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ABSTRACT Children with neurofibromatosis type 1 (NF1) cancer predisposition syndrome are prone to the development of
low-grade brain tumors (gliomas) within the optic pathway (optic gliomas). One of the key obstacles to developing successful
therapeutic strategies for these tumors is the striking lack of information about the mechanical properties that characterize
these tumors relative to non-neoplastic optic nerve tissue. To study the physical changes that may occur when an optic nerve
glioma is present, we employed atomic force microscopy to measure the stiffness of healthy versus tumor-bearing optic nerve
tissue. We found that the average elastic moduli of non-neoplastic and tumor-bearing optic nerves were ~3 and ~6 kPa,
respectively. Based on previous studies implicating changes in extracellular matrix remodeling in other, related optic nerve
pathological states, we found decreased expression of one major metalloproteinase protein (MMP-2) and unchanged ex-
pression of lysyl oxidase and a second metalloproteinase, MMP-9, in murine optic gliomas relative to normal non-neoplastic
optic nerve. Collectively, these observations suggest a productive interplay between physical properties of mouse optic nerve

gliomas and the extracellular matrix.

Brain tumors represent the most common solid tumor in
children, with low-grade gliomas (LGGs) accounting for
the majority of these neoplasms (1-3). Among these
LGGs, many arise within the optic pathway (optic
pathway gliomas (OPGs)). Although most of these OPGs
arise in the absence of a predisposing genetic syndrome,
the presence of an OPG should raise suspicion for neuro-
fibromatosis type 1 (NF1), a nervous system cancer pre-
disposition syndrome that causes tumors in the optic
pathway (4-6). Of the population of children affected by
NF1 syndrome, 15-20% of affected children will develop
an OPG.

With the identification of the NfI gene, it became possible
to develop small-animal models of NF1-associated OPG (7).
The generation of these strains represented a critical first
step toward the identification of efficacious treatments for
these tumors, as NF1-OPGs are rarely resected and renew-
able human biological specimens are not available. In this
regard, numerous molecular targets have been discovered
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using these NfI genetically engineered mouse (GEM)
models, several of which have been evaluated as potential
chemotherapies in children with NF1-OPG (8—10).

However, NF1-OPGs, similar to their sporadic pilocytic
astrocytoma counterparts, are complex ecosystems com-
posed of both cellular and acellular components. Analysis
of human LGGs, including rare NF1 pilocytic astrocytomas,
has demonstrated that 30-50% of the cells in these
tumors are immune-system-like cells (macrophages and
microglia) embedded within a rich extracellular matrix
(11,12). Although intense study of the role of macrophages
and microglia has revealed additional targets for stroma-
directed therapies, the contribution of the extracellular ma-
trix (ECM) remains unexplored.

In many types of cancer, including breast, brain, and colo-
rectal cancers (13-15), cell growth and ECM remodeling
that occur during tumor development alter the mechanical
properties of the tumor. As such, breast and colorectal tu-
mors have been found to be stiffer than their surrounding
healthy tissue (13,15). Lymph nodes also have been found
to increase in stiffness when invaded by metastatic lung car-
cinoma cells (14). This rise in stiffness is also associated
with enhanced metastatic potential of cancer cells (16,17).
Although such relationships, i.e., between tumor develop-
ment and stiffness, have been established for a variety of
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FIGURE 1 Increased stiffness of glioma-bearing optic nerves

at the chiasm. (A) Diagram describing the two regions where
AFM measurements were taken, the chiasm and the optic nerve
(=1 mm proximal to the chiasm). (B) Average tissue stiffness
obtained using AFM. Error bars represent the mean + SE.
N > 34; *p < 0.05. To see this figure in color, go online.

cancer types, the mechanical properties of optic nerve
glioma, as well as their underlying acellular causes, are
unknown.

The normal optic nerve is a complex tissue composed of
numerous distinct cellular and extracellular components.
Similarly, optic nerve gliomas harbor a unique collection
of neoplastic (astrocytes and stem cells) and non-neoplastic
(endothelial cells and microglia) cell types embedded within
a rich ECM. In this manner, the normal and neoplastic optic
nerve tissues represent distinct ecological systems. As such,
future therapies might leverage the physical properties
unique to the optic glioma ecosystem as a means of target-
ing the specialized determinants of the tumor. This informa-
tion is critical to the design of future in vitro platforms to
perform drug-screening studies for these optic nerve tumors.

To examine the ECM and mechanical properties associ-
ated with murine NfI optic glioma, we employed atomic
force microscopy (AFM), which allows for mechanical
testing of small tissues in defined areas. In this study, we
found that, similar to other LGGs, NfI optic glioma tissues
are stiffer than healthy tissue. To establish a relationship be-
tween the ECM and mechanical properties, we also evalu-
ated the levels of matrix metalloproteases (MMP-2 and
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MMP-9), which are important for ECM degradation (18),
and lysyl oxidase (LOX), which is associated with ECM
cross-linking (19). Consistent with the mechanical proper-
ties of our optic glioma system, we also found differing
expression of MMP-2 in glioma-bearing optic nerves rela-
tive to controls.

Increased stiffness of tumor-bearing optic nerves

Optic nerves were harvested from 3-month-old mice at a time
when optic gliomas are obvious (20), and covalently attached
to glass slides precoated with poly-L-lysine. OPGs in children
with NF1 typically arise in the prechiasmatic optic nerves and
chiasm, similar to those arising in NfI mutant mice. Using
AFM, the elastic modulus of the optic nerves was tested in
two sections, at the chiasm and in unaffected portions of the
optic nerve (=2 mm proximal to the chiasm). Briefly, in
AFM, piezoelectric actuators are used to control the x, y,
and z positions of a cantilever probe, which is indented into
the surface of a given tissue sample (Fig. S1). The cantilever
deflection is used to calculate the indentation force of the
probe and these force-deflection data are translated into the
elastic modulus of the sample using a model, typically the
Hertz model (21,22). The nerves were tested at various
points across the width, and the measurements were averaged
(Fig. 1 A). At the chiasm, the glioma-bearing nerves were
significantly stiffer than their normal (non-neoplastic) coun-
terparts, 5.8 £ 0.5 kPa and 3.1 = 0.6 kPa, respectively, an
85% increase (Fig. 1 B). In contrast, the stiffness of the unaf-
fected optic nerve segments in the wild-type (6.9 = 1.4 kPa)
was similar to that in glioma-bearing nerves (6.6 + 0.8 kPa).
These findings indicate that the mechanical consequences of
tumor development in the Nf/ mutant mice remain localized
in the chiasm region and do not propagate into distant areas
of the optic nerve tissue. These tumor-related mechanical
changes in the optic nerve, along with the knowledge that
NF1 tumors are characterized by ECM changes (23), could
indicate that regulation of matrix-modifying proteins is a
key factor in the development of these tumors.

ECM-modifying enzyme expression is altered in
glioma-bearing optic nerves

One of the hallmarks of solid tumors is the production of
enzymes that modify ECM components, including MMPs
(18). To examine the expression of these enzymes in the mu-
rine NfI optic glioma model, immunohistochemistry (IHC)
was performed in 3-month-old mice with NfI optic glioma
and in wild-type control mice using antibodies against
MMP-2, MMP-9, and LOX (Figs. 2, S2, and S3, respec-
tively). Given the localization of the glioma mainly to the
chiasm and the results of the AFM experiments, the protein
levels at the chiasm were compared to those in the unaf-
fected proximal optic nerve segment. Although the intensity
of the immmunostaining appears greater in glioma-bearing
relative to healthy optic nerves, there was a significant
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FIGURE 2 Glioma-bearing optic nerves have decreased MMP-2
expression in the chiasm (A), but not in the unaffected proximal
optic nerve segment (B), mirroring the effects shown with AFM.
*p < 0.01. Error bars represent the mean + SE. Scale bars repre-
sent 100 um. To see this figure in color, go online.

decrease in the percent of MMP-2-positive cells at the
chiasm in the glioma-bearing mice compared to their con-
trol counterparts (47.8 = 1.9% and 64.1 = 2.4%, respec-
tively). However, in the unaffected proximal optic nerve
segment of mice with NfI optic glioma, as compared to con-
trols, there were no differences in MMP-2-positive cells
(63.7 = 5.0% and 68.2 *= 2.7%, respectively). There was
also no difference between glioma-bearing and wild-type
mice in the percent of LOX-positive cells at the chiasm
(42.4 = 7.6% and 43.3 + 8.6%, respectively) or in the un-
affected proximal optic nerve segment (50.8 = 2.7% and
56.5 + 5.3%, respectively). In addition, there was no differ-
ence in the percent of MMP-9-positive cells at the chiasm
(48.8 = 5.9% and 37.7 * 3.5%) or in the unaffected prox-
imal optic nerve segment (46.2 *+ 7.5% and 39.4 = 2.0%).

Thus, complementary to the AFM data, we found
decreased MMP-2 protein levels in the chiasms of glioma-
bearing optic nerves relative to their wild-type counterparts.
MMPs break down fibrous ECM structures, like collagen, to
create reorganization within the tumor, and they lead to
changes in physical properties. Traditionally, increases in
MMP expression and LOX expression are associated with
high-grade tumors (24,25). However, in the context of optic
nerve glioma, we saw a decrease in MMP-2 and no change
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in LOX, which suggests less breakdown of collagen fibers
(a greater degree of collagen cross-linking). This result
is consistent with the stiffer matrix observed by AFM at
the chiasm in optic nerves from NfI mutant mice. Although
metastatic high-grade gliomas exhibit increases in MMP-2,
MMP-9, and LOX, we do not expect to see the same trends
in optic nerve glioma, given that they are low-grade tumors
and not metastatic cancers (26). Importantly, in the unaf-
fected proximal optic nerve segment, there was no variation
in matrix stiffness between neoplastic and non-neoplastic
optic nerves. THC images from this same location also
show no significant differences in MMP-2 levels, further
supporting the link between decreased MMP-2 protein
levels and increased stiffness at the chiasm. In addition,
this decrease in MMP-2 expression likely results from loss
of Nfl gene expression in the neoplastic astrocytes, since
Nfl-deficient astrocytes exhibit a 40% decrease in Mmp?2
RNA levels relative to their wild-type counterparts, as deter-
mined by quantitative reverse transcriptase-polymerase
chain reaction (Fig. S4; p = 0.033).

Taken together, the results leveraging both AFM and
THC show, to our knowledge, a novel relationship between
the metalloproteinase protein levels present in the acellular
environment and the physical properties of NfI optic
glioma. This work warrants further studies using three-
dimensional in vitro platforms to establish mechanistic con-
nections between these acellular and physical properties and
optic glioma biology.

SUPPORTING MATERIAL

Supporting Materials and Methods and four figures are available at http://
www.biophysj.org/biophysj/supplemental/S0006-3495(17)30336-3.
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