; Ghanbari et al., 2015), attention deficit hyperactivity 

disorder (Gomez et al., 2013; Sokunbi et al., 2013), depression (Mendez et al., 2012; 

Niemiec and Lithgow, 2005; Saletu et al., 2010), SZ (Fernandez et al., 2011; Sokunbi et al., 

2014; Takahashi et al., 2010; Yang et al., 2015), and traumatic brain injury (Lu et al., 2012; 

Raja Beharelle et al., 2012). Of note, the interpretation of complexity is often by the simple 

up vs. down approach in a single time scale along the continuum of regularity toward 

randomness, leading to the confusing conclusion that randomness is complex. Therefore, 

such simple up vs. down definitions of complexity need to be substantially revised with 

incorporation of multiple scales inherent in complex systems. In terms of the information 

theory, regularity is associated with the limited information content relative to meaningful 

complexity while randomness represents the reduced information flow across different 
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scales. The categorization of resting-state fMRI signal into regularity and randomness as two 

ways of decreasing complexity provides a qualitative approach to pathologic changes in 

brain signal complexity. In this context, the analysis of brain signal complexity provides a 

useful and promising tool for clinical psychiatry that may benefit the evaluation of the 

disease process or treatment outcome. Furthermore, understanding the possible mechanisms 

of healthy complexity is important both at the basic scientific level and at the practical level, 

at which clinical interventions can be proposed to maintain or restore the dynamical 

complexity via stochastic resonance mechanism (Costa et al., 2007; Sejdic and Lipsitz, 

2013).

4.4 Limitations

An important limitation of our study is that the majority of probands were on medications, 

and the effects of antipsychotics and other psychotropic drugs on brain complexity measures 

cannot be completely ruled out, though we did not see any correlations between CPZ 

equivalents and complexity measures. Previous studies have shown similar reductions in 

brain nonlinear complexity measures in antipsychotic naïve first episode SZ patients 

(Keshavan et al., 2004), but few data exist in other psychotic disorders. Future studies need 

to investigate untreated and treated patients across both early chronic phases of psychotic 

disorders.

Site effects are a potential limitation, but no site by diagnosis interactions were seen. It is 

important to note that while no diagnosis by site interactions were found, the significant 

main effect of different site manufacturers should not be ignored. In addition, resting-state 

fMRI data are also highly sensitive to motion artifacts, but we took care to exclude scans 

with significant motion. Recent development in denoising resting-state fMRI data by 

independent component analysis (ICA) and FIX algorithm (Oxford Centre for Functional 

MRI of the Brain’s ICA-based X-noiseifier) may help to tackle the challenge of motion 

artifacts (Salimi-Khorshidi et al., 2014).

The slope measure captures MSE profile only in a first-order level and may overlook second 

order trends in the profile. The improvement of profiling MSE complexity toward 

randomness could be achieved by incorporating higher order polynomial trends and a 

broader range of scales when analyzing longer resting-state fMRI time series.

The findings in this study are partly consistent with prior MSE analysis of resting-state fMRI 

signal in SZ patients (Yang et al., 2015) that increased randomness of resting-state fMRI 

signal was found in dorsal and ventral lateral prefrontal cortex. However, the findings from 

other brain regions were inconsistent, possibly due to population differences, i.e. ethnic 

difference or the older SZ patients in Yang et al., 2015. Nevertheless, the findings of 

increased randomness of resting-state fMRI signal in the prefrontal region are consistent 

across studies and warrants a meta-analytic investigation of MSE-based fMRI analysis in the 

future.
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5. Conclusion

Our observations of the overlap in brain complexity patterns between DSM IV psychotic 

disorders were not surprising, consistent with findings with several other biomarker 

investigations (Tamminga et al., 2013). Recent investigations by our group using taxometric 

approaches to biomarker data applies agnostic to DSM categories have revealed Biotypes 

that did not map on to clinical diagnoses; rather the distinctiveness of these Biotypes was 

supported by external validating criteria such as brain structural data, social functioning and 

family history (Clementz et al., 2016). Further analysis is needed to see whether brain 

complexity measures differ across such Biotypes. Finally, as pointed out in Clementz et al., 

2016, psychosis may be a final endpoint for multiple psychotogenic etiologies, as congestive 

heart failure is a common endpoint of various medical disorders. Alternatively, resting-state 

brain oscillations in severe mental illness could exhibit pathological dynamics as seen in 

severe cardiovascular diseases, such as reduced heart rate variability in congestive heart 

failure or increased irregularity in atrial fibrillation. The biological mechanisms underlying 

abnormal brain signal complexity will be of importance in future studies to understand the 

pathophysiology of psychosis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

References

Anokhin AP, Muller V, Lindenberger U, Heath AC, Myers E. Genetic influences on dynamic 
complexity of brain oscillations. Neuroscience letters. 2006; 397:93–98. [PubMed: 16442730] 

Bahrami B, Seyedsadjadi R, Babadi B, Noroozian M. Brain complexity increases in mania. 
Neuroreport. 2005; 16:187–191. [PubMed: 15671875] 

Barbey AK, Koenigs M, Grafman J. Dorsolateral prefrontal contributions to human working memory. 
Cortex; a journal devoted to the study of the nervous system and behavior. 2013; 49:1195–1205. 
[PubMed: 22789779] 

Bassett DS, Nelson BG, Mueller BA, Camchong J, Lim KO. Altered resting state complexity in 
schizophrenia. NeuroImage. 2012; 59:2196–2207. [PubMed: 22008374] 

Blumenfeld RS, Nomura EM, Gratton C, D’Esposito M. Lateral prefrontal cortex is organized into 
parallel dorsal and ventral streams along the rostro-caudal axis. Cereb Cortex. 2013; 23:2457–2466. 
[PubMed: 22879354] 

Bora E, Yucel M, Pantelis C. Cognitive functioning in schizophrenia, schizoaffective disorder and 
affective psychoses: meta-analytic study. The British journal of psychiatry: the journal of mental 
science. 2009; 195:475–482. [PubMed: 19949193] 

Bosl W, Tierney A, Tager-Flusberg H, Nelson C. EEG complexity as a biomarker for autism spectrum 
disorder risk. BMC medicine. 2011; 9:18. [PubMed: 21342500] 

Catarino A, Churches O, Baron-Cohen S, Andrade A, Ring H. Atypical EEG complexity in autism 
spectrum conditions: a multiscale entropy analysis. Clin Neurophysiol. 2011; 122:2375–2383. 
[PubMed: 21641861] 

Chao-Gan Y, Yu-Feng Z. DPARSF: A MATLAB Toolbox for “Pipeline” Data Analysis of Resting-
State fMRI. Frontiers in systems neuroscience. 2010; 4:13. [PubMed: 20577591] 

Clementz BA, Sweeney JA, Hamm JP, Ivleva EI, Ethridge LE, Pearlson GD, Keshavan MS, Tamminga 
CA. Identification of Distinct Psychosis Biotypes Using Brain-Based Biomarkers. The American 
journal of psychiatry. 2016; 173:373–384. [PubMed: 26651391] 

Hager et al. Page 13

J Affect Disord. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Costa M, Goldberger AL, Peng CK. Multiscale entropy analysis of complex physiologic time series. 
Physical review letters. 2002; 89:068102. [PubMed: 12190613] 

Costa M, Goldberger AL, Peng CK. Multiscale entropy analysis of biological signals. Physical review. 
2005; 71:021906. [PubMed: 15783351] 

Costa M, Peng CK, Goldberger AL, Hausdorff JM. Multiscale entropy analysis of human gait 
dynamics. Physica A. 2003; 330:53–60.

Costa M, Priplata AA, Lipsitz LA, Wu Z, Huang NE, Goldberger AL, Peng CK. Noise and poise: 
Enhancement of postural complexity in the elderly with a stochastic-resonance-based therapy. 
Europhysics letters. 2007; 77:68008. [PubMed: 17710211] 

Di Martino A, Yan CG, Li Q, Denio E, Castellanos FX, Alaerts K, Anderson JS, Assaf M, Bookheimer 
SY, Dapretto M, Deen B, Delmonte S, Dinstein I, Ertl-Wagner B, Fair DA, Gallagher L, Kennedy 
DP, Keown CL, Keysers C, Lainhart JE, Lord C, Luna B, Menon V, Minshew NJ, Monk CS, 
Mueller S, Muller RA, Nebel MB, Nigg JT, O’Hearn K, Pelphrey KA, Peltier SJ, Rudie JD, 
Sunaert S, Thioux M, Tyszka JM, Uddin LQ, Verhoeven JS, Wenderoth N, Wiggins JL, Mostofsky 
SH, Milham MP. The autism brain imaging data exchange: towards a large-scale evaluation of the 
intrinsic brain architecture in autism. Molecular psychiatry. 2014; 19:659–667. [PubMed: 
23774715] 

Elliott R, Ogilvie A, Rubinsztein JS, Calderon G, Dolan RJ, Sahakian BJ. Abnormal ventral frontal 
response during performance of an affective go/no go task in patients with mania. Biological 
psychiatry. 2004; 55:1163–1170. [PubMed: 15184035] 

Escudero J, Abasolo D, Hornero R, Espino P, Lopez M. Analysis of electroencephalograms in 
Alzheimer’s disease patients with multiscale entropy. Physiological measurement. 2006; 27:1091–
1106. [PubMed: 17028404] 

Fernandez A, Gomez C, Hornero R, Lopez-Ibor JJ. Complexity and schizophrenia. Progress in neuro-
psychopharmacology & biological psychiatry. 2013; 45:267–276. [PubMed: 22507763] 

Fernandez A, Lopez-Ibor MI, Turrero A, Santos JM, Moron MD, Hornero R, Gomez C, Mendez MA, 
Ortiz T, Lopez-Ibor JJ. Lempel-Ziv complexity in schizophrenia: a MEG study. Clin Neurophysiol. 
2011; 122:2227–2235. [PubMed: 21592856] 

First, MB., Sptzer, RL., Gibbon, M., Williams, JBW. Structured Clinical Interview for DSM-IV Axis I 
Disorders. American Psychiatric Publishing; Arlington, VA: 1997. 

Ghanbari Y, Bloy L, Christopher Edgar J, Blaskey L, Verma R, Roberts TP. Joint analysis of band-
specific functional connectivity and signal complexity in autism. Journal of autism and 
developmental disorders. 2015; 45:444–460. [PubMed: 23963593] 

Glahn DC, Ragland JD, Abramoff A, Barrett J, Laird AR, Bearden CE, Velligan DI. Beyond 
hypofrontality: a quantitative meta-analysis of functional neuroimaging studies of working 
memory in schizophrenia. Hum Brain Mapp. 2005; 25:60–69. [PubMed: 15846819] 

Goldberger AL, Amaral LA, Hausdorff JM, Ivanov P, Peng CK, Stanley HE. Fractal dynamics in 
physiology: alterations with disease and aging. Proceedings of the National Academy of Sciences 
of the United States of America. 2002a; 99(Suppl 1):2466–2472. [PubMed: 11875196] 

Goldberger AL, Peng CK, Lipsitz LA. What is physiologic complexity and how does it change with 
aging and disease? Neurobiology of aging. 2002b; 23:23–26. [PubMed: 11755014] 

Gomez C, Poza J, Fernandez A, Bachiller A, Gomez J, Hornero R. Entropy analysis of MEG 
background activity in attention-deficit/hyperactivity disorder. Conference proceedings : … 
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE 
Engineering in Medicine and Biology Society. Conference. 2013; 2013:5057–5060.

Gottschalk A, Bauer MS, Whybrow PC. Evidence of chaotic mood variation in bipolar disorder. 
Archives of general psychiatry. 1995; 52:947–959. [PubMed: 7487343] 

Greene JD, Sommerville RB, Nystrom LE, Darley JM, Cohen JD. An fMRI investigation of emotional 
engagement in moral judgment. Science. 2001; 293:2105–2108. [PubMed: 11557895] 

Hill KS, Buchholz A, Amsbaugh H, Reilly JL, Rubin LH, Gold JM, Keefe RS, Pearlson GD, Keshavan 
MS, Tamminga CA, Sweeney JA. Working memory impairment in probands with schizoaffective 
disorder and first degree relatives of schizophrenia probands extend beyond deficits predicted by 
generalized neuropsychological impairment. Schizophrenia research. 2015; 166:310–315. 
[PubMed: 26008884] 

Hager et al. Page 14

J Affect Disord. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hill SK, Reilly JL, Keefe RS, Gold JM, Bishop JR, Gershon ES, Tamminga CA, Pearlson GD, 
Keshavan MS, Sweeney JA. Neuropsychological impairments in schizophrenia and psychotic 
bipolar disorder: findings from the Bipolar-Schizophrenia Network on Intermediate Phenotypes 
(B-SNIP) study. The American journal of psychiatry. 2013; 170:1275–1284. [PubMed: 23771174] 

Insel TR. The NIMH Research Domain Criteria (RDoC) Project: precision medicine for psychiatry. 
The American journal of psychiatry. 2014; 171:395–397. [PubMed: 24687194] 

Istenic R, Kaplanis PA, Pattichis CS, Zazula D. Multiscale entropy-based approach to automated 
surface EMG classification of neuromuscular disorders. Medical & biological engineering & 
computing. 2010; 48:773–781. [PubMed: 20490940] 

Keefe RS, Goldberg TE, Harvey PD, Gold JM, Poe MP, Coughenour L. The Brief Assessment of 
Cognition in Schizophrenia: reliability, sensitivity, and comparison with a standard neurocognitive 
battery. Schizophrenia research. 2004; 68:283–297. [PubMed: 15099610] 

Keefe RS, Harvey PD, Goldberg TE, Gold JM, Walker TM, Kennel C, Hawkins K. Norms and 
standardization of the Brief Assessment of Cognition in Schizophrenia (BACS). Schizophrenia 
research. 2008; 102:108–115. [PubMed: 18495435] 

Keshavan MS, Cashmere JD, Miewald J, Yeragani VK. Decreased nonlinear complexity and chaos 
during sleep in first episode schizophrenia: a preliminary report. Schizophrenia research. 2004; 
71:263–272. [PubMed: 15474897] 

Khadka S, Meda SA, Stevens MC, Glahn DC, Calhoun VD, Sweeney JA, Tamminga CA, Keshavan 
MS, O’Neil K, Schretlen D, Pearlson GD. Is aberrant functional connectivity a psychosis 
endophenotype? A resting state functional magnetic resonance imaging study. Biological 
psychiatry. 2013; 74:458–466. [PubMed: 23746539] 

Koenigs M, Young L, Adolphs R, Tranel D, Cushman F, Hauser M, Damasio A. Damage to the 
prefrontal cortex increases utilitarian moral judgements. Nature. 2007; 446:908–911. [PubMed: 
17377536] 

Lawrence NS, Williams AM, Surguladze S, Giampietro V, Brammer MJ, Andrew C, Frangou S, Ecker 
C, Phillips ML. Subcortical and ventral prefrontal cortical neural responses to facial expressions 
distinguish patients with bipolar disorder and major depression. Biological psychiatry. 2004; 
55:578–587. [PubMed: 15013826] 

Leopold A, Krueger F, dal Monte O, Pardini M, Pulaski SJ, Solomon J, Grafman J. Damage to the left 
ventromedial prefrontal cortex impacts affective theory of mind. Social cognitive and affective 
neuroscience. 2012; 7:871–880. [PubMed: 22021651] 

Lichtenstein P, Yip BH, Bjork C, Pawitan Y, Cannon TD, Sullivan PF, Hultman CM. Common genetic 
determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. 
Lancet. 2009; 373:234–239. [PubMed: 19150704] 

Lipsitz LA. Dynamics of stability: the physiologic basis of functional health and frailty. The journals 
of gerontology. Series A, Biological sciences and medical sciences. 2002; 57:B115–125.

Lu CW, Czosnyka M, Shieh JS, Smielewska A, Pickard JD, Smielewski P. Complexity of intracranial 
pressure correlates with outcome after traumatic brain injury. Brain. 2012; 135:2399–2408. 
[PubMed: 22734128] 

Mamah D, Barch DM, Repovs G. Resting state functional connectivity of five neural networks in 
bipolar disorder and schizophrenia. Journal of affective disorders. 2013; 150:601–609. [PubMed: 
23489402] 

McDonough IM, Nashiro K. Network complexity as a measure of information processing across 
resting-state networks: evidence from the Human Connectome Project. Frontiers in human 
neuroscience. 2014; 8:409. [PubMed: 24959130] 

McIntosh AM, Whalley HC, McKirdy J, Hall J, Sussmann JE, Shankar P, Johnstone EC, Lawrie SM. 
Prefrontal function and activation in bipolar disorder and schizophrenia. The American journal of 
psychiatry. 2008; 165:378–384. [PubMed: 18198268] 

McIntosh AR, Vakorin V, Kovacevic N, Wang H, Diaconescu A, Protzner AB. Spatiotemporal 
Dependency of Age-Related Changes in Brain Signal Variability. Cereb Cortex. 2014; 24:1806–
1817. [PubMed: 23395850] 

Meda SA, Gill A, Stevens MC, Lorenzoni RP, Glahn DC, Calhoun VD, Sweeney JA, Tamminga CA, 
Keshavan MS, Thaker G, Pearlson GD. Differences in resting-state functional magnetic resonance 

Hager et al. Page 15

J Affect Disord. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



imaging functional network connectivity between schizophrenia and psychotic bipolar probands 
and their unaffected first-degree relatives. Biological psychiatry. 2012; 71:881–889. [PubMed: 
22401986] 

Mendez MA, Zuluaga P, Hornero R, Gomez C, Escudero J, Rodriguez-Palancas A, Ortiz T, Fernandez 
A. Complexity analysis of spontaneous brain activity: effects of depression and antidepressant 
treatment. Journal of psychopharmacology. 2012; 26:636–643. [PubMed: 21708836] 

Mizuno T, Takahashi T, Cho RY, Kikuchi M, Murata T, Takahashi K, Wada Y. Assessment of EEG 
dynamical complexity in Alzheimer’s disease using multiscale entropy. Clin Neurophysiol. 2010; 
121:1438–1446. [PubMed: 20400371] 

Modirrousta M, Fellows LK. Dorsal medial prefrontal cortex plays a necessary role in rapid error 
prediction in humans. J Neurosci. 2008; 28:14000–14005. [PubMed: 19091989] 

Narr KL, Bilder RM, Kim S, Thompson PM, Szeszko P, Robinson D, Luders E, Toga AW. Abnormal 
gyral complexity in first-episode schizophrenia. Biological psychiatry. 2004; 55:859–867. 
[PubMed: 15050868] 

Niemiec A, Lithgow B. Alpha-band characteristics in EEG spectrum indicate reliability of frontal brain 
asymmetry measures in diagnosis of depression. Conference proceedings : … Annual International 
Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in 
Medicine and Biology Society. Conference. 2005; 7:7517–7520.

Park JH, Kim S, Kim CH, Cichocki A, Kim K. Multiscale entropy analysis of EEG fom patients under 
different pathological conditions. Fractals. 2007; 15:399–404.

Paulus MP, Braff DL. Chaos and schizophrenia: does the method fit the madness? Biological 
psychiatry. 2003; 53:3–11. [PubMed: 12513940] 

Paulus MP, Geyer MA, Braff DL. Use of methods from chaos theory to quantify a fundamental 
dysfunction in the behavioral organization of schizophrenic patients. The American journal of 
psychiatry. 1996; 153:714–717. [PubMed: 8615422] 

Phillips ML, Ladouceur CD, Drevets WC. A neural model of voluntary and automatic emotion 
regulation: implications for understanding the pathophysiology and neurodevelopment of bipolar 
disorder. Molecular psychiatry. 2008; 13(829):833–857.

Pincus SM. Approximate entropy as a measure of system complexity. Proceedings of the National 
Academy of Sciences of the United States of America. 1991; 88:2297–2301. [PubMed: 11607165] 

Protzner AB, Valiante TA, Kovacevic N, McCormick C, McAndrews MP. Hippocampal signal 
complexity in mesial temporal lobe epilepsy: a noisy brain is a healthy brain. Archives italiennes 
de biologie. 2011; 148:289–297.

Ragland JD, Laird AR, Ranganath C, Blumenfeld RS, Gonzales SM, Glahn DC. Prefrontal activation 
deficits during episodic memory in schizophrenia. The American journal of psychiatry. 2009; 
166:863–874. [PubMed: 19411370] 

Raja Beharelle A, Kovacevic N, McIntosh AR, Levine B. Brain signal variability relates to stability of 
behavior after recovery from diffuse brain injury. NeuroImage. 2012; 60:1528–1537. [PubMed: 
22261371] 

Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample 
entropy. American journal of physiology. 2000; 278:H2039–2049. [PubMed: 10843903] 

Ritter LM, Meador-Woodruff JH, Dalack GW. Neurocognitive measures of prefrontal cortical 
dysfunction in schizophrenia. Schizophrenia research. 2004; 68:65–73. [PubMed: 15037340] 

Rosso OA, Martin MT, Plastino A. Brain electrical activity analysis using wavelet-based informational 
tools. Physica A. 2002; 313:587–608.

Saletu B, Anderer P, Saletu-Zyhlarz GM. EEG topography and tomography (LORETA) in diagnosis 
and pharmacotherapy of depression. Clinical EEG and neuroscience. 2010; 41:203–210. [PubMed: 
21077572] 

Salimi-Khorshidi G, Douaud G, Beckmann CF, Glasser MF, Griffanti L, Smith SM. Automatic 
denoising of functional MRI data: combining independent component analysis and hierarchical 
fusion of classifiers. NeuroImage. 2014; 90:449–468. [PubMed: 24389422] 

Schmid GB. Chaos theory and schizophrenia: elementary aspects. Psychopathology. 1991; 24:185–
198. [PubMed: 1661431] 

Hager et al. Page 16

J Affect Disord. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Sejdic E, Lipsitz LA. Necessity of noise in physiology and medicine. Computer methods and programs 
in biomedicine. 2013; 111:459–470. [PubMed: 23639753] 

Singh I, Rose N. Biomarkers in psychiatry. Nature. 2009; 460:202–207. [PubMed: 19587761] 

Smith RX, Yan L, Wang DJ. Multiple time scale complexity analysis of resting state FMRI. Brain 
imaging and behavior. 2014; 8:284–291. [PubMed: 24242271] 

Sokunbi MO, Fung W, Sawlani V, Choppin S, Linden DE, Thome J. Resting state fMRI entropy 
probes complexity of brain activity in adults with ADHD. Psychiatry research. 2013; 214:341–
348. [PubMed: 24183857] 

Sokunbi MO, Gradin VB, Waiter GD, Cameron GG, Ahearn TS, Murray AD, Steele DJ, Staff RT. 
Nonlinear complexity analysis of brain FMRI signals in schizophrenia. PloS one. 2014; 9:e95146. 
[PubMed: 24824731] 

Tabachnick, BG., Fidell, LS. Using multivariate statistics. 5th. Allyn & Bacon; Boston, MA: 2007. 

Takahashi T. Complexity of spontaneous brain activity in mental disorders. Progress in neuro-
psychopharmacology & biological psychiatry. 2013; 45:258–266. [PubMed: 22579532] 

Takahashi T, Cho RY, Mizuno T, Kikuchi M, Murata T, Takahashi K, Wada Y. Antipsychotics reverse 
abnormal EEG complexity in drug-naive schizophrenia: a multiscale entropy analysis. 
NeuroImage. 2010; 51:173–182. [PubMed: 20149880] 

Takahashi T, Cho RY, Murata T, Mizuno T, Kikuchi M, Mizukami K, Kosaka H, Takahashi K, Wada Y. 
Age-related variation in EEG complexity to photic stimulation: a multiscale entropy analysis. Clin 
Neurophysiol. 2009; 120:476–483. [PubMed: 19231279] 

Tamminga CA, Ivleva EI, Keshavan MS, Pearlson GD, Clementz BA, Witte B, Morris DW, Bishop J, 
Thaker GK, Sweeney JA. Clinical phenotypes of psychosis in the Bipolar-Schizophrenia Network 
on Intermediate Phenotypes (B-SNIP). The American journal of psychiatry. 2013; 170:1263–1274. 
[PubMed: 23846857] 

Unschuld PG, Buchholz AS, Varvaris M, van Zijl PC, Ross CA, Pekar JJ, Hock C, Sweeney JA, 
Tamminga CA, Keshavan MS, Pearlson GD, Thaker GK, Schretlen DJ. Prefrontal brain network 
connectivity indicates degree of both schizophrenia risk and cognitive dysfunction. Schizophrenia 
bulletin. 2014; 40:653–664. [PubMed: 23778975] 

Vakorin VA, Lippe S, McIntosh AR. Variability of brain signals processed locally transforms into 
higher connectivity with brain development. J Neurosci. 2011; 31:6405–6413. [PubMed: 
21525281] 

van den Bos W, Guroglu B. The role of the ventral medial prefrontal cortex in social decision making. 
J Neurosci. 2009; 29:7631–7632. [PubMed: 19535573] 

Van Essen DC, Smith SM, Barch DM, Behrens TE, Yacoub E, Ugurbil K, Consortium WUMH. The 
WU-Minn Human Connectome Project: an overview. NeuroImage. 2013; 80:62–79. [PubMed: 
23684880] 

Vohringer PA, Barroilhet SA, Amerio A, Reale ML, Alvear K, Vergne D, Ghaemi SN. Cognitive 
impairment in bipolar disorder and schizophrenia: a systematic review. Frontiers in psychiatry. 
2013; 4:87. [PubMed: 23964248] 

Yang AC, Hong CJ, Liou YJ, Huang KL, Huang CC, Liu ME, Lo MT, Huang NE, Peng CK, Lin CP, 
Tsai SJ. Decreased resting-state brain activity complexity in schizophrenia characterized by both 
increased regularity and randomness. Hum Brain Mapp. 2015; 36:2174–2186. [PubMed: 
25664834] 

Yang AC, Huang CC, Liu ME, Liou YJ, Hong CJ, Lo MT, Huang NE, Peng CK, Lin CP, Tsai SJ. The 
APOE epsilon4 allele affects complexity and functional connectivity of resting brain activity in 
healthy adults. Hum Brain Mapp. 2014; 35:3238–3248. [PubMed: 24193893] 

Yang AC, Huang CC, Yeh HL, Liu ME, Hong CJ, Tu PC, Chen JF, Huang NE, Peng CK, Lin CP, Tsai 
SJ. Complexity of spontaneous BOLD activity in default mode network is correlated with 
cognitive function in normal male elderly: a multiscale entropy analysis. Neurobiology of aging. 
2013a; 34:428–438. [PubMed: 22683008] 

Yang AC, Tsai SJ. Is mental illness complex? From behavior to brain. Progress in neuro-
psychopharmacology & biological psychiatry. 2013; 45:253–257. [PubMed: 23089053] 

Hager et al. Page 17

J Affect Disord. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Yang AC, Tsai SJ, Lin CP, Peng CK. A Strategy to Reduce Bias of Entropy Estimates in fMRI Signal 
38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 
Orlando, FL. 2016

Yang AC, Wang SJ, Lai KL, Tsai CF, Yang CH, Hwang JP, Lo MT, Huang NE, Peng CK, Fuh JL. 
Cognitive and neuropsychiatric correlates of EEG dynamic complexity in patients with 
Alzheimer’s disease. Progress in neuro-psychopharmacology & biological psychiatry. 2013b; 
47:52–61. [PubMed: 23954738] 

Hager et al. Page 18

J Affect Disord. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• Multiscale entropy quantifies pathologic brain signal dynamics of regularity 

or randomness.

• Psychotic probands show increased brain signal randomness in the prefrontal 

cortex.

• Increased brain signal randomness is associated with reduced cognitive 

functions.

• Psychotic probands partially overlap in prefrontal cortex by DSM diagnoses.
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Figure 1. 
Schematic illustration of quantifying complexity of resting-state fMRI signal using 

multiscale entropy. Left: decreased complexity toward regularity is defined as reduced 

entropy of resting-state fMRI signal in probands compared to healthy control (HC) in all 

scale factors. Middle: increased complexity is defined as increased entropy of resting-state 

fMRI signal in probands compared to healthy control (HC) in all scale factors. Right: 

decreased complexity toward randomness is defined as increased entropy of resting-state 

fMRI signal in fine time scale in probands compared to healthy control (HC) and the entropy 

decays as the scale factor increases. Modified and reprinted with permission form (Yang et 

al., 2015).
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Figure 2. 
Regional differences in brain signal complexity toward randomness between probands and 

HCs. Color bar represents t value derived from ANCOVA of group comparisons between 

each proband group and HCs.

Hager et al. Page 21

J Affect Disord. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Regional differences in brain signal complexity toward randomness between relatives and 

HCs. Color bar represents t value derived from ANCOVA of group comparisons between 

each relative group and HCs.
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Figure 4. 
Overlay of brain regions with significantly reduced complexity of resting-state fMRI signal 

toward randomness in psychotic probands compared to healthy controls. Upper: Overlay of 

brain regions in individual diagnostic group. Lower: Overlap of brain regions between 

proband groups.
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