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Abstract

Background—-~Previous studies using different cardiac phenotypes, technologies and designs
suggest a burden of large, rare or de novo copy number variants (CNVSs) in subjects with
congenital heart defects (CHD). We sought to identify disease-related CNVs, candidate genes and
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functional pathways in a large number of cases with conotruncal and related defects that carried no
known genetic syndrome.

Methods—Cases and control samples were divided into two cohorts and genotyped in order to
assess each subject’s CNV content. Analyses were performed to ascertain differences in overall
CNV prevalence and to identify enrichment of specific genes and functional pathways in
conotruncal cases relative to healthy controls.

Results—Only findings present in both cohorts are presented. From 973 total conotruncal cases,
a burden of rare CNVs was detected in both cohorts. Candidate genes from rare CNVs found in
both cohorts were identified based on their association with cardiac development or disease, and/or
their reported disruption in published studies. Functional and pathway analyses revealed
significant enrichment of terms involved in either heart or early embryonic development.

Conclusions—Our study tested one of the largest cohorts specifically with cardiac conotruncal
and related defects. These results confirm and extend previous findings that CNVs contribute to
disease risk for CHDs in general and conotruncal defects in particular. As disease heterogeneity
renders identification of single recurrent genes or loci difficult, functional pathway and gene
regulation network analyses appear to be more informative.
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Introduction

Congenital heart defects (CHDs), which comprise the most common, severe birth defect,
occur in 4-9 per 1,000 liveborn and are thought to be caused by both genetic and
environmental factors (Pierpont et al., 2007). Conventional karyotyping detects
chromosomal anomalies in approximately 13% of all CHD cases, most of which fall into
aneuploidy syndromes (e.g. trisomy 18 or 21) (reviewed in Hartman et al., 2011). Array-
based technologies have revealed submicroscopic chromosomal deletions or duplications
(copy number variants (CNVs)) in an additional 3-20% of CHD cases, with a higher
frequency observed in those with syndromic or additional non-cardiac features (reviewed in
Andersen et al., 2014; Lalani and Belmont, 2014). Despite differences in study cohort
phenotypes and genomic surveillance approach, most studies report a significant burden of
large, rare, and/or de novo CNVs in CHD cases (Glessner et al., 2014; Greenway et al.,
2009; Lalani et al., 2013; Silversides et al., 2012; Soemedi et al., 2012b; Tomita-Mitchell et
al., 2012). Some of these CNVs encompass genes usually disrupted by single nucleotide
mutations for which CHD is part of the clinical spectrum, such as 7BXZ (22q11.2 deletion,
OMIM#188400, MIM:602054), EHMT1 (9934.3 deletion or the Kleefstra syndrome
OMIM#610253, MIM:607001), GATA4 (MIM:600576, mapping in to the 8p23.1 deletion),
and other genes deemed critical for heart development (reviewed by Andersen et al., 2014;
Lalani and Belmont, 2014). However, many of the newly discovered CNVs do not contain a
yet well-established cardiac-related gene, and few are recurrent. We and others (Glessner et
al., 2014; White et al., 2014) have therefore applied functional and pathway analyses to
identify additional candidate genes, in order to establish mechanistic and/or developmental
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relationships between these rare events. To date, most studies have employed a limited
repertoire of functional approaches and few have replicated findings from other studies
(Glessner et al., 2014; Lalani et al., 2013; Silversides et al., 2012).

In an attempt to reduce disease heterogeneity, we sought to identify recurrent CNVs,
candidate gene sets and developmental mechanisms associated with a specific subset of
CHD, namely conotruncal and related defects. These defects are thought to share a common
genetic etiology based on family and animal studies (Digilio et al., 2000; Gobel et al., 1993;
Miller and Smith, 1979). To that end we studied one of the largest cohorts to date with
conotruncal defects whose cases did not carry a known genetic diagnosis, used denser SNP-
based arrays to increase resolution in a subset of cases, applied a range of pathway and
functional analyses, and compared our results to those previously published.

Study Cohorts

This study was approved by The Children’s Hospital of Philadelphia (CHOP) Institutional
Review Board. Study subjects and their parents were recruited, consented, and diagnosed in
a uniform manner at the CHOP Cardiac Center. Study subjects were approached to
participate if they had a conotruncal or related cardiac defect and had not been diagnosed
with a recognized genetic syndrome upon review of their medical record (e.g. 22q11.2
deletion syndrome, Trisomy 21, Alagille syndrome). Reports from echocardiograms, cardiac
catheterizations, cardiac magnetic resonance imaging or cardiac operative notes were
reviewed to detail the cardiac anatomy. Medical records, including available consults
performed by clinical geneticists, were reviewed to detail non-cardiac congenital anomalies.
Family medical history was obtained by an interview conducted by a genetic counselor.
DNA was extracted from whole blood collected from parents; proband DNA was either
extracted from whole blood or in certain cases, from an established lymphoblastoid cell line,
using the Puregene DNA isolation kit (Gentra Systems Inc., Minneapolis, MN).

Three independent groups of healthy controls were used in this study. Healthy control
samples (N=4255, Healthy CHOP) were recruited from well-child visits (ages 3—18 years)
within CHOP’s healthcare network as previously described (Glessner et al., 2009). All
healthy control samples for this study were carefully examined by genotype and health
record to exclude samples with any indications of CHD, evidence of chronic health issues,
documented genetic abnormalities, or syndromic genomic diseases. Genomic DNA was
obtained from whole blood using standard protocols.

A second group of healthy adult controls (N=2156), which were part of a previously
published study of candidate genes for ocular refraction in the Age Related Eye Diseases
Study (AREDS), were downloaded from dbGaP (dbGaP Study Accession:
phs000001.v3.p1) (Wojciechowski et al., 2013).

A third control cohort, 179 HapMap CEU samples genotyped using IHlumina HumanOmni
2.5M Beadchip Array, was downloaded from the Illumina data depository
(ftp.illumina.com).

Birth Defects Res. Author manuscript; available in PMC 2018 March 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Xie et al. Page 4

Array Genotyping

All CHOP samples, including all conotruncal patients and controls in the healthy CHOP
cohort (N=4255), were genotyped following a consistent protocol at CHOP’s Center for
Applied Genomics. The majority of conotruncal cases (n=627) and all of the healthy
controls were array genotyped on the Illumina Infinium™ 11 HumanHap550 v1 or v3, or
BeadChip 610 array (Illumina, San Diego, CA) as previously described (Elia et al., 2012).
The remaining cases (n= 346) were array genotyped using the HumanOmni2.5-8 BeadChip
array. The standard Illumina cluster file downloaded from the Illumina website was used for
the analysis and running the GenomeStudio clustering algorithm. Control samples from the
AREDS study were genotyped using the lllumina HumanOmni2.5 Quad BeadChip array
with the standard Illumina cluster file as previously described (dbGaP Study Accession:
phs000429.v1.pl (Simpson et al., 2013)).

Sample Quality Control

Subject gender was verified by the CNV Workshop software package (Gai et al., 2010; Gai
etal., 2012). Exclusion criteria for genotypes included SNP call rate <98%, probe intensity
LRR =3 standard deviations from the cohort mean (0.36), excess of inheritance errors within
trios, non-European ancestry as determined by Plink sample stratification (Patterson et al.,
2006; Price et al., 2006; Purcell et al., 2007), or gender inconsistencies between self-
reported and genotype-derived values.

CNV detection and analysis

We grouped cases and controls into two mutually exclusive cohorts. Cohort 1 included all
cases and controls genotyped using the lllumina Infinium™ Il HumanHap550 v1 or v3, or
BeadChip 610 array. Cohort 2 included cases and AREDS control samples genotyped using
the Illumina 2.5M BeadChip.

In order to correct for differences in SNP probe content among all three SNP array versions
used in Cohort 1, analysis was limited to the subset of SNPs shared by all three genotyping
arrays (535,591 SNPs). CNV Workshop (Gai et al., 2010; Gai et al., 2012) and PennCNV
(Wang et al., 2007) were used to define CNV regions as previously described (White et al.,
2014).

We applied the same approach for samples in Cohort 2 to adjust for the different versions of
Illumina 2.5M BeadChip arrays between cases (Illumina HumanOmni2.5-8v1) and controls
(IMumina HumanOmni2.5-4). For the 2.5M arrays, the subset of 2,332,843 SNPs in common
between the two platforms was used to predict CNV regions in genotyped samples. In
addition, we used 179 Hapmap Caucasian samples that were genotyped using
HumanOmni2.5-8v1 BeadChip array (Illumina) to further reduce any systemic bias
potentially introduced by different genotyping technologies used in Cohort 2. Hapmap
samples were processed in a manner consistent with the Cohort 2 cases. Quality filtered
CNV calls from HapMap samples were used as a validation set. Any genes, functional
terms, or gene network clusters deemed as significant by comparing HapMap samples to the
AREDS cohort control samples (nominal p-value< 0.05) were removed from further
consideration, as these findings could be due to systemic bias.
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All of the analyses described below were performed in each cohort independently and
repeated in the Combined Cohort, generated by merging Cohort 1 and Cohort 2.

CNV Quality Control

CNV calls were considered for further review only if predicted by both algorithms for >60%
of the predicted CNV span, with the exception of certain large CNVs as specified below.
Subject genotypes with total CNV burden =3 standard derivations from the cohort mean
were removed from further analysis (Pankratz et al., 2011). To reduce the possibility of type
| error, deletions spanning less than 5 consecutive SNPs and duplications spanning less than
10 consecutive SNPs in Cohort 1 were excluded. Given that Cohort 2 was genotyped on a
higher density array, we adopted a higher threshold for Cohort 2 such that deletions
spanning less than 10 consecutive SNPs and duplications spanning less than 20 consecutive
SNPs were excluded. In both cohorts, deletions spanning less than 10 kilobases and
duplications spanning less than 20 kilobases were removed. CNV SNP and length thresholds
were selected based upon previous studies from our group (Elia et al., 2012; Gai et al., 2012;
Shaikh et al., 2009; White et al., 2014), examination of size-based concordance rates
between the two algorithms (White et al., 2014), and extensive experience with samples
undergoing array-based clinical diagnostics at our institution (Conlin et al., 2010).

Additional CNV exclusion criteria included: CNVs with 250% overlap with centromere,
telomere, and immunoglobulin variable regions; CNVs within olfactory receptor genes; and
CNVs with SNP densities < 1 SNP/30 kilobases, as described in (Hasin et al., 2008;
Hellemans et al., 2007; Young et al., 2008). CNVs were considered equivalent if their
genomic regions reciprocally overlapped for 260% of their length. Large CNVs were
defined as those falling within the top 5% of CNVs observed in the corresponding control
cohorts, inherited CNVs as equivalent CNVs identified in a subject and either parent, rare
CNVs as being observed in one or fewer controls (<0.05% frequency in controls), and very
rare CNVs as those not observed in the control cohort (White et al., 2014). B-allele
frequencies (BAF) and signal intensity Log R ratios (LRR) of large CNVs were also visually
inspected in GenomeStudio (Illumina). Large CNVs within 10 kilobases of each other were
also visually inspected in GenomeStudio, and if the BAF and LRR traces indicated
likelihood of a single contiguous event, the CNV regions were merged. Predicted CNVs
were annotated using the RefSeq gene list (Pruitt et al., 2005), as represented in the UCSC
Genome Browser (Kent et al., 2002) (genome.ucsc.edu).

Functional analysis

Gene Ontology (GO) (Ashburner et al., 2000) annotations were retrieved from Ensembl.org
(huseast.ensembl.org/index.html) using the BioMart data-mining tool (Smedley et al., 2015).
Mammalian Phenotype Ontology (MPO) term annotations were obtained from the
Mammalian Genome Informatics resource (MGI) (www.informatics.jax.org)(Eppig et al.,
2015). Functional annotation of Reactome (www.reatome.org) (Croft et al., 2014; Milacic et
al., 2012) and KEGG (www.kegg.jp) (Kanehisa and Goto, 2000; Kanehisa et al., 2016) gene
set collections were downloaded from the GSEA database (www.broadinstitute.org/gsea/
msigdb/index.jsp) (Mootha et al., 2003). All annotations were studied to assess gene set
enrichments in cases as compared to controls. Gene Ontology and Mammalian Phenotype
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Ontology analyses included child and antecedent parental terms associated with a given
gene. The extent of statistical enrichment for each functional term was determined by
applying Fisher’s Exact Test (two-sided), which directly compared the frequency of
occurrence in case and control cohorts for each gene or CNV being considered. We applied
the Benjamini-Hochberg False Discovery Rate procedure (Benjamini and Hochberg, 1995)
to further eliminate any potential family-wise type | error. For global CNV and gene
analyses, amplification and deletion events were considered both in aggregate and separately
at each locus considered. We only reported a finding when the functions’ nominal p-value
was less than 0.05 in each cohort and the False Discovery Rate measured in the merged
cohort was less than 0.05 (Figure 1).

Knowledge-based Analysis

A subset of genes of particular interest for cardiac development and congenital cardiac
defects was compiled in an unsupervised manner by considering prior knowledge of the
biomedical literature or expression status in heart tissue. We used 47 terms descriptive of
conotruncal defects or general cardiac development through an analysis of MEDLINE
articles using natural language processing methods. Gene-Cardiac terms were required to be
associated with at least three articles in order to eliminate type I error.

Gene network construction

To construct a network among our genes of interest, especially rare genes among patient
cohorts, we used the Cytoscape ReactomeFIViz Gene Set/Mutation Analysis application
with default parameters. (Cytoscape version 3.2, f1000research.com/articles/3-146/v2)
(Shannon et al., 2003; Wu et al., 2014) Gene interaction networks obtained were clustered
into modules using ReactomeF1Viz’s Cluster FI Network function. A pathway enrichment
analysis was employed on each individual network module using the Analyze Module
Functions tool. Only pathways with a FDR <0.05 were reported in order to reduce family
wise type | error.

Cardiac Gene sets

Two mouse gene expression profiles were compiled and tested for enrichment among our
collection of case CNVs using Fisher’s Exact test. Known cardiac relevance was assayed by
using previously reported gene lists that compiled mouse genes ranked by level of
expression in the developing mouse heart at days E9.5 and E14.5 (Zaidi et al., 2013). All
mouse transcripts were converted to human gene homologs and subsequently ranked by their
relative expression levels. The “high heart expressed 9.5” (HHE_9.5) list contains genes
within the top quartile of expression levels (n = 4402) at E9.5, while the “high heart
expressed 14.5” (HHE_14.5) list contains genes within the top quartile of expression levels
at E14.5. Gene lists with expression levels ranked in the lowest quartile were also compiled
(“low heart expressed 9.5” (LHE_9.5), and “low heart expressed_14.5" (LHE_14.5). For
each gene list, differing thresholds of inclusion were also explored to measure the trend of
enrichments among conotruncal patient cohorts.

We repeated our gene function and network studies restricting the gene list to those present
in very rare CNVs and a third high-heart expressed gene list that combined HHE_9.5 and
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HHE 14.5 (HHE: combined HHE_14.5 and 9.5) given that HHE_9.5 and HHE 14.5 shared
approximately 80% gene identity. Selected genes were imported into DAVID Bioinformatics
website (Huang da et al., 2009a; b) and Reactome FI application to evaluate gene functional
and regulation network properties as previously described. We also repeated our analysis
restricting the gene list to those present in very rare CNVs and the low-heart expressed gene
list (LHE: combined LHE_14.5 and 9.5) to eliminate any false positive findings resulted
from systemic gene set annotation bias by either DAVID Bioinformatics or Reactome FI.

Statistics Test Utility

The Wilkoxon rank sum test, two way ANOVA test (Type 111 Sums of Squares), or two
tailed Fisher’s Exact Test, as appropriate, were used to test significance in case-control CNV
and gene enrichment analyses. The Benjamini Hochberg False Discovery Rate (BH-FDR)
procedure was applied to adjust for family-wise multiple hypotheses testing.

CNV validation

Results

Selected CNVs, based on likely candidacy, statistical likelihood, or putative function, were
validated using TagMan® copy number assays (Life Technologies, Grand Island, NY).
Selection was based on CNV size (<100 kb) and on available human disease information
(OMIM: omim.org). An RNAse P TagMan assay was used as the internal control. Assays
were performed on an ABI 7500 Fast Realtime PCR System (Life Technologies) using
standard conditions and analyzed with the 7500 Fast System SDS v.1.4.0 software (Life
Technologies). All samples were assayed in triplicate and negative results were verified at
least twice in independent experiments.

Study cohort

A total of 973 cases (Cohort 1 + Cohort 2) with a definitive diagnosis of a conotruncal or
related heart malformation who upon review of medical records did not carry the diagnosis
of a known genetic syndrome were used for these analyses (Table 1). All cases were
recruited at the CHOP Cardiac Center and passed our rigid quality control process as
detailed in Methods. Most cases were ascertained at less than one year of age (63% of
Cohort 1, 52% Cohort 2, 59% overall), and 71% of cases were ascertained at less than five
years of age. As such, while we divided the cohort into those with and without additional
congenital anomalies for subgroup analyses, we could not consider the presence of
neurodevelopmental disorders given the young age of the study population. A first-degree
relative was reported to have CHD in 6% (n=59) of cases. Array genotyped parental samples
were only available for Cohort 1 for which there were 367 complete case-parent trios (both
parents and case) and 199 incomplete case-parent trios (one parent and case). The type,
number, and frequency of specific cardiac abnormalities from both cohorts are listed in
Table 1. All Cohort 1 (n=627) and Cohort 2 (n=346) cases were of European descent. There
was no gender difference between the two cohorts with a proband gender ratio of 1.5:1 (376
males) and 1.34:1 (198 males) in Cohort 1 and 2, respectively (p-value=0.44, Fisher’s Exact
Test). A total of 4833 healthy subjects (2980 in Cohort 1 and 1853 in Cohort 2) passed our
quality control steps outlined above and were used as controls as detailed in Methods.

Birth Defects Res. Author manuscript; available in PMC 2018 March 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Xie et al. Page 8

CNV burden in conotruncal patient cohorts

Structural variation content of the 627 cases in Cohort 1 totaled 2735 CNVs, consisting of
553 duplications, 2083 heterozygous deletions, 90 homozygous deletions, and 9 hemizygous
deletions (deletions in male X-chromosome) (Figure 2; Supplemental Table S1a). Of these,
1407 (51.4%) could be definitively identified as inherited (710 maternal, 636 paternal, and
61 present in both parents), while 487 were present in neither parent and were thus
suggestive of de novo events. Of these de novo CNVs, 145 were very rare (5.3% of total
CNVs) and identified in 105 subjects (16.7% of subjects). Previous work had established
bias towards Type Il error using the protocol proposed by (Itsara et al., 2010). Therefore,
certain of these de novo events were likely due to Type Il error and present in a parent; those
of interest were validated by quantitative PCR, as described in Methods. We detected no
significant differences in the overall CNV frequency (P>0.05, case/control ratio=1.00) or
CNV size (P>0.05, case/control ratio=1.05) between cases and controls. This lack of
correlation was upheld when considering only the subset of CNVs overlapping transcribed
regions between cases and controls (P>0.05, mean case/control ratio=1.00 for CNV
frequency, mean case/control ratio=1.08 for CNV size). The same conclusion was observed
when we restricted the CNV-derived gene list to those overlapping with the HHE genes
(CNV frequency: p-value>0.05, mean case/control ratio =1; CNV size: p-value >0.05, mean
case/control ratio=1.04). When restricting CNV burden analysis to the 367 conotruncal trios,
parental transmission of inherited CNVs to probands was found to be independent of parent
gender (P>0.05; 654 maternal vs. 655 paternal).

We detected 3192 total CNVs from 346 singletons of Cohort 2, including 2270 heterozygous
deletions, 283 homozygous deletions, and 639 duplications (Supplemental Table S1b). We
again detected no significant differences in the overall CNV frequency (P>0.05, case/control
ratio=1.00) or CNV size (P>0.05, case/control ratio=1.05) between cases and controls in
Cohort 2. As Cohort 2 had no trio data, we were unable to determine inheritance status.

We defined rare CNVs as those present in less than 0.05% of healthy controls whether
inherited or de novo. By this definition, Cohort 1 contained 836 rare CNVs (263
duplications, 568 heterozygous deletions, and 5 hemizygous X chromosome deletions) and
Cohort 2 contained 888 rare CNVs (276 duplications, 611 heterozygous deletions, and one
homozygous deletion). The overall distribution of CNVs in both cohorts is depicted in
Figure 2.

The burden of rare CNVs was assessed in each cohort (Table 2). Rare CNVs were
significantly overrepresented in cases, both when comparing the proportion of subjects with
rare CNVs or the frequency of rare CNVSs in cases and controls. Rare CNV burden remained
significant for overall large CNVs (CNVs with size larger than 3 times of standard derivation
of mean CNV size in controls), suggesting similar overall CNV burden characteristics for
each cohort. A subgroup analysis comparing the burden of rare CNVs in cases with and
without additional non-cardiac anomalies showed significant enrichment as compared to
controls (Table 2) while there was no difference comparing one to the other (Supplemental
Table S2).
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Gene analysis

In Cohort 1, a total of 1217 CNVs included one or more genes, collectively representing
1816 individual genes (Supplemental Table S3). We determined that 314 of these genes were
included in CNVs in two or more individuals; of these, only 42 genes were not included in
CNVs in controls. In Cohort 2, 1412 CNVs included 1458 individual genes (Supplemental
Table S3). We determined that 364 of these genes were included in CNVs in two or more
individuals; of these, only 54 genes were not included in CNVs in controls. When combined,
55 genes were included in CNVs in both cohorts at least once but not in any controls (23
genes were in deletions in both cohorts, 22 genes were in duplications in both cohorts, and
10 genes were in different types of CNVs in the two case cohorts; Supplemental Table S4).

We performed a gene-based case-control enrichment analysis of conotruncal CNV-
associated genes to determine if any genes were overrepresented in cases. No genes
remained significantly enriched in our cases when all CNVs or only deletions or
duplications were considered after correcting for multiple tests in the Combined Cohort (see
Figure 1). We observed the same conclusion when the analysis was restricted to the subset of
HHE genes.

We next restricted our analysis to include only a subset of genes (1534 genes in total)
previously implicated in cardiovascular development from the biomedical literature, as
described in Methods. Using this process, we identified 37 such genes within 39 CNVs (10
duplications and 29 heterozygous deletions) in Cohort 1 and 40 genes within 89 CNVs (21
duplications and 68 heterozygous deletions) in Cohort 2. Among those CNVs, 29 of 39 were
rare CNVs in Cohort 1 (7 duplications and 22 deletions) and 27 of 89 were rare in Cohort 2
(10 duplications and 17 deletions). Three of these rare CNVs were present in both Cohort 1
and 2, all of which have been identified in other CHD studies. These included 2 very rare
chromosome 1g21 deletions that overlapped with previously reported CNVs deleting the
gene GJAS5 (Digilio et al., 2013; Glessner et al., 2014; Greenway et al., 2009; Silversides et
al., 2012; Soemedi et al., 2012a; Tomita-Mitchell et al., 2012; Warburton et al., 2014). A
smaller very rare CNV in the same region deleting only CHDI1L was found in a single case
from Cohort 2. The other two recurrent CNVSs in our cohort disrupted genes ANGPT2
(Silversides et al., 2012) and FLT4, respectively (Serra-Juhe et al., 2012; Soemedi et al.,
2012b) (Table 3). Several other rare CNVs found only in one of our cohorts were also
reported in other CHD studies. These CNVs are listed in Table 3 and overlapped genes of
interest at 5914.1 (SSBP2) (Silversides et al., 2012; Soemedi et al., 2012b), and 3g22.1
(NPHP3) (Tomita-Mitchell et al., 2012).

We compared genes included in rare CNVs in the conotruncal cases to healthy controls in
order to determine whether those genes were preferentially enriched among heart specific
mouse-human homolog gene expression sets. We did not observe conclusive association of
the HHE as compared to LHE genes in neither case cohorts as compared to controls
(Supplemental Table S5).
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Functional and pathway analysis

Several approaches were used to determine whether genes sharing particular biological
functions were enriched within rare CNVs in conotruncal subjects. Using the full gene set
from rare CNVs, we studied each case-control cohort independently and then rare CNVs in
combined cohorts for the analysis, as described in Methods (Functional Analysis). We
intended to determine whether Gene Ontology (GO) terms assigned to genes overlapping
detected CNVs were significantly enriched in conotruncal cases versus controls. Sixty-six
unique Gene Ontology terms were found to be significantly enriched. Several terms relevant
to heart or early embryonic development, and terms that included known cardiac-related
genes were significant after multiple testing correction (Table 4). GO terms of significance
and interest included: “Regulation of sequence-specific DNA binding transcription factor
activity” for its inclusion of TGFB1 (FDR<2.38E-04), and the potentially related GO term
“Regulation of transforming growth factor beta receptor signaling pathway”
(FDR<3.26E-02) given the relationship of TGFp1 to heart development (Gordon and Blobe,
2008). A recent study showed that cilium-related genes were highly correlated with heart
formation and defects in a mouse model (Li et al., 2015). We found that the Gene Ontology
term “Non-motile primary cilium” was highly enriched in our case cohorts
(FDR<8.48E-03). Other GO terms of interest included “Cardiac muscle cell differentiation”
(FDR<6.17E-04), “Positive regulation of Rho GTPase activity” (FDR<3.46E-02) and
“Chromosome organization” (FDR<1.9E-02). A full list of all the significant Gene
Ontology terms is provided in the supplemental material (Supplemental Table S6).

As a complementary case-control approach, we evaluated whether rare conotruncal CNVs
were preferentially enriched for gene orthologs responsible for specific phenotypes found in
mouse models for congenital heart defects. For this analysis, we used MGI-derived MPO
assignments reported for CNV-associated genes in the conotruncal cohort, as compared to
such genes in the control cohort. Forty-two mouse phenotype terms were identified as
significantly enriched in conotruncal subjects (Supplemental Table S7). The top significant
terms of interest included “prenatal lethality” (FDR<3.3E-06) and “partial embryonic
lethality” (FDR<2.9E-04) as altered function of a wide range of genes contributing to
cardiac development have been shown to result in embryonic lethality (reviewed by Clowes
et al., 2014; Lockhart et al., 2011; Solloway and Robertson, 1999) (Table 5). As with the
Gene Ontology analysis, “abnormal apoptosis” (FDR<5.12E-04) was also among the top
significant terms of interest.

We extended our functional study to Reactome (www.reatome.org) and KEGG
(www.kegg.jp) gene sets. Using KEGG’s classification, four terms were identified as
significantly over-represented in conotruncal cases including the “TGF-beta signaling
pathway” (corrected p<1.30E-02) (Table 6). There was no Reactome term significantly
enriched in overall conotruncal subjects compared to controls.

We further interrogated gene interaction networks in our cohorts. We collected all genes
included in CNVs that were deemed as rare in both case cohorts: 1085 genes from Cohort 1
and 770 genes from Cohort 2. The gene sets from each cohort were imported and analyzed
separately and also jointly by the ReactomeFIViz component of CytoScape 3.2 (http://
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f1000research.com/articles/3-146/v2). Genes were clustered based on their connectivity,
followed by annotating each cluster with pathway enrichment ranks. To reduce type I error,
we only studied modules with a false discovery rate less than 0.05. The gene network for
each cohort was plotted and is shown in (Figure 3). As indicated in previous result section,
“TGF-beta signaling pathway” network was the most significantly enriched function among
the clusters obtained from both cohorts. Other implied functions included “Assembly of the
primary cilium”, and “Rho GTPases signaling,” also previously identified in our GO
Ontology analysis. Many of those functions were established as playing a role in cardiac
development (Clement et al., 2009; Koefoed et al., 2014; Li et al., 2015; Wei et al., 2002).

We subsequently restricted our pathway and functional analyses to HHE genes included in
rare conotruncal CNVs. Gene Ontology analysis identified a number of enriched functions
that are known to be involved in early development with the term “Cardiac Muscle Cell
Differentiation” (p<4.66E-6) being one of the most significantly enriched functions.
Supporting our previous findings the GO terms “Regulation of transforming growth factor
beta receptor signaling pathway” (G0:0017015, p<3.523E-4) and “Regulation of Rho
protein signal transduction” (GO:0035023, p<1.857E-3) were again found to be
significantly enriched (Supplemental Table S8a). In Reactome FI analysis, other pathways of
interest that were found to be significantly enriched included “Pre-NOTCH Expression and
Processing” (FDR<0.05) and SHP2 signaling (FDR<0.05), which includes the gene
ANGPT1. Other significantly enriched pathways using these and other analytical methods
are listed in the Supplemental Tables S8a—e. The list of significant terms using the HHE
genes included many functions previously identified using the full gene list.

Discussion

Our CNV study represents one of the largest conducted to date with cardiac conotruncal and
related anomalies in cases without a recognized genetic syndrome. In keeping with previous
studies, we found an increased burden of rare (and rare large) CNVs in cases as compared to
controls. An increased burden of rare CNVs was found in cases regardless of the presence or
absence of non-cardiac congenital anomalies. Unfortunately, we could not further sub-divide
the study cohort by neurodevelopmental status given that most cases were ascertained at less
than one and even five years of age, and our study was not designed to test for or ascertain
such issues longitudinally. Whether there is a subset of cases without non-cardiac congenital
anomalies but with neurodevelopmental disorders that drives the CNV burden in the subset
with no additional congenital anomalies cannot be discerned. However, this situation is
identical to that faced by the physician/caregiver examining a fetus/newborn/infant with a
conotruncal defect that has no other overt findings and for whom the neurodevelopmental
status cannot yet be defined.

Though challenging to compare results from different studies given the range of case
phenotypes enrolled and study designs employed, most studies to date have suggested an
increased burden of some class of CNVs in CHD cases. In particular, Warburton et al.
(2014), Greenway et al. (2009) and Glessner et al. (2014) found an increased prevalence of
de novo CNVs in cases with conotruncal, and sporadic, severe CHD respectively, while
Soemedi and colleagues (2012b) found an increased burden of rare genic deletions in a
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cohort that included a large number of TOF patients. Silversides et al. (2012) found an
association between large rare CNVs and large rare exonic duplications in a study cohort
incorporating syndromic and nonsyndromic TOF cases, which disappeared in the
nonsyndromic subset. Thus multiple studies suggest that CNVs contribute to disease risk for
CHDs in general and conotruncal defects in particular, but defining a set of recurrent events
or disease-associated genes has been difficult to replicate between studies.

As in most other reports, no statistically associated disease-related recurrent CNVs or genes
were identified in our study when correction for multiple testing was applied. However, we
identified several CNVs in our cases that were previously reported in other CHD studies that
included identical candidate genes, thus adding validation to their disease-based impact in
CHD. In particular, we found recurrent CNVs at chromosome 1921 in both of our CHD
cohorts, which is one of the most frequently reported CNVs in CHD cases in other reports
(reviewed in Digilio et al., 2013; Glessner et al., 2014; Greenway et al., 2009; Silversides et
al., 2012; Soemedi et al., 2012a; Soemedi et al., 2012b; Tomita-Mitchell et al., 2012;
Warburton et al., 2014). The disease-associated gene within this region is thought to be
GJAS5 given the finding of a single nucleotide variant in GJA5 associated with TOF (Guida et
al., 2013) and the finding that mice deleted for Gjab develop a TOF phenotype (Gu et al.,
2003).

In addition, we identified recurrent rare CNVs in both of our cohorts that overlapped with
those reported in other studies that did not include genes previously listed as the likely
disease-related candidate gene. For example, our CNVs at 8p23.1 and the one reported by
Silversides et al. (2012) did not include GAT7A4, but instead deleted RPZL 1. Such findings
suggest that additional genes in these regions may be important for the cardiac phenotype.
Alternatively our CNVs could delete regulatory domains that exert a more distant effect on
gene expression of purported candidate genes, but ultimately such comparisons between
studies are hampered by the use of different technologies and the difficulty defining end
points.

We also found CNVs spanning purported candidate genes exclusively in our controls or in
both cases and controls, decreasing the likelihood that these candidates are indeed related to
CHD. In particular, a previously reported CHD-associated CNV on 15g11.2 (Glessner et al.,
2014; Soemedi et al., 2012b), was present in both of our CHD cohorts (8 cases) as well as
control samples (11 controls) both as deletions and duplications, and did not show any
association. We also identified eight normal parents carrying the 15q11.2 CNV though their
affected offspring did not inherit this CNV, an observation we confirmed by gPCR. This
observation brings in to question whether this region is related to CHD. Alternatively, the
conflicting results between studies may be due to systemic bias introduced by different
genotyping arrays in each study or could result from a more complex model of CHD risk.

Because we did not find a significant association of either single genes or CNVs with
disease risk examining the full genome, we tested whether restricting the analysis to high
heart expressed (HHE) developmental genes found in rare CNVs would identify a set of
heart-related genes associated with CTD. We expected this focused approach to reduce
heterogeneity by preferentially eliminating unrelated genes concurrently included in CNVs,
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thereby increasing power to detect meaningful associations. Unlike recent results reported
for de novo, damaging mutations identified in whole exome sequence data (Zaidi et al.,
2013), the results of this restricted analysis were inconsistent between our cohorts and
expressions levels, and thus, were inconclusive. It is possible that a different or more
restricted gene set (e.g. a gene set specific to conotruncal developmental such as the second
heart field or cardiac neural crest cells) would be more informative.

Given the increasing evidence for marked genetic heterogeneity of CHD, we undertook an
extensive pathway analysis to test whether the genetic burden of rare CNVs could be
explained by the disruption of one or more distinct but functionally related genes. Our
pathway analyses of genes included in rare CNVs suggest significant enrichment of
pathways that have been previously associated with cardiac development, such as the TGF-
beta signaling pathway, which we identified using multiple approaches. Likewise, genes
associated with chromosome organization were enriched in both of our cohorts, previously
identified in TOF patients by Silversides et al. (2012), and contained genes previously
associated with CHD such as CHD7, WDR5, and USP44 (Zaidi et al., 2013). The fact that
many seemingly unrelated pathways also reached significance, such as many immunology
centered pathways, might be due to the inclusion of all genes disrupted by the rare CNVs,
many of which are likely irrelevant to CTD. Indeed, restricting the analysis to genes highly
expressed in the developing heart resulted in more biological specification relative to heart
development among significantly associated pathways. Notably, pathways enriched in other
studies were not replicated by our analyses (Glessner et al., 2014; Soemedi et al., 20123;
Warburton et al., 2014). The apparent disparate results between studies could derive from
different phenotypic cohorts, analytical approaches and/or genotyping platforms, or it may
also reflect a lack of statistical power due to the underlying complexity of these disorders.
The variability in study design clearly complicates efforts to synchronize findings on this
complex genetic disorder.

In summary, our study demonstrates that rare CNVs contribute to disease risk for CTDs and
once again highlights the enormous genetic heterogeneity of even this subset of CHD given
the paucity of recurrent events. Comparison with other studies both confirms and questions
previous associated loci and genes, but the highly variable study design employed by
different investigators makes the compilation and comparison of findings between studies
challenging. Given the rarity of recurrent single events, the pathway and functional based
analyses based on gene content from the rare CNVs appear to be more informative as several
developmentally related pathways and networks were enriched in our cohorts, particularly
when the gene set examined was confined to those expressed during early heart
development. These results suggest that the association of rare CNVs with disease-risk is
explained by way of alteration of copy number of developmentally-related genes. Future
studies will focus on relevant gene subsets as defined by expression data and defined gene
networks.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. Flow chart outlining process of data analysis
For CNV detection workflow refer to White et al. (2014).
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FIGURE 2. Flow chart depicting the distribution of CNVsin each cohort

The total count of CNVs and in parenthesis, the subset of CNVs containing genes, are
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Cohort 2

Deletion: 2553 (1200)
Duplication: 639 (212)

Rare
Deletion: 612 (261)
Duplication: 276 (95)

Very Rare
Deletion: 490 (225)
Duplication: 229 (74)

presented. Row | reports all CNVs; Row Il describes inheritance status for Cohort 1; Rows
111 and 1V report the number of rare and very rare CNVs as defined in Methods, respectively.
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constructed using genes from rare CNVs from Cohort 1. b The figure is constructed using
genes from rare CNVs from Cohort 2. Each circle represents one unique Refseq gene with
different shades representing different interaction network clusters identified from those
genes. To simplify figure presentation, we annotated each module using its top enriched
function or more abundant functional categories to illustrate each module’s functional
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characterization. Different connecting lines represent different biological events as
illustrated in the legend in the figure.
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Phenotype distribution for both cohorts

TABLE 1

Count (%)

Cardiac Lesion™ Cohort1  Cohort 2
Tetralogy of Fallot 249 (39.7) 118 (34.1)
Pulmonary Stenosis 195(78.3)  79(66.9)
Pulmonary Atresia 41 (16.5) 27 (22.9)
Absent Pulmonary Valve 6(2.4) 1(0.8)
Unspecified Pulmonary Anatomy 7(2.8) 11 (9.3)
Ventricular Septal Defect” 120 (19.1)  93(26.9)
Conoventricular 101 (84.2) 72 (77.4)
Conal Septal Hypoplasia 5(4.2) 4(4.3)
Malalignment 14 (11.7) 15 (16.1)
Unspecified Type 0 2(2.2)
D-Transposition of the Great Arteries 124 (19.8) 68 (19.6)
With Ventricular Septal Defect 61 (49.2) 30 (44.1)
Without Ventricular Septal Defect 60 (48.4) 33 (48.5)
Unspecified if Ventricular Septal Defect Present 3(2.4) 5(7.4)
Transposition of the Great Arteries - other/unknown ™ 6(1) 4(12)
Double Outlet Right Ventricle” 68 (10.8) 19(5.5)
Pulmonary Stenosis/Atresia 28 (41.2) 8 (42.1)
Aortic Stenosis/Atresia 9(13.2) 1(5.3)
Tricuspid Stenosis/Atresia 8 (11.8) 2 (10.5)
Mitral Stenosis/Atresia 26 (38.2) 5(26.3)
Common Atrioventricular Valve 6 (8.8) 5(26.3)
Single Ventricle (Double Inlet Right or Left \entricle) 1(1.5) 1(5.3)
Isolated Aortic Arch Anomaly 29 (4.7) 18 (5.2)
Left Aortic Arch with Aberrant Right Subclavian Artery 1(3.4) 4 (22.2)
Right Aortic Arch with Mirror Image Branching 3(10.3) 2(11.1)
Right Aortic Arch with Aberrant Left Subclavian Artery 9 (31.0) 7(38.9)
Double Aortic Arch 16 (55.2) 5(27.8)
Truncus Arteriosus 18 (2.9) 16 (4.6)
Type 1 8(44.4) 11 (68.8)
Type 2 6 (33.3) 4(25.0)
Type 3 1(5.6) 0
Type 4 1(5.6) 0
Type Unspecified 2(11.1) 1(6.3)
Interrupted Aortic Arch 12 (1.9) 8(2.3)
Type A 3(25.0) 1(12.5)
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Count (%)

Cardiac Lesion™ Cohort1  Cohort 2

Type B 8 (66.7) 7 (87.5)

Type Unspecified 1(8.3) 0
Other # 1(0.1) 2(0.6)
Total 627 (100) 346 (100)

2.7% and 3.2% of the subjects were also diagnosed with heterotaxy in Cohortl and Cohort 2, respectively.

f17.5% and 14% of the subjects were also diagnosed with coarctation of the aorta in Cohort 1 and Cohort 2, respectively; and 9.2% and 6.5% had
concurrent muscular VSDs in Cohort 1 and Cohort 2, respectively.

Cardiac segments SDL or unknown
N
Subsets are not mutually exclusive.

Single subjects with atrial septal defect and muscular VSD, muscular VSD, right ventricle aorta and pulmonary atresia.
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