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ABSTRACT The cortical actin cytoskeleton has been shown to be critical for the reorganization and heterogeneity of plasma
membrane components of many cells, including T cells. Building on previous studies at the T cell immunological synapse, we
quantitatively assess the structure and dynamics of this meshwork using live-cell superresolution fluorescence microscopy and
spatio-temporal image correlation spectroscopy. We show for the first time, to our knowledge, that not only does the dense actin
cortex flow in a retrograde fashion toward the synapse center, but the plasma membrane itself shows similar behavior. Further-
more, using two-color, live-cell superresolution cross-correlation spectroscopy, we demonstrate that the two flows are correlated
and, in addition, we show that coupling may extend to the outer leaflet of the plasma membrane by examining the flow of GPI-
anchored proteins. Finally, we demonstrate that the actin flow is correlated with a third component, «a-actinin, which upon
CRISPR knockout led to reduced plasma membrane flow directionality despite increased actin flow velocity. We hypothesize
that this apparent cytoskeletal-membrane coupling could provide a mechanism for driving the observed retrograde flow of

signaling molecules such as the TCR, Lck, ZAP70, LAT, and SLP76.

INTRODUCTION

Upon TCR engagement, T cells form a cell-cell junction with
antigen-presenting cells termed the “immunological syn-
apse”. Critical to synapse formation and stability is the
cortical actin cytoskeleton (1) as well as signaling proteins
residing within, and proximal to, the plasma membrane
(PM). T cells actively remodel their actin cytoskeleton during
synapse formation leading to cell spreading over the antigen-
presenting cells and a characteristic reorganization of molec-
ular components. After remodeling, the outer zone, or distal
Supra-Molecular Activation Cluster (dASMAC), contains a
dense meshwork of actin filaments that contrasts to the center
of the synapse (central Supra-Molecular Activation Cluster;
c¢SMAC), which is actin-sparse (2). Interestingly, in mature
synapses, the actin cytoskeleton treads in a retrograde fashion
from the periphery to the center without causing cell motility
(3), suggesting that actin polymerization during and postsy-
napse formation may have distinct and overlapping roles.
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Cortical actin structure and dynamics are believed to in-
fluence signaling at the immune synapse in several ways.
Firstly, proximal T cell signaling intermediates are believed
to be corralled (gathered together and confined) toward the
central region at speeds similar to that of actin flow, where
their signaling is downregulated (4,5). Secondly, polymer-
ized actin creates a dense meshwork that may act as a barrier
for intracellular vesicle trafficking and membrane docking,
spatially confining signaling to specific regions (5,6). In nat-
ural killer cells, the actin mesh at the cSMAC is depleted,
granting cytotoxic granule passage to the membrane where
they fuse and are released into the synaptic cleft to kill target
cells (7-9). Thirdly, it has been shown in numerous cell
types that the cortical actin meshwork can influence protein
diffusion and compartmentalization within the membrane;
theories to explain this include the “picket fence” (10)
and more recently “active composite” (11) models. This
meshwork also regulates the nanoscale clustering of certain
membrane proteins (12,13).

The cortical actin meshwork and the plasma membrane
may interact directly (14) or indirectly via transmembrane
and scaffolding proteins (4,15,16) including TCR (17),
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which has been observed to cause modulation of protein
lateral mobility including trapping, tethering, and corralling
(18). These sites of interaction frequently occur at areas of
high membrane lipid order (12,19,20). Indeed, highly or-
dered membrane domains have been observed at the syn-
apse periphery where cortical actin is enriched (21). As
disrupting the actin cytoskeleton disrupts membrane lipid
order and declusters order-dependent signaling molecules
such as Lck (22), these studies suggest a relationship be-
tween actin, the plasma membrane, and membrane-associ-
ated proteins.

To better observe and understand these interactions,
superresolution microscopy has provided key advantages
(23), including observations and mechanisms of control in
nanometer-scale protein cluster formation at the membrane
and remodeling of actin structures (7,24,25). Superresolu-
tion offers a number of significant advantages over conven-
tional fluorescence microscopy. The actin mesh density is
known to be extremely high at the synapse periphery, and
therefore superresolution allows improved quantification
as each pixel is not an ensemble of many individual fibers
with diverse flow properties. Here, we employ single-mole-
cule localization microscopy (SMLM) to assess the distribu-
tion of actin at the T cell synapse with nanometer precision.
In addition, we have previously demonstrated that a combi-
nation of total internal reflection (TIRF), superresolution via
structured illumination microscopy (SIM), and analysis by
spatio-temporal image correlation spectroscopy (STICS
(26); Fig. S1) can quantitatively assess cortical actin flow
in T cell synapses (27,28). This is possible even in the pres-
ence of a dense meshwork and can be achieved at high
spatial and temporal resolutions.

Using these methods, together with their multicolor,
cross-correlation variants, we quantitatively analyze F-actin
and plasma membrane dynamics in live T cells during
immunological synapse formation, to our knowledge, for
the first time. After initial T cell spreading, F-actin and
the peripheral regions of the plasma membrane itself flow
in a retrograde manner, mirroring each other’s directionality
and velocity. The overall flows are both dependent on actin
polymerization, as demonstrated by the use of actin-modu-
lating drugs. We show through the observation of flow of
GPI-anchored proteins in the extracellular leaflet that both
leaflets of the plasma membrane may exhibit flow.

There are numerous potential candidate molecules for
mediating this correlation. One of these, a-actinin, cross
links F-actin and plays a role in T cell synapse formation,
as well as linking the cytoskeleton to transmembrane proteins
and lipids (29). The «-actinin can interact simultaneously
with the cytoskeleton and distinct membrane constituents
such as @-integrin directly and indirectly through linkers
such as talin and vinculin (30,31). Via actin and protein bind-
ing domains (29,32), we hypothesized that the scaffolding
function of this protein might be in part responsible for the
correlation of membrane and actin flow (33).
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Using CRISPR knockouts, we show both actin and the
plasma membrane exhibit reduced flow directionality. These
actin-membrane linkers may help translate F-actin’s retro-
grade flow to the plasma membrane itself and these dy-
namics could hold functional importance during T cell
stimulation for the translation of signaling proteins to the
synapse center, balancing prolonged signaling with signal
cessation and downregulation.

MATERIALS AND METHODS
Tissue culture and transfection

Jurkat E6.1 T cells were cultured in RPMI + Glutamax media supple-
mented with 10% FBS and 1% PenStrep at 3-4 x 10°/mL, and placed in
a humidified 37°C environment of air + 5% CO,. Cells were resuspended
in fresh media every 2 days and split the day before transfection to ensure
cells were at logarithmic growth phase. For live-cell imaging, Jurkat T cells
were transfected with the appropriate construct(s) through electroporation
(Bio-Rad, Hercules, CA). For a-actinin experiments the plasmid-coded
for ACTNI, transcription variant three. Transfected cells were incubated
overnight in 10 mL equilibrated RPMI supplement. Primary human
T cells were isolated from blood via PBMC and transfected using Amaxa
(Lonza, Basel, Switzerland) electroporation.

CRISPR-Cas9 design and realization

The genomic sequence flanking the start codon of the ACTN1 gene (NCBI
Gene: 87) was submitted to the Zhang Lab CRISPR Design Tool (http://
crispr.mit.edu/) to find target sequences and design guide RNAs using the
human genome (hg19) to check for off-target effects. Four CRISPR guide
sequences were selected based on high quality aggregate scores (as deter-
mined by the Design Tool), locations either close to the start codon or
within the first intron, and targeting either the sense or anti-sense strands.
The four sgRNA sequences were each assembled into pSpCas9n(BB)-
2A-GFP plasmid (PX461, a gift from Feng Zhang; Addgene plasmid No.
48140). These four plasmids were transfected into Jurkat E6.1 cells using
an Amaxa Nucleofector IIb device (using 1 x 10° cells and 1 ug of each
plasmid DNA in Nucleofector V solution, transfected using the built-in pro-
gram X-005). Single-cell colonies were generated by serial dilution,
expanded, and screened for ACNT1 expression by Western blot with mono-
clonal mouse anti-ACTN1 antibody (clone OTI7A4; Cambridge Biosci-
ence, Cambridge, UK).

Generating immunological synapses

To engineer T cells to produce synapses, Labtek No. 1.5 8-well-chamber
glass coverslips (Nunc, Langenselbold, Germany) were coated with
«CD3 and «CD28 antibodies (Cambridge Bioscience and BD Biosciences,
Franklin Lakes, NJ) at a concentration of 1 ug/mL. These were either left
overnight at 4°C or placed in an incubator for 2 h. Before imaging, cover-
slips were gently washed with RT PBS to remove any antibody still in sus-
pension and 200 uL of prewarmed HBSS + 20 mM HEPES added to each
chamber.

SMLM: SMLM sample preparation

Integrating exchangeable single-molecule localization (IRIS) imaging is an
SMLM technique that relies on capturing binding events of a probe to its
target as it transiently shifts between bound and unbound states. Here a
modified version of the F-actin binding peptide LifeAct, coupled to a small
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Atto655 molecule dye, was used (34). Fluorophore signal is captured once
the molecule is bound and localized. Cells were washed and resuspended in
HBSS at 3-4 x 10° cells/mL and dropped onto an antibody-coated cover-
slip that was returned to the incubator for 5 min to allow cells to form syn-
apses. The HBSS was then removed from the wells and 200 uL of
equilibrated cytoskeletal buffer (CB) + 4% PFA added to each well, cover-
slips were then returned to the incubator for 20 min to fix the cells. CB con-
sisted of 10 mM MES at 6.1 pH, 5 mM MgCl, 5 mM EGTA, 150 mM NaCl,
and 5 mM glucose, with a final pH of 7 and stored at 4°C until the day of
imaging.

After fixation, cells were washed in CB and Image iT-FX Signal
Enhancer (Thermo Fisher Scientific, Waltham, MA) was gently added until
covering the wells, which was left for 30 min at room temperature to reduce
nonspecific binding. Cells were then permeabilized with CB + 0.1%
Triton-X for 5 min at room temperature, washed in CB, and then 0.5 nM
of the LifeAct peptide conjugated to the Atto-655 probe was added,
providing a binding time of 20—100 ms. Conjugation was achieved through
an N-terminal cysteine via maleimide chemistry.

SMLM imaging

IRIS imaging was carried out on the N-STORM microscope (Nikon,
Melville, NY) in TIRF mode, using a 100x 1.49 NA CFI Apochromat
TIRF objective for a pixel size of 160 nm; to focus the laser intensity, a
collimating lens was inserted. After locating a cell using bright-field illumi-
nation, the 647 nm laser was switched on and a region of interest (ROI) of
512 x 512 pixels selected. Frame rates of 50 ms were used to match the
binding time of the peptide (34), with the laser power set to 50%
(=1.125 kW/cm?), which improved the signal to noise of bound fluoro-
phores within the evanescent wave without increasing the background
from unbound fluorophores away from the actin cortex. Electron multiplier
(EM) gain was set to 300 with conversion gain set to 3.

SMLM analysis

Image stacks of 50,000-100,000 frames were analyzed using the Nikon
Imaging Software analysis package (NIS, v.4.20; Nikon) with the overlap-
ping peaks function enabled and a lower threshold of 3000 applied. Data
were reconstructed using the NIS STORM package (Nikon). By scanning
the image in 5 x 5 pixel subregions, local background was subtracted,
with the signal above this localized by fitting an x and y Gaussian to find
the centroid.

Candidate molecules were then filtered by brightness (min and max signal
counts). The minimum and maximum molecule width was set to
200-400 nm, to reject noise. The localization precision was then theoreti-
cally calculated according to the principle by Thompson et al. (35). The
mean of the resulting localization histogram was found to be 14 nm
(n = 5). A drift correction was then applied that utilizes autocorrelation
to correct for gradual displacement in frames over time. Average localiza-
tion precision was extracted from the full list of emitter coordinates after
filtering.

TIRF-SIM: TIRF-SIM sample preparation

For live-cell imaging, the coated coverslip was placed in the heated incuba-
tion chamber of the microscope. A quantity of 200 uL of transfected T cells
were pelleted at 268 x g for 20 s and resuspended in equilibrated HBSS +
20 mM HEPES before being carefully pipetted into one of the eight-well
chambers at 3-4 x 10° cells/mL. Then, 5-10 min after cells landed on
the coverslip, TIRF-SIM acquisition of LifeAct-GFP-expressing cells was
carried out for 1 min; laser illumination was set to 10% (=16.5 uW/cm?).

For PM imaging, cells were stained for 5—10 min with 5 uM DiO or Dil
added directly to the media before being pelleted at 268 x g for 20 s, and
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resuspended in an equal volume of equilibrated HBSS + 20 mM HEPES.
Cells were then immediately pipetted onto the coverslip for imaging.

For drug treatments, cells were added to the coverslips and allowed to
form synapses, as above. Dosages were then added directly to the coverslip
chamber. For cytochalasin-D and jasplakinolide, final concentrations were
2 uM while 7-ketocholesterol and blebbistatin were added at a final concen-
tration of 10 and 50 uM, respectively. Images were acquired as below.

An MTT assay was performed to establish that drug concentrations used
were not cytotoxic; 5 x 10° primary human T cells were incubated with
MTT in 500 uL standard media control conditions, with 50:50 v/v
DMSO, or the corresponding drug treatments for 1 h at 37°C. Cells were
then lysed in 50:50 v/v DMSO before solution absorbance was recorded
at 595 nm, using a Victor 1420 plate reader (EG&G Wallac, Gaithersburg,
MD). Conditions were performed in triplicate.

TIRF-SIM imaging

For live-cell imaging, the microscope’s incubation chamber (Tokai Hit,
Shizuoka-ken, Japan) and heated lens collar were turned on to 37°C
>2 h before imaging. For single-channel TIRF-SIM on the N-SIM system
(Nikon), 10% 488 nm excitation was used, which equates to 16.5 uW in
wide-field mode, with a 100 x 1.49 NA CFI Apochromat TIRF objective.
For blebbistatin imaging, the 561-nm channel was used due to blebbistatin’s
photoinactivation by 488 nm light (36). After selecting an ROI of 512 x
512, EM gain was set to 300 with conversion gain set to 1. As the micro-
scope relies on a physically shifting illumination pattern to achieve the three
orientations and three phase shifts to create a reconstructed image, 1 frame/
s was achieved when using a 50 ms frame acquisition.

Two-channel TIRF-SIM images were obtained on an Axio Observer Z1
(Carl Zeiss, Oberkochen, Germany) fitted with a spatial light modulator,
producing the structured illumination pattern (37). A 100 x 1.49 NA objec-
tive (Olympus, Tokyo, Japan) was used, with 488- and 561-nm laser exci-
tation and the two-channel signal collected serially on two separate SCMOS
cameras; to ensure minimal cross talk, a narrow-band GFP filter (515/
30 nm) and long-pass orange/red filter (568 nm) were used. A heated cham-
ber including humidifier (Okolab, Pozzuoli, Italy) was set to 37°C before
imaging. Images were acquired using the same exposure time settings as
the single-channel datasets.

To minimize drift during single- and two-channel live cell imaging, cov-
erslips were placed in the heated chamber for = 10 min before imaging to
ensure temperature equilibrium. Z-plane drift was also reduced for single-
channel experiments through the Perfect Focus System (Nikon).

TIRF-SIM image reconstruction

For reconstruction of the single-channel data, the software Analyze
(v4.20.01; Nikon) was used, achieving a pixel size of 30 nm. The illumina-
tion modulation contrast and high-resolution noise suppression were both
set to the default of 1. Illumination modulation contrast distinguishes the
stripes from the structured illumination pattern, whereas high-resolution
noise suppression can crop the higher resolution information from the for-
ward Fourier transform; for the value of 1, this led to most of the higher fre-
quency information remaining in the final image, for improved resolution.

Two-channel SIM data were reconstructed with a custom-written pro-
gram (38) and the reconstructed datasets were aligned using an algorithm
in the tool set Priism (http://msg.ucsf.edu/IVE).

TIRF-SIM analysis with STIC(C)S

STICS theory has been described in Hebert et al. (26). For our data, we used
the tool STICSGUI, v0.29 (Wiseman Research Group, McGill University).
For single-channel F-actin datasets, an analysis subregion size of 8§ x 8
pixels, with a shift of 1 pixel between subregions, was applied. To remove
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immobile and diffusive fluorescent populations before analysis, we chose
the immobile filter, set to 21 frames, removing fluorescence signal from
the correlation function if it remained static for this number of frames. A
polygon ROI of the cell periphery was then selected. After running the
software, data were saved and subregion velocity information plotted. For
single-channel PM and two-channel data, a subregion size of 16 x 16 pixels
and a subregion shift of 4 pixels was used to improve the reliability of the
more homogeneous signal derived from the PM.

For directionality analysis, a seed point was manually chosen in the cen-
tral region of the cell; each vector was then assessed against this seed point
to deduce its angle of deviation, giving directional information.

Statistical analysis

Analysis was carried out using a two-tailed Student’s #-test using GraphPad
Prism version 5.00 for Windows (GraphPad Software, La Jolla, CA). Data
shown in text was plotted as mean = standard deviation.

RESULTS

We first imaged actin using the LifeAct probe, with the IRIS
approach (34), giving a mean localization precision of
12 nm. Jurkat T cell synapses were formed using a stimula-
tory coverslip (Fig. S2), as described in Ashdown et al. (28).

After stimulation by a coverslip coated with antibodies
against CD3 and CD28, the data indicated a dense meshwork
of actin at the synapse periphery but a relatively actin sparse
region toward the center, which contained numerous long
actin fibers. Using live-cell superresolution TIRF-SIM and
cells transfected with Life Act-GFP, we imaged the molecular
flow of cortical F-actin during T cell immunological synapse
formation against an antibody-coated stimulatory coverslip
as with fixed cell experiments. Using this system, we were
able to generate reconstructed superresolution images of
fluorescent beads or actin at spatial resolutions of <120
and 100 nm, respectively, in 75-nm optical sections at one
frame/s (Fig. S2 b; Movie S1). The velocity and directionality
of F-actin dynamics at the observed dense, peripheral regions
(Fig. 1 a) were quantified using STICS (26) (Fig. 1 b). In line
with previous studies (3,4,17), actin flow had an average ve-
locity of 1.63 = 0.46 um/min (Fig. | ¢) and was confirmed in
primary human T cells 1.86 *+ 0.26 um/min (Fig. S3, a—e).
Actin flow in Jurkat T cells was predominantly retrograde
in nature, with 72.9% of vectors within a 90° cone directed
toward the center (Fig. 1 d).

To ensure that any high-resolution noise associated with
SIM images was not contributing to STICS output vectors,
spatial filters were applied to actin images during the recon-
struction process, degrading the resolution to conventional
microscopy standards of ~250 nm and thereby removing
these artifacts. Flow speeds and directionality are not signif-
icantly different between these conditions (Fig. S4, a—c),
although some directional information was lost when corre-
lating the lower resolution datasets.

Additionally STICS analysis of standard TIRF images
(Fig. S4 d) was quantified using the same absolute subregion
size values. This generated spurious vector directionalities

1706 Biophysical Journal 112, 1703-1713, April 25, 2017

(Fig. S4 e), indicating that TIRF-SIM datasets improve the
validity of STICS analysis at these length-scales.

Next, drug treatments that affect polymerization rates
were used and were shown to disrupt both F-actin flow
velocities and directionality. Cytochalasin-D (Fig. 1, e
and f), which reduces the rate of polymerization by
capping the growing end of F-actin, was found to reduce
the velocity of retrograde flow to 0.99 = 0.27 um/min
(Fig. 1 g, p < 0.001), while also scrambling the direction-
ality (Fig. 1 h, p = 0.01). Jasplakinolide, which increases
polymerization and stabilizes actin filaments (Fig. 1, i and
J) had no significant effect on velocity (Fig. | k, p = 0.06),
but did perturb directionality (Fig. 1 [, p < 0.01). As jas-
plakinolide increases actin polymerization universally, but
in an uncontrolled manner, the scrambling of the direc-
tionality demonstrates the system relies on balancing
polymerization and depolymerization in a regulated
fashion to achieve the ordered retrograde flow during syn-
apse formation.

To investigate whether membrane lipid order had an
effect on F-actin retrograde flow, we reduced lipid order us-
ing the cholesterol analog 7-ketocholesterol (7KC), as pre-
viously demonstrated for T cells (39) (Fig. 1, m and n).
F-actin flow velocities (Fig. 1 o) and directionality (Fig. 1
p) were not significantly altered (p = 0.88 and 0.32). Finally,
we treated cells using blebbistatin, which inhibits Myosin II
motors. In this case, no difference in flow velocities or direc-
tionality was observed between the treated cells and control
cells (Fig. S3 f). The fact that inhibiting Myosin II motors
did not slow actin retrograde flow velocity at the dSMAC
strongly suggests the actin flow in this region is driven pri-
marily by actin polymerization. These findings agree with
previous studies using coated glass coverslips and Jurkat
T cells, where flow change was not observed in the dSSMAC
after Myosin II inhibition, but instead disrupted the actin-
arcs of the pPSMAC (3.,40).

To clarify the changes all drug treatments had on actin
retrograde flow, we plotted the percentage change compared
to control conditions (Fig. S5). Positive (negative) y-axis
values indicate the cells undergoing drug treatment have a
greater (fewer) number of vectors at that range of velocities
or angles. As expected, cytochalasin-D reduced F-actin
velocity (Fig. S5, a and d), while jasplakinolide had no sig-
nificant effect (Fig. S5, b and d). 7KC showed no significant
differences, indicating actin flow is not dependent on mem-
brane lipid order (Fig. S5, ¢ and d). These treatment condi-
tions were shown not to adversely affect cell viability
(Fig. S6 a). It was also shown that T cell F-actin architecture
(Fig. S6 b) remained consistent both 1 and 5 min after a
I-min imaging time-course (Fig. S6, ¢ and d) compared to
T cells imaged 1 min before and after no laser exposure
(Fig. S6, e and /).

LifeAct labels F-actin by transiently binding to multiple
monomers, potentially stabilizing the labeled structure. As
such, we repeated the experiments of Fig. | with monomeric
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GFP-actin to label actin structures without this transient
binding event (Fig. S7). The results were not statistically
different compared to the LifeAct results for both
control and drug treatments, with CD significantly slowing
actin flow (p < 0.003) and disrupting actin directionality
(p = 0.0005), while jasplakinolide-treated cells were not
significantly different for either flow speed (0.07) or direc-
tion (p = 0.1) versus controls.

Studies have shown that the cortical actin meshwork
and the plasma membrane may interact directly (14) or
indirectly via transmembrane and scaffolding proteins
(4,15,16). We therefore hypothesized that the flow of the
cortical actin mesh might be coupled to the membrane,
causing retrograde membrane flow. Cells were stained
with the lipophilic membrane dye DiO, synapses were
formed on activating coverslips with cells imaged by

TIRF-SIM (Movie S2), and membrane flow was quantified
by STICS. Our data indicated that the membrane also flows
in a retrograde fashion (63.3% inward) with a velocity
comparable to that of actin (Fig. 2, a and b), whereas
in the actin-poor synapse center, vector directionality ex-
hibited near-homogenous distribution across all angles
(Fig. 2, a and b) with 30.7% inward. Plotting individual
cell means demonstrated flow directionality was signifi-
cantly altered between the synapse periphery and center
(Fig. 2 ¢, p < 0.0001).

To ensure the detected flow within the membrane was not
a SIM-artifact, homogeneously distributed plate-bound flu-
orophores were imaged and analyzed, showing reduced vec-
tor numbers (i.e., reduced detected flow) and similar random
characteristics to the cell center regions (Fig. S8). Together,
these results demonstrate STICS does not correlate any
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artifactual features of TIRF-SIM, with fewer vectors gener-
ated from samples with static or diffusive signal.

Interference reflection microscopy (IRM), which is a
method for detecting the proximity of the membrane to the
coverslip, indicates that this flow may be in the form of mem-
brane ruffles. Darker pixels represent regions of the sample
closer to the coverslip and are seen progressing with a wave-
like motion toward the synapse center. These IRM dynamics
exhibit nonsignificant flow speeds versus the membrane
(p = 0.19), or actin imaged with GFP-actin (p = 0.43) or
LifeAct-GFP (p = 0.24) (Fig. S9 a and b; Movie S3). To
our knowledge, this is the first demonstration of retrograde
flow of the plasma membrane itself in this system.

To better understand the relationship between F-actin
flow and the flow of the plasma membrane, we extended
the single-color imaging method to multicolor superreso-
lution microscopy in the form of two-channel TIRF-SIM
and analyzed the data using a cross-correlation variant
STICCS (41). Using LifeAct-GFP and the red-emitting
membrane dye Dil, we were able to detect, image
(Fig. 3 a; Movie S4), and analyze actin and the membrane
simultaneously. Results are expressed as a ratio of the ve-
locities from channels A and B. Directionality scores can
range from —1 if vector A is oriented opposite to vector B,
whereas a score of +1 demonstrates vectors are perfectly
aligned.
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FIGURE 2 Characterization of plasma mem-
brane flow in T cells imaged with TIRF-SIM and
analyzed by STICS. (a) The plasma membrane
was labeled with the lipophilic dye DiO, and imaged
5 min after contact with an antibody-coated cover-
slip. Shown is a representative TIRF-SIM image
with the magnified ROI within the blue boxes indi-
cating the output vector map from STICS analysis
of 1) synapse periphery flow and 2) synapse center
flow. Scale bars, 5 um. (b) Histograms showing
the directionality of plasma membrane flow at the
periphery (right) and center (leff) normalized to
total number of vectors. (c¢) Scatterplots of cell
averages, showing speeds for synapse peripheries
(4.00 = 1.61 um), synapse centers (3.55 *= 1.09
um), and synapse directionality at the periphery
(56.07 = 17.02°) and center (82.42 + 12.03°)
(n.s., nonsignificant; **** p< 0.0001; n = 16).
To see this figure in color, go online.
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F-actin and plasma membrane flow velocities and direc-
tionality were correlated at the immune synapse periphery,
indicating coupling between the two flows (Fig. 3, b and
c). The mean ratio of the flow velocities at the periphery
was 1.02 = 0.39 (Fig. 3 c, left plot), indicating the flows
have a similar velocity. The correlation between the direc-
tionalities was also high, 0.57 *+ 0.27 (where “1” indicates
collinear flow; Fig. 3 ¢, right plot), whereas it was observed
that the correlations were reduced as the flows moved from
the periphery toward the synapse center, possibly indicating
a decoupling of actin from the plasma membrane.

We next imaged cells transfected with both LifeAct-
mCherry and GPI-GFP, an outer-leaflet-residing marker
within the plasma membrane that has been shown in vitro
to mirror certain lipids of the inner leaflet in an actin-depen-
dent manner (42). The correlated flow showed similar re-
sults to the LifeAct-Dil dye imaging for both velocity
(1.05 = 0.35) and directionality (0.39 = 0.13; Fig. S10;
Movie S5). These results may demonstrate that outer-leaflet
proteins like GPI-anchored proteins may also correlate with
actin flow, in agreement with the active composite model.
Finally, as a negative control, analysis of cytosolic-GFP
did not show any significant flow, and when correlated
with the membrane dye Dil showed no correlated velocities
(1.31 *+ 0.52) or directional correlation (0.10 = 0.13;
Fig. S11).
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FIGURE 3 STICCS analysis of two-channel
TIRF-SIM data. (a) Jurkat T cells were imaged us-
ing two-color TIRF-SIM with F-actin labeled with
EGFP-LifeAct and the plasma membrane stained
with Dil. Shown are the single-channel correlation
outputs for actin and the plasma membrane (middle
images) and the cross-correlation function between
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the two channels (right). Scale bars, 5 um. (b)
Cross-correlation heatmaps from a toroidal ROI at
the dSMAC of the cell from (a) show regions of
greater and lesser correlation for subregion veloc-
ities (left) and directionality (right). For velocities
this ratiometric measure indicates the difference be-
tween vectors where channel 1 may be flowing
slower than channel 2 (giving 0), the same speed
(giving +1), or flowing twice as fast (+2). Direc-
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After these results, we hypothesized that the protein «-ac-
tinin, which can bind to several transmembrane proteins as
well as having the ability to cross-link actin fibers (33),
might act as a linker between cortical actin and plasma
membrane components. The «-actinin mediates F-actin
dynamics through transmembrane proteins, including
those found in T cell membrane domains containing CD3
(29), and was chosen because it is known to bind to
actin and transmembrane proteins such as integrins and
causes clustering of transmembrane proteins in lymphocytes
(29-31,43). It is also enriched at the immunological syn-
apse, involved in actin rearrangement, and acts as a barrier
to HIV infection (29).

Again, we used two-color, live-cell superresolution
microscopy and quantitative cross-correlation STICCS
analysis to investigate the correlation between actin flow
and that of «-actinin (Fig. 4; Movie S6). The a-actinin-
mCherry was transiently expressed in Jurkat T cells through
electroporation, using a plasmid encoding for ACTNI.
While overexpressing actin cross-linker proteins could
change nanoscale behaviors of actin, actin continued to
flow in a retrograde manner akin to untransfected cells.

Our results showed almost perfect cross correlation be-
tween actin and «-actinin, indicating highly similar flows
(Fig. 4, b and ¢). The a-actinin was most prominent at
the synapse periphery (Fig. 4 d)—where the correlation

o
uoine[a.10) Alljeuondaag

tionality is represented in a similar way, but as vec-
tor angles are established with reference to a seed
point and are bound to a discrete range between
0 and 180, vectors pointing in opposite directions
give —1 and those pointing in the same direction
give +1. (c) Scatter plots of whole cell mean veloc-
ities (left = 1.02 = 0.39) and directionalities
(right = 0.57 = 0.27; n = 18) are shown. To see
this figure in color, go online.

between the cytoskeleton flow and that of the plasma mem-
brane was strongest.

To investigate the role of «-actinin further, we generated
Jurkat T cell CRISPR knockouts; after confirmation by
Western blot that «-actinin was knocked-out (Fig. 5 a), these
a-actinin '~ cells were then imaged while forming synapses
using TIRF-SIM. We found knocking out this protein signif-
icantly reduces the orderedness of cortical actin retrograde
flow, with both flow speeds and mean angles increasing
(Fig. S12). These results demonstrate the loss of the cross-
linking and stabilization function of «-actinin makes it
easier for actin fibers to be transported inwards by polymer-
ization (higher velocity), but that these then lack organiza-
tion with the rest of the cortical mesh (loss of directionality).

These results demonstrate the cross-linking and stabiliz-
ing ability of a-actinin may function as a moderator of
this retrograde flow, with unlinked actin fibers potentially
leading to increased random distribution and polymerization
at the immunological synapse, seen here as higher velocities
and scrambled directionality.

Because we hypothesize that a-actinin was mediating
observed actin flow to the plasma membrane, we next
imaged membrane flow in a-actinin '~ cells (Fig. 5 b)
with quantification (Fig. 5 ¢) and comparison with control
cells (Fig. 5 d). This revealed that whereas flow speeds
were not significantly reduced (Fig. 5 e, p = 0.06), flow
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e
FIGURE 4 STICCS analysis of two-channel
TIRF-SIM data. (a) Jurkat T cells were imaged us-
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directionality was scrambled (Fig. 5 f, p < 0.005) with
39.9% of vectors exhibiting retrograde flow (n = 8).
Whereas in control cells, actin and membrane flows were
the same (Fig. 9 b), in the a-actinin /™ cells actin flow ve-
locity is increased although the membrane flow is not,
implying a loss of coupling between the two structures.

DISCUSSION

In this study, we have applied STICS and STICCS analysis
to superresolution TIRF-SIM data, examining the flow ve-
locities and directionality of the cortical actin cytoskeleton
and the plasma membrane at the T cell immunological syn-
apse. This extends previous studies using conventional mi-
croscopy (3.4,17), resolving dynamic details of the dense
actin meshwork with quantification, at scales not previously
possible. The use of superresolution imaging is an important
advance: the cortical actin mesh is extremely dense at the
synapse periphery; therefore, the smaller resolution ele-
ments of SIM reduce the ensemble averaging of many inde-
pendent fibers that occurs with conventional resolution
microscopy. Additionally, the correlation function varies
approximately as the square root of the number of fluctua-
tions sampled and the number of fluorescent entities within
the subregion is inversely proportional to the correlation
function amplitude. Therefore, for the same subregion
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1 E’ ing two-color TIRF-SIM with F-actin labeled with
8 EGFP-LifeAct and a-actinin labeled with mCherry
05 & (middle two images) and cross-correlation outputs
2 (right). Scale bars, 5 um. (b) Cross-correlation
0 5 heatmaps from a toroidal ROI at the dSMAC of
) the cell of velocities (left) and directionality (right)
-0.5 g are shown, as described in Fig. 3. (¢) Scatter plots of
% whole cell mean velocities (left = 0.78 = 0.19) and
-1 g. directionalities (right = 0.92 = 0.07) are given. (d)
S Given here is a radial profile plot of single cell,

showing normalized fluorescent intensity of actin
and «-actinin distribution versus distance from
cell center (n = 19). To see this figure in color, go
online.

=Actin

—a-actinin
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size, the use of superresolution microscopy produces corre-
lation functions with enhanced signal-to-noise. Coupling
this mode of imaging with STICS allowed the quantification
of flow velocities and directions over an area of the mem-
brane that is not possible in the kymograph analysis used
previously, which only computes velocities along a line pro-
file. This is especially important for computing the angle of
flow to the center position and therefore quantifying how
retrograde this flow is.

Under control conditions, F-actin exhibited retrograde
flow only at the periphery of the immune synapse. When
actin polymerization was modulated by drug treatments,
this flow could be slowed and the highly orientated direc-
tionality perturbed. The plasma membrane, when imaged
under control conditions, exhibited similar retrograde flow
to that of F-actin, and this flow was evident when observing
both LifeAct-GFP and actin-GFP. Cytochalasin-D, which
inhibits actin polymerization, slowed actin retrograde flow
whereas blebbistatin, which inhibits Myosin II motors,
had no effect. This strongly indicates the flow is driven pri-
marily by actin polymerization in the dSMAC. To our
knowledge, this is the first time that such a net flow of mem-
brane lipid components themselves has been observed.

Using two-color superresolution TIRF-SIM and cross-
correlation analysis, it was found that the flows of the
cortical actin and the plasma membrane are correlated.
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This analysis therefore demonstrates a potential linkage be-
tween the cortical actin meshwork and the plasma mem-
brane, including GPI-anchored proteins in the outer leaflet.
The correlation between the two flows is apparent in super-
resolved, nanoscale subregions of the membrane and is there-
fore not due to the microscale movement of the two
structures. IRM data showed that the fast moving F-actin
cortex at the dSSMAC may drive inward-flowing membrane
ruffles; such ruffling has previously been observed (44).
Correlation of the actin and membrane flow was highest
in areas enriched with the actin binding protein a-actinin
whose retrograde flow was also highly correlated with that
of actin. We therefore hypothesize that a-actinin may oper-
ate as a linker between the two flowing populations of actin
and the plasma membrane. In addition to its actin binding
domains, a-actinin can also interact directly with transmem-
brane proteins ((-integrins) and indirectly (via vinculin and
talin) (33), all of which are expressed in T cells. To investi-
gate this further, we used CRISPR gene-editing technology
to produce «-actinin knockout T cells. These showed
increased actin flow velocities but scrambled actin direc-
tionality. This is consistent with the cross-linking ability
of a-actinin which, when lost, allows more rapid but unco-
ordinated polymerization-driven retrograde flow of the actin

100 150
Angle from cell centre (°)

fibers. Membrane flow was also scrambled, although it did
not show a significant decrease in velocity, which, given
that actin flow was increased, is consistent with «-actinin
acting as a mediator between the two systems. Beyond find-
ings presented here, other actin-membrane linker candi-
dates, such as Ezrin, Radixin, Moesin proteins and Fascin,
may also warrant investigation.

Here it is demonstrated the cross linking of actin directly
beneath the plasma membrane may also enhance the
nonspecific interaction of the cytoskeleton with the
membrane, thereby enhancing the picket-fence model of
cytoskeletal-membrane interactions (10). This may occur
within ordered phase membrane microdomains that are
known to facilitate actin-membrane interactions (19) and
have been observed to be enriched at the T cell synapse
periphery (21).

When characterizing membrane dynamics, particularly
for transmembrane proteins, molecules with large extracel-
lular domains, protein segregation, and clustering, it is
important to highlight there are potential differences found
between the optically favorable but rigid antibody-coated
coverslips used in this study, and supported lipid bilayer
or cell-cell interactions used by others (reviewed in (45)).
When studying transmembrane proteins it is important to
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remember these occupy both dynamic and quasi-static
populations based on their proximity to the cytoskeleton
and their ligands. Moreover, morphological changes in three
dimensions as seen here with IRM imaging may be different
when cells encounter other cells rather than coverslips.

While the role fulfilled by the cytoskeleton in regulating
cell shape, organization, and polarization is well understood
(46-48), the role of the plasma membrane, beyond a plat-
form for signal transduction, is less well known. Some re-
ports suggest cell migration does not lead to a flowing of
the membrane (49), indicating a slipping of the F-actin
cortex relative to the membrane, rather than creating static
adhesions that can drive forces through the membrane.
However, it is known that many of the membrane and mem-
brane-proximal proteins that are required for the regulation
of T cell activation demonstrate microclustering and retro-
grade flow at the synapse (1,2,5,50). We therefore hypothe-
size that this might also be facilitated by the retrograde flow
of the plasma membrane itself, which is driven by the flow
of the cortical actin cytoskeleton.

SUPPORTING MATERIAL

Twelve figures and eight movies are available at http://www.biophysj.org/
biophysj/supplemental/S0006-3495(17)30291-6.
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