
Parathyroid hormone: anabolic and catabolic actions on the 
skeleton

Barbara C Silva1 and John P Bilezikian2

1Santa Casa de Belo Horizonte and Felicio Rocho Hospital, Division of Endocrinology, United 
States

2Metabolic Bone Diseases Unit, Division of Endocrinology, Department of Medicine, College of 
Physicians and Surgeons, Columbia University, United States

Abstract

Parathyroid hormone (PTH) is essential for the maintenance of calcium homeostasis through, in 

part, its actions to regulate bone remodeling. While PTH stimulates both bone formation and bone 

resorption, the duration and periodicity of exposure to PTH governs the net effect on bone mass, 

that is whether it is catabolic or anabolic. PTH receptor signaling in osteoblasts and osteocytes can 

increase the RANKL/OPG ratio, increasing both osteoclast recruitment and osteoclast activity, and 

thereby stimulating bone resorption. In contrast, PTH-induced bone formation is explained, at 

least in part, by its ability to downregulate SOST/sclerostin expression in osteocytes, permitting 

the anabolic Wnt signaling pathway to proceed. The two modes of administration of PTH, that is, 

continuous vs. intermittent, can regulate, in bone cells, different sets of genes; alternatively, the 

same sets of genes exposed to PTH in sustained vs. transient way, will favor bone resorption or 

bone formation, respectively. This article reviews the effects of PTH on bone cells that lead to 

these dual catabolic and anabolic actions on the skeleton.

Introduction

Parathyroid hormone (PTH) is an 84-amino acid peptide hormone synthesized in the chief 

cells of the parathyroid glands. It is essential for the maintenance of serum calcium 

concentration within narrow limits through direct actions on bone and kidney, and indirectly 

through actions on the gastrointestinal tract [1]. PTH also regulates phosphorus metabolism 

[2]. It decreases serum phosphorus levels through the inhibition of renal phosphate 

reabsorption in both proximal and distal tubules, although the proximal effect is 

quantitatively the more important [3].

PTH is released from parathyorid cells tonically, with circadian dynamics and in a 

stochastically pulsatile fashion. The synthesis and secretion of PTH are controlled by the 

calcium-sensing receptor (CaSR) expressed in the parathyroid cell membrane [4]. The signal 

for PTH production and secretion is a reduced extracellular ionized calcium concentration, 
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while the signal for a reduction in PTH production and secretion is an increase in 

extracellular ionized calcium concentration. In these two situations, the signaling pathways 

triggered or inhibited by the CaSR are governed by the state of occupancy of CaSR by 

calcium ion. Of less importance, PTH secretion can also be stimulated by an increase in 

phosphorus levels either directly or through a stoichiometric reduction in calcium levels [3].

One of the key mechanisms by which PTH regulates calcium homeostasis is related to its 

actions to stimulate bone remodeling, a feat that is achieved by the direct actions of PTH on 

osteoblasts and osteocytes, and indirect effects on osteoclasts through its actions on 

osteoblasts and osteocytes. While PTH stimulates both bone resorption and bone formation, 

the final outcome on bone mass, either catabolic or anabolic, will depend on the dose and 

periodicity of the PTH signal. Continuous exposure to PTH result in catabolic effects on the 

skeleton, while intermittent, low doses of PTH result in osteoanabolic effects [5]. In human 

subjects, the catabolic effect of PTH is best represented by the classic disorder of PTH 

excess, primary hyperparathyroidism (PHPT). Even in the asymptomatic form of this 

disease, bone loss can be appreciated in both cortical and trabecular compartments of the 

skeleton [6,7,8•,9,10•]. Conversely, the foreshortened amino terminal peptide of PTH, 

teriparatide [PTH(1–34)] and the full length molecule [PTH(1–84)] are osteoanabolic when 

administered once daily in low doses for the treatment of osteoporosis [11,12].

PTH actions are mediated primarily by a PTH receptor known as PTH1R. The two modes of 

administration of PTH, that is, continuous vs. intermittent, can regulate, in bone cells, 

different sets of genes or, alternatively, the same sets of genes in a sustained vs. transient 

manner, favoring bone resorption or bone formation, respectively [13,14]. This article 

reviews the effects of PTH on bone cells that lead to these dual catabolic and anabolic 

actions on the skeleton.

PTH receptor and PTH signaling

The amino-terminal domain of PTH interacts with the PTH1R, a G-protein-coupled receptor 

encoded by a 14-exon gene located on chromosome 3. PTH1R is expressed on the surface of 

osteoblasts and osteocytes in bone, and tubular cells in the kidney [15,16]. Stimulation of the 

PTH1R leads to the Gαs-mediated activation of the adenylyl cyclase/cyclic AMP (cAMP)/

protein kinase A (PKA) signaling pathway [17]. The PTH1R is also coupled to Gαq-

mediated activation of the phospho-lipase/protein kinase C (PKC) signaling cascade [18,19]. 

While PTH modulates key genes that control bone remodeling through the cAMP/PKA 

signaling pathway [20,21], the PKC signaling is not required or may be inhibitory to the 

osteoanabolic actions of PTH [22,23]. The binding of PTH to the PTH1R also translocates 

β-arrestins to the cell membrane [24], which in turn downregulates PTH-induced cAMP 

activation, and stimulates the ERK1/2 signaling cascade [15]. PTH-induced translocation of 

β-arrestins to the cell membrane contributes to the anabolic action of PTH on bone, 

independent of the classic G protein signaling [25].
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Catabolic actions of PTH: increased bone resorption

The PTH-induced increase in bone resorption is mediated, in vivo, by increased activity of 

the bone-resorbing cell, the osteoclast. However, in vitro and in vivo studies indicate that 

PTH does not directly activate osteoclasts; rather, the effect of PTH to enhance bone 

resorption appears to be indirect, through its actions on osteoblasts and osteocytes [26–29].

The OPG–RANKL–RANK system

The OPG–RANKL–RANK pathway plays a critical role in bone resorption induced by PTH. 

PTH modulates, in osteoblastic lineage cells and in osteocytes, the expression of the receptor 

activator of nuclear factor-kappa B ligand (RANKL) and its soluble decoy receptor 

osteoprotegerin (OPG), and thereby regulates osteoclastogenesis [30–32]. RANKL binds to 

the receptor activator of nuclear factor-kappa B (RANK) both on the surface of 

hematopoietic precursors of osteoclasts, promoting their differentiation and survival, and in 

fully formed osteoclasts, stimulating their activity. OPG inhibits RANKL-induced bone 

resorption by binding to RANKL and thereby preventing its access to the receptor RANK 

[33–36]. Osteoclastogenesis is then modulated by the balance between the concentration of 

RANKL and OPG [37].

Continuous infusion of PTH, known to cause catabolic effects on the skeleton, increases 

mRNA encoding for RANKL and decreases mRNA encoding for OPG in primary murine 

osteoblasts and in bone from rats, leading to an increased RANKL/OPG ratio, and 

consequently, enhanced osteoclastogenesis and bone resorption [30,38,39]. In vitro studies 

provide evidence that PTH increases the Tnfsf11 gene encoding RANKL by activation of 

cAMP/PKA–CREB pathway, and that PTH inhibits mRNA encoding for OPG expression 

via a PKA–CREB–AP-1 pathway [20,40,41].

Recent studies have shown that PTH also stimulates RANKL production in osteocytes [42–

44,45•]. Indeed, data from studies in mice suggest that osteocytes, and not osteoblasts, may 

be the main source of RANKL for osteoclastogenesis [46,47,48•]. Results from these studies 

[46,47] show that mice lacking the Tnfsf11 gene encoding RANKL exclusively in 

osteocytes develop increased bone mass with age that is associated with reduced osteoclast 

number and bone resorption. Moreover, mice lacking RANKL exclusively in osteocytes 

have reduced bone loss due to secondary hyperparathyroidism induced by dietary calcium 

deficiency as compared to wild type animals [48•]. Accordingly, in mice with conditional 

deletion of the PTH receptor in osteocytes, PTH fails to increase RANKL expression, and 

thereby osteoclastogenesis [45•]. In vitro assays using a co-culture system of osteocytes 

embedded in collagen gel and osteoclasts show that the osteocyte-derived RANKL reaches 

osteoclast precursors in its membrane-bound form through osteocyte dendritic processes 

[49].

The OPG–RANKL–RANK pathway also appears to be a main mediator of the catabolic 

actions of PTH in human subjects. Circulating levels of RANKL are increased and positively 

correlated with bone resorption markers and rates of bone loss at the total femur in patients 

with mild PHPT [50]. Additionally, the RANKL/OPG ratio, as determined by mRNA 

analysis of iliac crest bone biopsies, decreased 1 year following successful parathyroid 
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surgery in 24 patients with PHPT [51]. Finally, circulating levels of RANKL, OPG and the 

RANKL/OPG ratio were higher in subjects with PHPT than in controls, and in patients with 

PHPT, the RANKL/OPG ratio reduced 1 year after parathyroidectomy or alendronate 

therapy, as compared to baseline [52].

The monocyte chemoattractant protein-1 (MCP-1)

The monocyte chemoattractant protein-1 (MCP-1), a potent chemokine for monocytes and 

macrophages, is another mediator of PTH-induced bone resorption. In vitro studies indicate 

that MCP-1 enhances bone resorption by increasing chemoattraction of pre-osteoclasts and 

RANKL-induced osteoclastogenesis [53]. Both continuous (catabolic protocol) and 

intermittent (anabolic protocol) exposure to PTH increased the expression of MCP-1 via the 

PKA pathway in rat osteoblastic cells and in femurs of rats [53]. The up-regulation of 

MCP-1 mRNA levels was moderated but sustained in the catabolic protocol, favoring the 

increase in bone resorption over bone formation. In the anabolic protocol, the increased 

MCP-1 expression was more pronounced than in the catabolic protocol, but transient, 

suggesting that a transient increase in bone resorption may be necessary to the osteonabolic 

effect of PTH [53,54].

In agreement with these pre-clinical studies, MCP-1 serum levels were positively correlated 

with PTH concentrations in 43 subjects with PHPT [55]. Of note, in these patients, 

parathyroidectomy led to a significant decline in MCP-1 serum levels as early as 15 min 

after the removal of the parathyroid adenoma.

Anabolic actions of PTH: increase in bone formation

Pre-clinical studies have demonstrated that the intermittent administration of PTH has 

anabolic effects on the skeleton [56–58]. These observations led to the clinical investigation 

of the biologically active but foreshortened amino-terminal fragment of PTH, PTH(1–34) 

and, later, the full length hormone [PTH(1–84)] as an anabolic approach to the treatment for 

osteoporosis. In fact, PTH therapy was eventually demonstrated to be effective for the 

treatment of osteoporosis [11,12], constituting the only osteoanabolic therapy currently 

available for this disease.

Similar to continuous PTH exposure, treatment with intermittent PTH leads to an increase in 

bone turnover. However, in patients treated with intermittent PTH there is an early 

stimulation of bone formation without resorption (a bone modeling effect) followed later by 

a general increase in bone turnover (a bone remodeling effect). The period of time when 

PTH is maximally anabolic has been termed the “anabolic window” [12,59–61]. Studies of 

the kinetics of bone markers [12,60,61] and dynamic histomorphometric analyses of iliac 

crest bone biopsies [62–64] in patients treated with PTH have supported this concept of 

anabolic window. Histomorphometric studies of postmenopausal women indicate that 

PTH(1–34) initially stimulates bone formation in the absence of prior resorption, which 

appears to be more pronounced in the early stages of the therapy, since the proportion of 

modeling-based bone formation decreases over the course of the treatment, when bone 

remodeling is stimulated [63,65]. The modeling-based bone formation induced by PTH also 

occurs in areas of remodeling where there is overfilling of bone resorption pits with 
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extension of bone formation beyond the margins of the resorption cavity [62–64]. The 

concept of the anabolic window includes a period of time after the bone modeling effect is 

no longer prominent, because even when remodeling is stimulated, bone formation exceeds 

bone resorption. The sections below describe the mechanisms by which PTH leads to these 

anabolic actions on the skeleton.

PTH actions on osteoblasts

Receptors for PTH are found in preosteoblasts, osteoblasts, lining cells, and osteocytes [3]. 

Intermittent PTH administration directly acts on osteoblasts to promote osteoblastogenesis, 

reduce osteoblast apoptosis, and reactivates quiescent lining cells [66–68]. An increase in 

osteoblast differentiation rather than osteoblast proliferation appears to be the main 

mechanism by which PTH stimulates osteoblastogenesis. Indeed, PTH arrests the cell cycle 

progression of osteoblasts, increasing their commitment to a differentiated osteogenic fate 

[69]. In addition, PTH can promote osteoblast differentiation and osteoblastic lineage 

commitment from bone marrow-derived cells, primary calvarial cells, and periosteal cells, 

independent of its effects on the cell cycle [14,70,71]. The expression of genes that typically 

signal bone formation, such as the osteoblast-specific transcription factor Runx2, 

Osteocalcin, Alkaline Phosphatase, Collagen type I alpha 1 (COL1A1), and the novel bone 

formation-related factor Tmem119 are all stimulated by PTH, as shown by in vitro and in 
vivo studies [13,14,71–74]. Bone morphogenetic protein (BMP) signaling has also been 

described as a mediator of the PTH-induced differentiation of bone marrow stromal cells 

into osteoblasts [75]. In this study, a single injection of PTH in mice enhanced, in bone 

marrow cells harvested 30 min after the injection, the BMP-stimulated phosphorylation of 

Smad1, which was mediated by a PTH-induced endocytosis of a PTH/LRP6 complex. 

Further experiments indicated that the PTH-enhanced BMP signaling stimulates the 

commitment of stromal cells to osteoblast differentiation [75].

PTH can also decrease osteoblast apoptosis, as observed in femoral and vertebral sections of 

mice treated with daily injections of PTH [76]. Additionally, PTH treatment of osteoblastic 

cells inhibits the pro-apoptotic effects of etoposide, dexamethasone, hydrogen peroxide 

induced oxidative stress, UV irradiation, serum withdrawal and nutrient deprivation 

[73,76,77]. The anti-apoptotic actions of PTH include phosphorylation and inactivation of 

the pro-apoptotic protein Bad, increased expression of survival genes like Bcl-2, increased 

expression of Runx2, downregulation of the apoptosis inducer CARP-1 (Cell Cycle and 

Apoptosis Regulatory Protein), and increase in DNA repair [76–78].

The differentiation of lining cells into active osteoblasts may also explain the PTH-induced 

increase in osteoblast number. Indirect evidence for this finding was provided by studies 

showing increased osteoblast number on the bone surface of rats treated with intermittent 

PTH associated with a decrease in the fraction of lining cells [79], and without an indication 

of increased osteoblast proliferation [79,80]. In agreement with these observations, a recent 

lineage tracing study in mice, using an inducible gene system that labeled mature 

osteoblasts, has confirmed that PTH can re-activate lining cells [68]. The results provide 

evidence that, in PTH-treated animals, labeled, cuboidal cells (active osteoblasts) can be 

detected on the periosteal surface, whereas in vehicle-treated mice, labeled cells appeared 
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flat. Compared to baseline, PTH treatment increased by 50% the thickness of osteoblastic 

descendants in the calvaria. Similar findings that were observed for periosteal osteoblasts in 

the tibia were confirmed by electron microscopy [68].

Mediators of PTH actions on bone formation

Sclerostin

Sclerostin is a secreted glycoprotein, primarily produced by osteocytes, that acts as an 

inhibitor of bone formation [81,82]. Reduced sclerostin concentration and/or activity in 

human subjects leads to two genetic diseases known as van Buchem’s Disease and 

sclerosteosis, characterized by generalized and progressive overgrowth of bone and sclerosis 

of the skeleton [83–85]. In mice, deletion or overexpression of the Sost gene encoding 

sclerostin leads, respectively, to high bone mass or osteoporosis [43,86]. Of clinical interest, 

antisclerostin antibodies have demonstrated osteoanabolic effects in rodents and in human 

subjects [87–91,92•].

Studies have suggested that sclerostin inhibits bone formation by antagonizing the Wnt/β-

catenin osteoanabolic signaling pathway, which modulates osteoblast proliferation, 

differentiation and survival, as well as, osteoclast-induced bone resorption [93–95]. Wnt 

ligands bind to a dimeric receptor complex formed by the frizzled (Fzd) receptor and LDL-

receptor related protein (Lrp) 5 or 6, stimulating the canonical Wnt/β-catenin signaling. 

Sclerostin inhibits the canonical Wnt/β-catenin signaling by occupying the Wnt ligands 

binding site at the LRP5/LRP6 complex [21,96–99]. The interaction between sclerostin and 

Lrp5 was recently supported by studies in mice lacking Sost (Sost−/−), Lrp5 (Lrp5−/−), or 

both (Sost−/−; Lrp5−/−) [100•]. The Sost−/− high bone mass phenotype was blunted, while the 

Lrp5 deficiency-induced osteopenia was fully rescued in double knockout mice (Sost−/−; 

Lrp5−/−). Further studies indicated that Lrp6-induced Wnt/β-catenin signaling is the major 

pathway through which sclerostin exerts its function, as shown by the complete reversal of 

the high bone mass phenotype in both double knockout (Sost−/−;/Lrp5−/−) and Sost-deficient 

(Sost−/−) mice treated with a pharmacological inhibitor of the Lrp6 activity [100•]. While the 

mechanism by which sclerostin inhibits bone formation has been questioned by other studies 

showing that Lrp5 does not function as a Wnt co-receptor in osteoblasts [101,102], it is clear 

that sclerostin is a key inhibitor of bone formation.

Based on the observation that osteocytes express the PTH1R, further studies explored the 

hypothesis that the osteoanabolic action of PTH could be mediated by sclerostin [16]. In 

fact, PTH proved to be an inhibitor of sost/sclerostin, and this PTH-action was essential for 

the increased bone formation mediated by this hormone [43,45•,103–108]. The PTH-induced 

inhibition of Sost mRNA levels in vitro appears to be mediated by the activation of the 

cAMP signaling pathway downstream to the PTH1R [21,103,105]. In rodents, both 

continuous and intermittent PTH treatments decrease Sost/sclerostin levels [103,105]. 

Accordingly, transgenic mice overexpressing a constitutively active PTH1R specifically in 

osteocytes have decreased Sost expression associated with increased bone mass [43]. 

Supporting the idea that the down regulation of sclerostin in osteocytes is required for the 

anabolic effect of PTH, when Sost was concomitantly overexpressed in osteocytes, the 

increase in cortical bone area, periosteal bone formation rate, and cancellous bone volume 
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was abolished [43]. Mirroring these data, intermittent PTH treatment failed to suppress Sost/
sclerostin expression in mice with an osteocyte-selective PTH1R ablation [45•,104].

In human subjects, serum sclerostin levels are lower in patients with PHPT than in 

euparathyroid or hypoparathyroid controls, and there is a negative correlation between 

circulating sclerostin and PTH levels [107–110]. In healthy men, circulating sclerostin levels 

decline within 6 hours following an acute PTH infusion [111]. Similarly, intermittent PTH 

therapy decreases serum sclerostin levels in postmenopausal women [106]. In patients with 

PHPT, a cross-sectional study showed that circulating sclerostin levels were lower in 60 

subjects with active PHPT than in 74 individuals that had undergone parathyroidectomy 

[112]. Moreover, in a small series of 27 patients followed for up to a year post-

parathyroidectomy, circulating sclerostin levels normalized after the surgery, and remained 

normal throughout the follow-up period [112]. These analyses help to confirm the 

antisclerostin effect of PTH.

Dickkopf1 (Dkk1)

Dickkopf1 (Dkk1) is a secreted protein, expressed in cells of the osteoblast lineage. Similar 

to sclerostin, it interacts with Lrp5/6 and interferes with Wnt binding, inhibiting the Wnt 

anabolic signaling and bone formation [113,114]. Studies of osteoblastic cells and 

parathyroidectomized rats treated with continuous infusion of PTH(1–38) for 1, 3, 6 and 24 

hours have shown that PTH reduces Dkk1 mRNA levels in a time-dependent manner [115]. 

Accordingly, PTH administration to osteoblastic cells led to stabilization of β-catenin and 

functional activation of the canonical Wnt pathway [115]. Similarly, acute treatment with 

PTH reduces Dkk1 mRNA levels on bone explants [116]. In order to evaluate whether the 

canonical Wnt signaling is required for the PTH action in vivo, transgenic mice 

overexpressing Dkk1 exclusively in osteoblasts were exposed to distinct models of 

hyperparathyroidism. As expected, the overexpression of Dkk1 blunted the PTH-induced 

bone formation in these animals, but did not prevent the activation of Wnt signaling in bone 

[116]. In contrast, Yao et al. [117] showed similar increases in bone mass upon intermittent 

PTH administration to wild type animals and transgenic mice with overexpression of Dkk1 

selectively in osteoblasts, indicating that inhibition of Dkk1 is not required for the anabolic 

action of PTH. Of note, the same study demonstrated that, in mice, daily PTH(1–34) 

injections reduce Dkk1 mRNA levels in bone [117]. Different from preclinical studies, both 

postmenopausal women with PHPT and those treated with intermittent PTH have increased 

Dkk1 serum levels [118,119]. These results are controversial, and further studies are 

necessary to elucidate the role of Dkk1 as a mediator of the PTH actions on bone formation.

EphrinB2/EphB4

EphrinB2 is a membrane-tethered ligand that interacts with its receptor EphB4, resulting in a 

two-way signaling between two adjacent cells [120]. PTH induces the expression of 

EphrinB2 in osteoblasts, stimulating Ephrin-mediated interaction between two osteoblastic 

cells, and thereby increasing PTH-induced bone formation [121]. EphrinB2 is also expressed 

in osteoclasts, and the EphrinB2/EphB4 signaling between osteoblasts and osteoclasts 

stimulates osteoblast differentiation and impairs osteoclastogenesis [120]. A recent study 

showed that the inhibition of EphrinB2/EphB4 signaling in mice treated with a PTH 
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anabolic regimen increases bone resorption, through, at least in part, increase in RANKL 

expression, impeding the PTH anabolic effect [122•]. Thus, PTH stimulates EphrinB2/

EphB4 signaling, which not only mediates PTH-induced increased bone formation, but also 

limits the ability of osteoblasts to promote osteoclastogenesis.

T-cells play a permissive role in anabolic and catabolic actions of PTH

T lymphocytes express the PTH1R, and may have a role in both the catabolic and anabolic 

actions of PTH in bone [123,124]. Continuous PTH treatment of mice lacking T cells failed 

to increase osteoclast formation, bone resorption and cortical bone loss [125]. The lack of 

PTH-induced bone resorption in these mice appeared to be mediated by the CD40 ligand, a 

surface molecule present on activated T cells. This surface molecule induces the CD40 

signaling in stromal cells, that stimulates RANKL/OPG production ratio, increasing 

osteoclastogenesis [125,126]. Accordingly, the deletion of T cells or T cell-expressed CD40 

ligand reduced bone marrow stromal cell number, RANK/OPG ratio and osteoclast activity 

[125]. The PTH-induced bone loss and osteoclastic expansion are also inhibited when 

PTH1R is deleted in T cells [127].

T cells also play a permissive role in the anabolic effect of intermittent PTH. Intermittent 

administration of PTH increases the T cell expression of Wnt10b, a molecule that stimulates 

osteoblastogenesis [123]. As a result, the PTH-induced bone formation is reduced in mice 

lacking T cells or in those with a specific disruption of Wnt10b production by T cells [123]. 

Indeed, a conditional deletion of the PTH1R in T cells attenuates the intermittent PTH-

induced T cell production of Wnt10b and the increase in osteoblastogenesis and bone 

formation in mice [128]. A recent study in mice has shown that the PTH-induced T cell 

production of Wnt10b and the inhibition of osteocyte-derived sclerostin by PTH have an 

additive effect to increase bone mass [129].

Is bone resorption required for the PTH-induced bone anabolism?

Evidence from pre-clinical and clinical studies suggests that osteoclastic resorption is 

required for the osteoanabolic effect of PTH [54,130,131]. In contrast, studies of Rhee et al. 

[132•] suggest that PTH-induced bone formation may be distinctly affected by bone 

resorption depending upon the bone compartment. In this study, transgenic mice with 

increased bone mass due to activation of PTH receptor signaling in osteocytes were either 

treated with alendronate to block resorption-dependent bone formation, or crossed with mice 

overexpressing the Sost/sclerostin, in order to specifically inhibit bone formation. While the 

suppression of bone resorption did not affect PTH-induced bone formation on the periosteal 

surface of cortical bone, a combination of both resorption-dependent osteoblast activity and 

Wnt driven bone formation modulate bone formation on the endocortical surface. Thus, 

depending on the bone compartment, PTH receptor signaling in osteocytes can increase 

bone accrual through modeling- or remodeling-based bone formation mechanisms [132•].

A study in postmenopausal women supported the findings from animal studies that PTH-

induced bone formation may occur independently of bone resorption [133•]. In this study, 

the combination of the antiresorptive agent denosumab with PTH(1–34) for 12 months was 
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more effective to increase BMD at lumbar spine and hip sites than either therapy alone. 

These results might be related to the fact that Denosumab is a potent RANKL inhibitor, so 

that it blocks the main mechanism by which PTH increases bone resorption — the RANKL–

OPG–RANK signaling pathway. As a result, PTH would preferentially signal through the 

anabolic Wnt/β catenin signaling pathway, amplifying the PTH-induced bone formation.

Conclusion

This review has focused on the catabolic and anabolic actions of PTH on the skeleton. Direct 

effects of PTH on osteoblasts and osteocytes, and indirect actions on osteoclasts, promote 

both bone formation and bone resorption, and the final effect on bone mass, either anabolic 

or catabolic, appear to depend on the duration and periodicity of the PTH exposure. While 

PTH stimulates bone remodeling overall, bone resorption predominates when continuous 

exposure to high levels of PTH ensues, whereas administration of low, intermittent doses of 

PTH leads to a net increase in bone mass. The two forms of PTH exposure, continuous or 

intermittent, regulate, in bone cells, different sets of genes or, alternatively, affect the same 

sets of genes in a sustained vs. transient manner, the first favoring bone resorption and 

second bone formation.

PTH receptor signaling in osteoblasts and osteocytes can increase the RANKL/OPG ratio, 

which appears to be the main mechanism by which PTH stimulates bone resorption. In 

contrast, PTH-induced bone formation is explained, at least in part, by its ability to 

downregulate SOST/sclerostin expression in osteocytes, unleashing the anabolic Wnt 

signaling pathway. Thus, the current concept is that PTH utilizes both catabolic (OPG/

RANKL/RANK) and anabolic (SOST/sclerostin) pathways. Further studies are necessary to 

elucidate a means to control molecular pathways that are regulated by PTH, so that the 

skeletal action of PTH is maximally anabolic.
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