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Relaxin-3 is a member of a superfamily of structurally-related peptides that includes relaxin and insulin-like peptide hormones.
Soon after the discovery of the relaxin-3 gene, relaxin-3 was identified as an abundant neuropeptide in brain with a distinctive
topographical distribution within a small number of GABAergic neuron populations that is well conserved across species. Relaxin-
3 is thought to exert its biological actions through a single class-A GPCR - relaxin-family peptide receptor 3 (RXFP3). Class-A
comprises GPCRs for relaxin-3 and insulin-like peptide-5 and other peptides such as orexin and the monoamine transmitters. The
RXFP3 receptor is selectively activated by relaxin-3, whereas insulin-like peptide-5 is the cognate ligand for the related RXFP4
receptor. Anatomical and pharmacological evidence obtained over the last decade supports a function of relaxin-3/RXFP3 sys-
tems in modulating responses to stress, anxiety-related and motivated behaviours, circadian rhythms, and learning and memory.
Electrophysiological studies have identified the ability of RXFP3 agonists to directly hyperpolarise thalamic neurons in vitro, but
there are no reports of direct cell signalling effects in vivo. This article provides an overview of earlier studies and highlights more
recent research that implicates relaxin-3/RXFP3 neural network signalling in the integration of arousal, motivation, emotion and
related cognition, and that has begun to identify the associated neural substrates and mechanisms. Future research directions to
better elucidate the connectivity and function of different relaxin-3 neuron populations and their RXFP3-positive target neuronsin
major experimental species and humans are also identified.
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the common portal for data from the IUPHAR/BPS Guide to PHARMACOLOGY (Southan et al., 2016), and are permanently archived in the Concise Guide

to PHARMACOLOGY 2015/16 (”’bAIexander et al., 2015a,b).

Introduction

Discovery of relaxin-3 and RXFP3 receptors
Relaxin-3 was discovered in 2001 by searching for homo-
logues of the relaxin gene in the Celera Discovery System
and Celera Genomics databases (Bathgate et al., 2002) and
due to its predominant expression in brain, was subsequently
classified as a neuropeptide. Relaxin-3, like other relaxin and
insulin-like peptide family members, is a 5 kDa peptide that
consists of two chains with three disulphide bonds (Bathgate
et al., 2002; Liu et al., 2003b; Hossain et al., 2013). All family
members contain the characteristic sequence ‘RXXXRXX(I/
V)’ within their B-chain, which is essential for binding the
different cognate receptors (Bullesbach and Schwabe, 2000;
Bathgate et al., 2002; 2006b).

The cognate receptor for relaxin-3 is relaxin-family
peptide 3 receptor (RXFP3) (Bathgate et al., 2006a). Also
known as GPCR135 (Liu et al., 2003b), it was first discovered
in 2000 and named somatostatin- and angiotensin-like
peptide receptor, due to its high amino acid similarity with
somatostatin receptor-5 and the angiotensin AT, receptor
(Matsumoto et al., 2000). RXFP3 is a Gj/,-protein-coupled
receptor, and its activation produces inhibition of intracel-
lular cAMP accumulation and activation of ERK1/2 (Liu
et al., 2003b; van der Westhuizen et al., 2007). Although
in cell-based studies, relaxin-3 can bind and activate three
related GPCRs — RXFP3, RXFP1 (originally named LGR?7;
Sudo et al., 2003) and RXFP4 (originally named GPCR142;
Liu et al., 2003a), there is considerable evidence that RXFP3
is the native receptor for relaxin-3. Firstly, RXFP3 displays
the highest affinity for relaxin-3 (Bathgate ef al., 2006b),
and the genes encoding the peptide and protein have phy-
logenetically co-evolved (Hsu et al., 2005; Wilkinson et al.,
2005). Furthermore, there is a strong overlap between the
distribution of relaxin-3-positive nerve fibres and RXFP3
mRNA/binding sites throughout the rat (Sutton et al., 2004;

Maetal., 2007), mouse (Smith et al., 2010) and macaque brain
(Ma et al., 2009b, c). Moreover, RXFP4 is primarily expressed
within the gastrointestinal tract and is largely absent from
brain (Sutton et al., 2006) and is, in fact, a pseudogene in rat
(Chen et al., 2005). Also, although RXFP1 is expressed widely
throughout the rodent brain (Ma et al., 2006), its distribution
pattern does not correspond with that of the relaxin-3
innervation, and relaxin is expressed by distinct forebrain
neuron populations (Ma et al., 2006). Finally, relaxin-3 is the
only relaxin-peptide family member that can activate RXFP3
(Liu et al., 2003b), whereas relaxin is the preferred ligand for
RXFP1 and also binds to RXFP2 (Sudo et al., 2003). The related
insulin-like peptide S5 is wuniquely expressed in
enteroendocrine L-cells of the colon, and it is the cognate
ligand for RXFP4 (Liu et al., 2005b; Sutton et al., 2006; Grosse
etal., 2014).

Distribution of relaxin-3 and RXFP3 in the
brain — a road map to function

Relaxin-3/RXFP3 systems conserved across various mammalian
species. The brain is the main site of relaxin-3 mRNA
synthesis, with high levels of expression observed in various
species including zebrafish (Donizetti et al., 2009), mouse
(Bathgate et al., 2002; Smith et al., 2010), rat (Burazin et al.,
2002; Tanaka et al., 2005), macaque (Ma et al., 2009b) and
human (Liu et al., 2003b). The presence and anatomical
distribution of relaxin-3-producing neurons has been best
studied in rat and mouse brain, with the largest population
observed in the brainstem nucleus incertus (Figure 1;
Bathgate et al., 2002; Burazin et al., 2002; Tanaka et al.,
2005; Ma et al., 2007; Smith et al., 2010; Ryan et al., 2011).
Relaxin-3 neurons, which use GABA as their primary
transmitter, are also present in smaller populations in the
pontine raphé nucleus (~350 neurons) medial and
ventrolateral periaqueductal grey (~550 neurons), and in
an area dorsal to the substantia nigra (~350 neurons),
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Figure 1

Relaxin-3

The nucleus incertus and its relaxin-3 neurons are similarly located in the midline periventricular central grey of non-human primate (macaque),
rat and mouse brain and are conserved across species (adapted from Ma et al., 2007; 2009b; Smith et al., 2010). Nucleus incertus (NI) is the pri-
mary source of neurons expressing relaxin-3 mRNA and abundant relaxin-3 immunoreactivity, which are located in the midline periventricular
central grey at the base of the fourth ventricle (4V) of (A) macaque, (B) rat and (C) mouse. Abbreviations: CGM, mid central grey; DTg, dorsal
tegmental nucleus; LC, locus coeruleus; Me5, mesencephalic trigeminal nucleus; mif, medial longitudinal fasciculus; PDTg, posterodorsal teg-
mental nucleus; scp, superior cerebellar peduncle. Scale bars, (A) Nissl, 0.6 mm, inset, 80 um, relaxin-3, 0.2 mm; (B) Nissl, 0.3 mm, relaxin-3,

0.1 mm; (C) 0.2 mm.

relative to the ~2000 relaxin-3-positive neurons in the rat
nucleus incertus (Tanaka et al.,, 2005; Ma et al., 2007;
Smith et al., 2010).

Major inputs to the nucleus incertus, which lies in the
midline periventricular central grey, arise from the prefrontal
cortex, lateral habenula, interpeduncular nucleus, median
raphe and lateral hypothalamus (see Ma and Gundlach,
2015 for review), but only limited data are available regarding
the specific inputs to the relaxin-3 and non-relaxin-3 neurons
in the area. Additionally, the proximity of the nucleus
incertus to the fourth ventricle in rodents, primates and
humans (Ma and Gundlach, 2015) makes it a potential target
for neurohumoral signals, as described for similarly located
structures like the dorsal raphe nucleus (Torterolo et al.,
2008). Nonetheless, the neural inputs identified point to a
likely role for nucleus incertus/relaxin-3/RXFP3 networks in
the integration of multiple physiological functions, includ-
ing energy and endocrine homeostasis, circadian rhythmic-
ity, reward and emotional processing (Figure 2). Moreover,
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nucleus incertus neurons broadly innervate cortical and sub-
cortical structures, such as the prefrontal and cingulate cor-
tex, septum, hippocampus, thalamus and hypothalamus,
and innervate the brainstem (Goto et al.,, 2001; Olucha-
Bordonau et al., 2003; Ma and Gundlach, 2015), suggesting
that nucleus incertus relaxin-3 neurons integrate behavioural
and physiological responses to internal and external stimuli.

In the rat, the distribution of relaxin-3-containing fibres
throughout the brain largely parallels that of nucleus incertus
efferent projections assessed by anterograde neural tract-
tracing (Goto et al., 2001; Olucha-Bordonau et al., 2003), sug-
gesting that a substantial component of axonally-transported
relaxin-3 originates from nucleus incertus. However, there is
evidence for distinct relaxin-3 pathways arising from the
smaller populations outside nucleus incertus. For example,
the thalamic intergeniculate leaflet (IGL) receives dense
relaxin-3 projections (Tanaka et al., 2005; Ma et al., 2007;
Smith et al.,, 2010) that arise from neurons in the
periaqueductal grey, not the nucleus incertus. Indeed, RXFP3
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Figure 2

Schematic illustration of some of the major downstream neural targets of relaxin-3 neurons and the likely ‘tested’ (====>) or putative untested
(====») functional roles of relaxin-3/RXFP3 signalling in the coordinated regulation of modalities including cognition, arousal, motivation,
anxiety, mood, pain and oculomotor control. Abbreviations: ACC, anterior cingulate cortex; BF, basal forebrain; CeA, central amygdala; DR,
dorsal raphe; Hip, hippocampus; IC, inferior colliculus; 10, inferior olive; LH, lateral hypothalamus; LS, lateral septum; MeA, medial amygdala;
MR, median raphe; MS, medial septum; PAG, periaqueductal grey; PFC, prefrontal cortex; PVN, paraventricular hypothalamic nucleus; SC,
superior colliculus.

agonist peptides depolarise neuropeptide-Y (NPY) neurons in
the IGL (Figure 3; Blasiak ef al., 2013), which are known to
modulate suprachiasmatic nucleus function and associated
circadian rthythms. Therefore, further studies are required to

facilitated by genetic and/or viral based methods (see e.g.
Schwarz et al., 2015).

The distribution of relaxin-3-containing nerve fibres is
similar in rat, mouse and macaque brain (Ma ef al., 2009b),

and ‘matches’ the distribution of RXFP3, as reflected by the
distribution of RXFP3 mRNA, and binding sites for a

establish the detailed projection patterns of the different
relaxin-3 neuron populations, a task that may eventually be
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Figure 3

Activation of RXFP3 receptors excites or inhibits intergeniculate leaflet neurons, depending on their neurochemical nature (adapted from Blasiak
etal., 2013). (A) A zero current-clamp recording illustrating the depolarising effect of bath-applied RXFP3 agonist, R3/I5 (100 nM, horizontal bar).
Upwards deflections represent truncated action potentials present on top of calcium spikes evoked by membrane potential recovery from
hyperpolarisation induced by current injection (downward deflections), and a confocal projection image of the neuron depolarised by R3/I5
stained for biocytin injected into the neuron (red) and neuropeptide Y (NPY) immunoreactivity (yellow) revealing the NPY nature of the neuron
recorded. Scale bar, 10 um. (B) A zero current-clamp recording illustrating the hyperpolarising effect of bath-applied R3/I5 (100 nM, horizontal
bar) on the membrane potential and firing properties of another intergeniculate leaflet neuron, and a confocal projection image of the neuron
hyperpolarised by R3/15 stained for biocytin (red) and NPY immunoreactivity (yellow) revealing the NPY-negative nature of the neuron recorded.
Scale bar, 10 um.
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relaxin-3 agonist analogue, ['2°1]-R3/15 (Sutton et al., 2004;
Ma et al., 2007; Smith et al., 2010). The relaxin-3/RXFP3
system can be generally viewed as being closely associated
with functional circuits involving the septum and hippo-
campus (septohippocampal system) and hippocampal-
modulating regions, the hypothalamus, limbic areas and
the thalamus/cortex. For further details, see Ma and
Gundlach (2007) and Smith et al. (2011).

Notably, however, the presence of a strong relaxin-3 in-
nervation to the infralimbic, prelimbic and anterior cingulate
and posterior retrosplenial areas of the cortex in rat and
mouse was not observed in the macaque brain (Ma et al.,
2009b). Otherwise, the distribution of the relaxin-3 innerva-
tion largely parallels that of nucleus incertus projections,
which have been demonstrated to be positioned to modulate
various higher-cognitive brain circuits, related to behavioural
planning and state, motivation, emotion, and learning and
memory (Goto et al., 2001; Olucha-Bordonau et al., 2003).
With respect to learning and memory, the dense relaxin-3 in-
nervation of the septum (Olucha-Bordonau et al., 2012) and
hippocampus further suggests the relaxin-3/RXFP3 system
modulates cognition via the septohippocampal system and
associated effects on hippocampal function (Ma et al.,
2009a). To date, however, anatomical and functional studies
in human are limited, although in a preliminary study,
relaxin-3-like immunoreactivity was reported to be present
in neurons in the dorsal raphe and pontine reticular nuclei,
and regions of the dorsal and ventral tegmental nucleus,
with immunoreactive fibres in the ventrolateral tegmental
area, basis pontis, pontine nucleus and pontocerebellar
tracts (Silvertown et al., 2010), and confirmatory studies are
now required.

In other studies, human neocortex lysates from
Alzheimer’s disease patients were reported to contain a mod-
erately higher level of RXFP3 protein detected by immuno-
blotting, which correlated with longitudinal scores of
depression (Lee et al., 2016), and the RXFP3 antiserum was
shown to recognize an appropriate sized protein, although
tissues from Rxfp3 gene knockout mice were not tested. Also,
in a cohort of patients treated with antipsychotics, two
RXFP3 polymorphisms and a relaxin-3 gene polymorphism
displayed significant associations with hypercholesterolae-
mia, suggesting a role for relaxin-3/RXFP3 signalling in
metabolic disturbances linked to antipsychotic treatment
(Munro et al.,, 2012). In a cohort of female patients, a
moderate increase in serum relaxin-3 levels was correlated
with component traits of metabolic syndrome (Ghattas
etal., 2013), although in this study, the specificity of the assay
for relaxin-3 detection was not fully demonstrated, so further
confirmation of such links is required. A further issue, given
the growing preclinical evidence for a role of relaxin-3/RXFP3
signalling in modulating central processes underlying
cognition and behaviour, is a need for more comprehensive
studies of the system in human brain and its potential
involvement in, or therapeutic impact on, dementia, neuro-
degeneration and neuropsychiatric disorders (see Kumar
etal., 2017).

Physiology of relaxin-3 and RXFP3 in the brain
Responsiveness  to  stress. Substantial anatomical and
functional data (e.g. Potter et al., 1994; Bittencourt and
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Sawchenko, 2000; Banerjee et al., 2010) suggest the nucleus
incertus and its relaxin-3 neuron population are highly
‘stress-reactive’ (see Ryan et al., 2011 for review). Notably,
while dorsal raphe serotonergic neurons express
corticotrophin-releasing factor (CRF) receptors 1 and 2
(CRFy,2) (Kirby et al., 2008), the nucleus incertus expresses
higher levels of CRF; than CRF, receptors (Bittencourt and
Sawchenko, 2000; Van Pett et al., 2000; Justice et al., 2008).
Neurogenic stress in rats resulting from forced-swim,
increased relaxin-3 heteronuclear RNA and mRNA levels in
the nucleus incertus, via a CRF; receptor-dependent action
(Banerjee et al., 2010). A major nucleus incertus neuron
population expressing CRF; receptors (including relaxin-
3-containing neurons) exhibited a long-lasting and non-
desensitizing depolarisation response to CRF (Ma et al.,
2013). These responses differ from those within the
neighbouring dorsal raphe nucleus, where serotonergic and
non-serotonergic neurons display differential, dose-
dependent responses to CRF that are rapidly desensitised
(Kirby et al., 2008). Similarly, relaxin-3 neurons exhibited
increased firing frequency following i.c.v. infusion of CRF
(1-3 pg), whereas decreased firing was only observed in
relaxin-3 negative neurons (Figure 4; Ma ef al., 2013). These
findings suggest that distinct neural populations in the
nucleus incertus respond differentially to the stress
hormone, but relaxin-3 neurons are robustly stimulated by
CRF. The stress reactivity of other relaxin-3 neuron
populations has yet to be investigated.

Alternatively, the activity of hypothalamic CRF neurons
has been reported to be influenced by central administration
of relaxin-3, although the nature of these actions is currently
unclear. IL.c.v. infusion of relaxin-3 has been shown to
increase c-fos (a marker of neuronal activation) and CRF
mRNA expression in CRF neurons in the rat paraventricular
nucleus of the hypothalamus (PVN) (Watanabe et al., 2010),
and to elevate plasma adrenocorticotropic hormone levels
(Watanabe et al., 2010; McGowan et al., 2014). Thus, there ap-
pears to exist a reciprocal interaction between relaxin-3 and
CRF systems, but further studies are required to determine
the nature of any direct or indirect effects of relaxin-3
inputs on the activity of CRF neurons and related
physiological/behavioural measures of hypothalamic CRF
neural activity. Studies are also required to catalogue the lo-
cation and identity of the CRF neurons that innervate nu-
cleus incertus relaxin-3 neurons as there are many
candidate extrahypothalamic CRF neuron populations that
may do so (Lenglos et al., 2013; Ma et al., 2013; Walker
et al., 2016). More generally, there is a need to identify and
characterise other neurochemical/neural inputs to relaxin-3
neurons that are altered by acute or chronic stressors, such
as the hypothalamic orexinergic neurons (Blasiak et al.,
2015; Kastman et al., 2016).

Pharmacological effects of RXFP3
activation

Neurophysiological effects
Relaxin-3 activation of its cognate receptor, RXFP3, leads to
the inhibition of intracellular cAMP accumulation and
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Figure 4

Variations in the response of different types of nucleus incertus neurons to CRF in vivo (adapted from Ma et al., 2013). Extracellular recording and
juxtacellular-filling of nucleus incertus neurons in rat revealed that (A) relaxin-3 neurons increased firing in response to i.c.v. administration of CRF,
whereas (B) some non-relaxin-3 neurons exhibited decreased firing in response to CRF, suggesting specific but complex responses to the stress

hormone.

activation of the ERK1/2 enzyme in cell-based assays (Liu
et al., 2003b; van der Westhuizen et al., 2007). Regulation of
the cAMP pathway is a common intracellular signalling cas-
cade target for neuropeptides (e.g. CRF, vasoactive intestinal
peptide and calcitonin gene-related peptide) (Haug and
Storm, 2000) and other transmitters, including catechol-
amines (Pedarzani and Storm, 1995). cAMP activates the
PKA enzyme, which phosphorylates target proteins, includ-
ing ion channels that can mediate suppression of membrane
ion currents (e.g. the slow calcium-activated potassium cur-
rent) (Haug and Storm, 2000; Hu et al., 2011). Moreover,
cAMP can exert direct effects on ion channels independent
of PKA, such as hyperpolarization-activated cyclic
nucleotide-gated (HCN) channels, whereby activation in-
creases non-selective Ih cation currents that lead to mem-
brane depolarisation (Pedarzani and Storm, 1995; Sun et al.,
2003). Currently, there are few published reports of the direct
impact of RXFP3 activation on the physiological or neuro-
chemical activity of target neurons, but these studies are un-
derway, and there are several candidate target areas/neurons
for investigation.

For example, the medial septum component of the
septohippocampal system is a major innervation target of
relaxin-3 neurons and contains a high density of RXFP3
mRNA expressing neurons (Sutton et al., 2004; Ma et al.,

2007). Electrical stimulation of the nucleus incertus in anaes-
thetized rats evoked hippocampal 6 oscillations and lesions of
the nucleus incertus abolished 6 rhythm evoked by brainstem
stimulation (Nunez et al., 2006). Moreover, selective
activation of RXFP3 receptors in the medial septum pro-
moted hippocampal 6 rhythm, as well as spatial memory
and exploratory activity (Ma et al., 2009a). In this regard,
HCN h-currents exist in septal fast-spiking GABAergic and,
to a lesser extent, fast-firing glutamatergic neurons (Sotty
et al., 2003); rhythmic firing at 6 frequency is characteristic
of all HCN-expressing neurons (Varga et al., 2008). Therefore,
the role of relaxin-3 in the regulation of septohippocampal
activity may rely on RXFP3-dependent modulation of cAMP
in GABAergic septal neurons, which play a critical role in syn-
chronizing the hippocampal neuron network at 6 frequency
(Toth et al., 1997). Importantly, inhibition of cCAMP accumu-
lation reduces neuronal excitability and produces membrane
hyperpolarisation (Molosh et al., 2013) and RXFP3 activation
inhibits a population of IGL neurons in vitro (Figure 3B;
Blasiak et al., 2013).

In addition to GABAergic neurons, hippocampal 0
rhythm is also regulated by cholinergic pacemaker neurons
of the medial septum (Yoder and Pang, 20035). A recent study
reported that i.c.v. administration of the selective RXFP3 ago-
nist, RXFP3-A2, increased ERK phosphorylation in septal
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cholinergic neurons (20 and 60 min post-injection) and im-
paired spatial working memory in a spontaneous alternation
test assessed 5 min post-treatment (Albert-Gasco et al., 2016).
ERK1/2 activation is capable of increasing neuronal excitabil-
ity through inhibition of transient potassium (A-type) cur-
rents (Fu et al., 2008), but the recent study did not assess the
direct or indirect nature of the excitatory/inhibitory effect
of RXFP3 activation on different septal neurons, as the site
of peptide administration was outside the septum (Albert-
Gasco et al., 2016). Moreover, these recent behavioural find-
ings contrast with those from earlier studies, which reported
an increase in the power of hippocampal 6 activity following
infusion of the RXFP3 agonist, R3/15, directly into the medial
septum, and an impairment in spatial memory performance
in the spontaneous alternation task with intra-septal infu-
sion of an RXFP3 antagonist, R3(BA23-27)R/IS (Ma et al.,
2009a). Thus, additional studies are required to investigate
the precise nature of relaxin-3/RXFP3 signalling within the
medial septum, which may differ depending on the neural
circuits and the neuronal cell types involved when using dif-
ferent ‘pharmacological’ approaches. Notably, however, a key
goal is to determine the physiological/behavioural effects of
‘global’ RXFP3 modulation initiated via a peripheral route of
administration, as this is vital in a therapeutic context.

Feeding and other motivated behaviours. The first reported
pharmacological effect of relaxin-3 on behaviour in rats was
a potent orexigenic action (McGowan et al., 2005; see also
Calvez et al., 2017). In satiated rats, relaxin-3 injected into
the lateral cerebral ventricle (180 pmol) or the PVN
(18 pmol) during the early light phase, produced a marked
increase in food intake. This orexinergic response did not
appear to involve classical peptidergic feeding pathways, as
no change in NPY, pro-opiomelanocortin (POMC) or
agouti-related peptide (AgRP) mRNA levels was produced by
the peptide. Later studies indicated that chronic intra-PVN
relaxin-3 injections (180 pmol, twice a day for 7 days) also
promoted food intake, an effect associated with an increase
in plasma leptin levels and decreased thyroid-stimulating
hormone levels (McGowan et al.,, 2006). Similar effects
were produced by chronic (14-day) relaxin-3 infusion into
the cerebral ventricles via osmotic minipumps (Hida et al.,
2006), which in addition to the increase in food intake
and body weight, caused severe hyperleptinaemia and
hyperinsulinaemia — symptoms that accompany obesity in
humans (Leon-Cabrera et al., 2013). A caveat of these
early studies was the possible activation of RXFP3 and
RXFP1 receptors by exogenously administered relaxin-3, as
both are expressed in the hypothalamus and PVN (Sutton
et al., 2004; Ma et al., 2006; Bathgate et al., 2006b;
Ganella et al., 2013b).

Studies using the first selective RXFP3 agonist, R3/15 (Liu
et al., 2005a; Sutton et al., 2009) and the ‘mext generation’
minimised agonist, RXFP3-A2 (Shabanpoor et al., 2012) con-
firmed the involvement of RXFP3 receptors in promoting
feeding in rats. Furthermore, the likely involvement of oxyto-
cin and vasopressin signalling in the orexigenic action of
relaxin-3 was revealed as viral-mediated, chronic secretion
of R3/15 in the PVN region (Ganella et al., 2013a), which pro-
duced a robust reduction in whole hypothalamic oxytocin
and vasopressin mRNA levels (50% and 25% decrease relative
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to control, respectively). Importantly, chronic activation of
RXFP3 receptors in this study led to a modest, but significant,
increase in body weight and in daily food intake, and so sim-
ilar studies using an RXFP3 antagonist to determine its ability
to attenuate feeding in rats would be of interest. In this re-
gard, RXFP3 antagonist peptides are capable of blocking acute
agonist-induced feeding (Kuei et al., 2007; Haugaard-
Kedstrom et al., 2011) and stress-induced increase in sucrose
intake in binge-like eating prone, but not binge-like eating re-
sistant, female rats (Calvez et al., 2016, 2017). Therefore,
while these studies suggest a lack of a strong direct influence
of RXFP3 activation on hypothalamic NPY, AgRP and POMC
neurons, the mechanisms and hypothalamic neural circuits
underlying relaxin-3-induced feeding including effects via
oxytocin and/or vasopressin, and other feeding-related pep-
tides, such as orexins, require further investigation. These
studies should also examine other experimental species such
as mice and non-human primates and investigate the impact
of stress and different diet compositions on outcomes.
Other motivation and stress-sensitive behaviours are also
influenced by relaxin-3/RXFP3 signalling, including alcohol
seeking and self-administration, and stress-induced relapse
to alcohol seeking following abstinence in alcohol-preferring
(iP) rats (Ryan et al., 2013b). Infusion of the RXFP3-selective
antagonist, R3(B1-22)R, into the lateral cerebral ventricle or
directly into the bed nucleus of the stria terminalis (BNST)
of iP rats significantly attenuated lever pressing for alcohol,
and cue- and stress-induced reinstatement of lever pressing
(Ryan et al., 2013b). Importantly, these rats display increased
stress/CRF responsiveness, and decreased brain CRF levels
(Ehlers et al., 1992); and relaxin-3 mRNA levels in the nucleus
incertus are positively correlated with their alcohol and su-
crose intake (Ryan et al., 2014). Together, these findings sug-
gest relaxin-3/RXFP3 signalling in key hypothalamic and
limbic circuits is capable of integrating stress-related external
and internal information, by regulating the networks respon-
sible for orexigenic and goal-directed (motivated) behaviours.
Although most relaxin-3-related pharmacological re-
search to date has been conducted in rats, studies in mice
have contributed to our knowledge of relaxin-3 biology. In
agreement with a role in motivated feeding, which is well-
established in rats, i.c.v. infusion of the RXFP3 antagonist,
R3(B1-22)R in mice reduced the consumption of palatable
food and of regular chow during the early dark phase and fol-
lowing mild food deprivation (Smith et al., 2014a). Further-
more, i.c.v. infusion of this same RXFP3 antagonist reduced
the consumption of NaCl (salt) in sodium-depleted mice
(Smith et al., 2015), and Rxfp3 gene knockout mice displayed
reduced motivation to consume sucrose compared to
wildtype controls (Walkeret al., 2015b). Despite a clear ability
of relaxin-3/RXFP3 signalling to modulate feeding in both
rats and mice, it is interesting that central infusion of RXFP3
agonists (or native relaxin-3 peptide) potently increases food
consumption in rats (e.g. Shabanpoor et al., 2012), but not
mice (Smith et al., 2013b; 2014a). The reason for this species
discrepancy is not obvious, as, for example, both species dis-
play strong and roughly equivalent regional patterns of
RXFP3 expression within hypothalamic feeding centres
(Maetal., 2007; Smith et al., 2010). However, the neurochem-
ical identity of RXFP3-positive neurons within each of these
regions, and their efferent and afferent connectivity, remains



to be determined in each species. For example, differences
exist between rat and mouse hypothalamic melanin-
concentrating hormone (MCH) neurons as reflected by their
gene expression and projection patterns, birthdates and a di-
vergence in their developmental differentiation, which may
underlie the observed species-specific effects of MCH signal-
ling in the control of feeding behaviour and the sleep/wake
cycle (Croizier et al., 2010).

Another consummatory behaviour relaxin-3 signalling is
able to modulate in both rats and mice is alcohol consump-
tion. In line with rat studies, in which i.c.v. infusion of the
RXFP3 antagonist R3(B1-22)R reduced alcohol seeking (Ryan
etal., 2013b), Rxfp3 gene knockout mice on a C57BL/6] back-
ground displayed reduced alcohol preference relative to
wildtype controls following chronic stress (Walker et al.,
2015a). This study also demonstrated that basal alcohol pref-
erences were equivalent between genotypes; while a recent
study reported that male RIn3 gene knockout mice on a
CS57BL/6N background displayed increased baseline alcohol
intake compared with wildtype controls (Shirahase et al.,
2016). These differences may be attributable to genetic differ-
ences in the C57BL/6 mice used, as it has been established
that substrains of these mice display marked behavioural dif-
ferences (Kiselycznyk and Holmes, 2011). Again, further stud-
ies are required to explore these possibilities and clarify the
true nature and biological importance of the alcohol con-
sumption differences observed.

Circadian rhythm and arousal. An ability of relaxin-3/RXFP3
signalling to promote a range of consummatory behaviours
is in line with its likely primary role in driving arousal and
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motivated behaviour more broadly (Smith et al., 2011; Ma
and Gundlach, 2015). For example, male and female
relaxin-3 (RIn3) (Smith et al., 2012) and Rxfp3 gene
knockout mice (Hosken et al.,, 2015) display reduced
circadian dark phase running wheel activity compared to
wildtype controls (Figure S5). Furthermore, acute i.c.v.
injection of the RXFP3 antagonist, R3(B1-22)R, reduced
food anticipatory activity displayed by pre-conditioned
mice (Smith et al., 2014a), and viral vector-mediated chronic
secretion of an RXFP3 agonist within the mouse cerebral
ventricular system reduced locomotor habituation to a
novel environment (Smith et al., 2013a). Central arousal
systems are also strongly involved in mediating the
response to stress (Smith et al., 2014b), and similar to rats
(Ryan et al., 2013a), i.c.v. injection of an RXFP3 agonist
reduced (elevated) anxiety-like behaviour in mice (Zhang
et al., 2015). Although subtle signs of altered anxiety-like
behaviour have been detected in RIn3 (Watanabe et al.,
2011) and Rxfp3 knockout mice (Hosken et al., 2015), life-
long relaxin-3 or RXFP3 deletion did not alter depressive-
like behaviours relative to wildtype controls during
methamphetamine withdrawal (Haidar et al., 2016).
Although the mechanisms underlying the ability of relaxin-
3/RXFP3 signalling to promote arousal and modulate stress
responses in mice are not known, based on the similar
distribution of ligand and receptor in both species (Ma et al.,
2007; Smith et al., 2010), mechanisms identified in rats
(such as modulation of the septohippocampal system,
amygdala and PVN; see above) are likely to be involved.
Furthermore, in the context of arousal, recent studies
have demonstrated that nucleus incertus relaxin-3 neurons
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receive an excitatory orexinergic innervation from the lateral
hypothalamus and perifornical area, and that orexin-A pro-
duces depolarisation and action potential firing of neurons
in vitro via the OX; receptor (Blasiak et al., 2015). Conversely,
nucleus incertus relaxin-3 neurons also express inhibitory D,
dopamine receptors, which, when pharmacologically acti-
vated, result in decreased locomotor activity in rats (Kumar
etal., 2015, 2017).

Among the brain sites that might underlie the relaxin-3/
RXFP3 signalling modulation of arousal patterns, the IGL,
which is a primary regulator of circadian rhythm, is a candi-
date. The largely GABAergic and NPY-expressing IGL neurons
have strong projections to the suprachiasmatic nucleus,
which is considered to be the main circadian ‘pacemaker’ in
the circadian timing system (Morin and Blanchard, 2005;
Moore, 2013). The IGL displays dense RXFP3 mRNA levels
and relaxin-3-immunoreactive nerve fibres (Tanaka et al.,
2005; Ma et al., 2007), but is not a target of nucleus incertus
projections (Goto et al., 2001; Olucha-Bordonau et al.,
2003). Thus, retrograde neural tract-tracing studies identified
that a large population of relaxin-3 neurons in the
periaqueductal grey innervate the IGL (Blasiak et al., 2013).
Furthermore, in vitro electrophysiological studies of these
neurons revealed that RXFP3 activation led to excitation or
inhibition of neurons (Figure 3), depending on their neuro-
chemical nature; suggesting that the actions of relaxin-3/
RXFP3 signalling can be bidirectional/opposing within differ-
ent neural circuits (Blasiak et al., 2013).

Other findings that support a putative involvement of
relaxin-3/RXFP3 in arousal arise from studies of the nucleus
incertus, which has been described as a ‘key GABAergic pro-
jection hub for the regulation of cortical arousal’ (Brown
and McKenna, 2015). Consistent with this hypothesis, our
laboratory has recently demonstrated that chemogenetic ac-
tivation of the nucleus incertus network in rats led to long-
lasting wakefulness, and enhanced EEG measures of cortical
arousal/desynchronisation that was independent of move-
ment; and enhanced vigilance in response to impending
threat (Maetal., 2016). Similarly, unilateral electrical stimula-
tion of the nucleus incertus induced forward locomotion and
rotation, accompanied by an increase in movement velocity
(Farooq et al., 2016). In both studies, it was suggested that
the promotion of arousal and movement may be via the
septohippocampal system, as glutamatergic neuron activa-
tion in the medial septum controls the initiation and
velocity and locomotion, and associated entrainment of
hippocampal 6 oscillations (Fuhrmann et al., 2015;
Robinson et al., 2016). Furthermore, the septohippocampal
system also underlies anxiety-related hippocampal 6 rhythm
(Wells et al., 2013). Thus, further studies examining the
impact of nucleus incertus (and relaxin-3) neurons in
modulating stress-associated arousal and related behaviours
will be of immense interest.

Learning, memory and hippocampal 0 rhythm. Neural
substrates underlying learning and memory chiefly reside in
the hippocampus and associated brain regions that regulate
its activity, particularly an activity known as hippocampal 6
rhythm, which are distinct oscillations at 6 frequency
(4-12 Hz) that reflect mnemonic processing (Vertes, 2005).
The 6 rhythm is detectable in the EEG recording of brain
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activity in many mammals, and the temporal aspects and
behavioural correlations of these brain rhythms detected are
highly conserved (Buzsaki et al., 2013). In addition to
memory, hippocampal 6 rhythm has also been associated
with arousal states, exploratory behaviour and spatial
navigation, rapid eye movement sleep and anxiety-related
behaviours (Vertes, 1984; 2005; McNaughton and Gray,
2000; Stujenske et al., 2014).

The ‘septohippocampal system’ is an important regulator
of hippocampal 6 rhythm, whereby GABAergic and choliner-
gic neurons located in the medial septum function as ‘pace-
makers’ for the genesis and pacing of hippocampal 6
rhythm (Vertes and Kocsis, 1997; Simon et al., 2006; Hangya
et al., 2009). Both septum and hippocampus receive a dense
relaxin-3 innervation, and relaxin-3-positive nerve fibres
make close contacts (putative synapses) with various types
of pacemaker cells, including ChAT, and inhibitory GAD67-
positive neurons, and those containing the calcium-binding
proteins parvalbumin, calbindin and calretinin (Olucha-
Bordonau et al, 2012). In addition, medial septum
calretinin-positive neurons project to the nucleus incertus
(Sanchez-Perez et al., 2015), forming a closed-loop neural cir-
cuit, although the function of this bidirectional feedback is
still not known. The effects of relaxin-3 on cognitive perfor-
mance and EEG markers of septohippocampal activity have
been investigated in rats, whereby the RXFP3-selective
agonist, R3/15, or antagonist, R3(BA23-27)R/I5, were locally
infused into the medial septum. Infusion of the RXFP3
agonist significantly enhanced, whereas the antagonist
attenuated hippocampal 6 power in freely-moving rats, and
impaired spatial working memory performance in a sponta-
neous alternation task (Ma et al., 2009a).

In electrophysiological studies in anaesthetised rats, hip-
pocampal 6 oscillations were induced by electrical stimula-
tion of the nucleus incertus (Nunez et al., 2006). In contrast,
brainstem-induced hippocampal 6 rhythm was blocked by
electrolytic lesion of, or muscimol injection into, the nucleus
incertus (Nunez et al., 2006), suggesting it may act as a key re-
lay node between the brainstem and forebrain 6-pacing re-
gions (Brown and McKenna, 2015). Notably in this regard,
nucleus incertus relaxin-3 neurons exhibit spontaneous fir-
ing activity that is coherent with the early ascending phase
of 0 oscillations (while other neurons do not), further
supporting the proposed functional link (Ma et al., 2013).

Emotional and anxiety-like behaviour Dysfunction in neural
circuits controlling emotional behaviour underlies disorders
such as anxiety, depression and related psychiatric illnesses.
In addition to broad modulatory effects on cognition and
arousal, which have interrelated importance for affective
behaviour, RXFP3 receptors are also densely expressed in
regions critical for emotional control, such as the amygdala,
ventral hippocampus, BNST and prefrontal cortex (see
Smith et al., 2014b for review). A key transmitter that is an
established regulator of anxiety states and anxiety-related
behaviour is 5-HT (serotonin), and the dorsal raphe nucleus
is a major source of this monoamine (Hale et al., 2012).
Early studies in rats demonstrated that most relaxin-3
neurons of the nucleus incertus co-express the inhibitory
5-HT, 4 receptor and depletion of 5-HT by pharmacological
inhibition of tryptophan hydroxylase, resulted in increased



expression of relaxin-3, suggesting that 5-HT normally
suppresses relaxin-3 expression (Miyamoto et al., 2008).
More recent studies revealed that treatment of rats with the
anxiogenic benzodiazepine, FG-7142, resulted in enhanced
anxiety-like behaviour in the elevated plus maze that was
associated with activated populations of relaxin-3 neurons
in the nucleus incertus and serotonergic neurons in the
dorsal raphe (Lawther et al., 2015). Such co-activation of
serotonergic and relaxin-3 systems suggests a functional
association between these signalling systems that warrants
further investigation.

Indeed, previous studies demonstrated that i.c.v. adminis-
tration of relaxin-3 (Nakazawa et al., 2013) or the RXFP3
receptor-selective agonist, RXFP3-A2 (Ryan et al., 2013a),
resulted in anxiolytic and antidepressant-like behavioural
effects in rats, although in studies in which relaxin-3 mRNA
knockdown was achieved by viral driven expression of
relaxin-3 microRNA in nucleus incertus of rats, no overt
changes in measures of anxiety-like behaviour were observed
in the light-dark box (Callander et al., 2012). However,
because relaxin-3 neurons are highly stress-responsive, such
a behavioural change may have been better observed if
pre-stressed rats were studied. Administration of typical
(chlorpromazine and fluphenazine) and atypical (clozapine)
antipsychotic drugs to rats activates nucleus incertus
neurons, suggesting that nucleus incertus relaxin-3 neurons
are directly responsive to antipsychotic drugs of various
modes of action (Rajkumar et al., 2013).

Novel technologies to investigate
relaxin-3/RXFP3 function in vivo

The recent boom in the use of viral vector technology for the
dissection of complex neural circuits underlying physiology
and behaviour (Schaffer et al., 2008) has revolutionised our
understanding of how the brain works. Gene delivery tech-
nology, coupled with optogenetic and chemogenetic
methods, now allows researchers to investigate and dissect
complex neural circuit neuroanatomy and neurophysiology
(Wulff and Wisden, 200S5; Betley and Sternson, 2011;
Deisseroth, 2015; Roth, 2016), and furthermore, gene ther-
apy is currently being assessed for clinical applications related
to CNS treatments (Ojala et al., 2015). To date, there have
been limited studies using these technologies to investigate
the relaxin-3/RXFP3 system, but viral vectors have been used
to determine physiological effects of relaxin-3 mRNA knock-
down in the nucleus incertus (Callander et al., 2012), and ef-
fects of chronic local secretion of a selective RXFP3 agonist
peptide in hypothalamus (Ganella et al., 2013a) on feeding
and body weight regulation. The effect of chemogenetic acti-
vation of the nucleus incertus on cortical and behavioural
arousal (as reflected by EEG and locomotor activity changes)
has also been explored (Ma et al., 2016).

Future applications of optogenetic and chemogenetics
methods to study the role of relaxin-3 and RXFP3-regulated
neurons should be greatly facilitated by the development of
tools such as viral vectors driven by a cell-specific promoter
to regulate relaxin-3 neurons and/or a relaxin-3-Cre or
RXFP3-Cre transgenic mouse/rat, which would allow discrete
functional manipulations of relaxin-3 neurons and their spe-
cific target neurons (Madisen et al., 2015). Furthermore, such
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technology could also address the importance of relaxin-3
and GABAergic co-transmission in brain, in studies similar
to those used to evaluate histaminergic and GABAergic co-
transmission in controlling wakefulness (Yu et al., 2015).

In light of growing evidence the nucleus incertus is a het-
erogeneous population of relaxin-3 positive and negative
neurons that co-express a range of inhibitory neuron markers
and other neuropeptides (Ma et al., 2013), viral-based
methods could be used to map the efferent and afferent con-
nections of relaxin-3 neurons, which would complement and
advance current mappings of the ‘whole’ nucleus incertus
(Gotoetal., 2001; Olucha-Bordonau et al., 2003). The connec-
tivity of the populations of relaxin-3 neurons in the pontine
raphé nucleus, periaqueductal grey and dorsal substantia
nigra could also be characterised.

Relaxin-3/RXFP3 related transgenic mouse strains. Although
‘whole-body/whole-of-life’ RIn3 and Rxfp3 gene knockout
mouse strains have been useful tools for exploring relaxin-
3/RXFP3 biology (Watanabe et al., 2011; Smith et al., 2012;
Hosken ef al., 2015), they potentially undergo develop-
mental compensatory adaptations in their behaviour and
brain chemistry. For example, differences in the
consumption of palatable food (Smith et al., 2014a) and salt
appetite (Smith et al., 2015) were detected in wildtype mice
following acute injection of the RXFP3 antagonist,
R3(B1-22)R, compared with vehicle, but there were no
differences in these behaviours between Rxfp3 gene
knockout and wildtype mice. Therefore, anticipated future
studies that utilize conditional Rxfp3 gene knockout mice,
which might combine the use of ‘floxed Rxfp3’ mice with
viral vector-induced expression of Cre recombinase to
produce local receptor deletion, will be important, not only
to avoid developmental compensation (i.e. provide
temporal control) but also to allow chronic Rxfp3 gene
depletion within one or more target region(s) of the brain
(i.e. spatial control). Transgenic mice that express a
fluorophore within RXFP3-positive neurons would be of
benefit for histological and electrophysiological studies, as a
fully-validated RXFP3 antibody is not currently available.
Indeed, studies wusing commercially-available RXFP3
antibodies have been conducted (Meadows and Byrnes,
2015; Albert-Gasco et al., 2016; Lee et al., 2016), although
these antibodies have not yet been tested in Rxfp3 gene
knockout mice, which will be an important validation of
specificity. Finally, transgenic mice that express Cre
recombinase within relaxin-3- or RXFP3-positive neurons
would be invaluable for facilitating viral-vector optogenetic
or designer receptors exclusively activated by designer drugs
approaches to selectively activate or inhibit target neuron
populations within conscious, freely-behaving mice, as this
approach has been widely adopted to study neurons of a
particular neurochemical phenotype (see e.g. Krashes et al.,
2014; Fuzesi et al., 2016).

Conclusions and future perspectives

In the light of the anatomical and/or functional interactions
demonstrated between relaxin-3 and multiple transmitter
and neuropeptide systems (i.e.5-HT, dopamine, CRF and
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orexin); evidence for a role for relaxin-3/RXFP3 signalling in
arousal, motivation and cognition, particularly in response
to stress; and a range of additional putative interactions and
functions, research on relaxin-3/RXFP3 neurobiology should
flourish in the future, in both basic investigations and those
in relation to human neuropathology and the system’s
plasticity in animal models of psychiatric illness,
metabolic/feeding disorders and neurodegenerative disease.
For example, there is growing evidence for the impact of
stress and CRF in the aetiology of neurodegenerative disor-
ders such as Alzheimer’s disease (Campbell ef al., 2015; Park
et al., 2015; Zhang et al., 2016), and the involvement of
5-HT, orexin and other arousal networks in normal and
abnormal cognitive processing and in the expression of
comorbid symptoms of sleep dysregulation, anxiety and
depression in multiple disorders (Chen et al., 2015; Kohler
et al., 2016). These findings suggest there are exciting oppor-
tunities to examine the importance/involvement and/or
therapeutic potential of relaxin-3/RXFP3 signalling for the
treatment of cognitive, affective and mood deficits and/or
neurological disease progression in a range of clinical condi-
tions or their validated experimental models (Smith et al.,
2014b; see Kumar et al., 2017).
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