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Abstract

The functional optimization of neural ensembles is central to human higher cognitive functions. 

When the functions through which neural activity is tuned fail to develop or break down, 

symptoms and cognitive impairments arise. This review will consider ways that disturbances in the 

balance of excitation and inhibition might develop and be expressed in cortical networks in 

association with schizophrenia. This presentation will be framed within a developmental 

perspective that begins with disturbances in glutamate synaptic development in utero. It will 

consider developmental correlates and consequences including compensatory mechanisms that 

increase intrinsic excitability or reduce inhibitory tone. It will also consider the possibility that 

these homeostatic increases in excitability have potential negative functional and structural 

consequences. These negative functional consequences of disinhibition may include reduced 

working memory-related cortical activity associated with the downslope of the “inverted-U” input-

output curve, impaired spatial tuning of neural activity and impaired sparse coding of information, 

deficits in the temporal tuning of neural activity and its implication for neural codes, and conclude 

by considering the functional significance of noisy activity for neural network function. This 

presentation will draw on computational neuroscience and pharmacologic and genetic studies in 

animals and humans, particularly those involving NMDA glutamate receptor antagonists, to 
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illustrate principles of network regulation that give rise to features of neural dysfunction associated 

with schizophrenia. While this presentation focuses on schizophrenia, the general principles 

outlined in this review may have broad implications for considering disturbances in the regulation 

of neural ensembles in psychiatric disorders.
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computational psychiatry; schizophrenia; glutamate; cognition; neurodevelopment; neural 
ensembles

Most cortical pathology can be understood as a disturbance in the balance of glutamatergic 

excitation and GABAergic inhibition (E/I balance). Glutamate and GABA neurons account 

for most cortical synapses and they are the main targets of other cortical modulators (1). As 

a result, changes in cortical network activity are expressed as a form of E/I imbalance, 

however transient.

This review considers three forms of E/I imbalance that may be relevant to psychiatry: 

disinhibition, reduction in the spatial and temporal tuning of neural activity, and noise. This 

presentation will draw on studies of schizophrenia, the effects of pharmacologic agents in 

animals and healthy humans, and computational models of cortical microcircuits (2). While 

this discussion will focus on schizophrenia, the general principals reviewed may apply to 

other psychiatric disorders (3)(4)(5).

Excitatory synaptic deficits

Schizophrenia, at its developmental core, is a disorder of E/I imbalance arising from 

deficient excitatory connectivity. The symptoms of schizophrenia, particularly the prominent 

cognitive and negative symptoms, are associated with reductions in cortical gray (6) and 

white matter (7) and to reduced task-related prefrontal cortical activation, although not 

universally so (8). Deficits in glutamate synaptic structure and function are a component of 

the neurobiology of schizophrenia (9). For example, genes that code for the development, 

function, and elimination of glutamate synapses figure prominently among both the rare 

(10–14) and common (15, 16) gene variants that contribute to the heritable risk for 

schizophrenia. In the frontal cortex, these genes are expressed prominently in utero or 

shortly after birth (17, 18). Thus it is likely that glutamatergic signaling deficits are among 

the earliest forms of pathology expressed in schizophrenia. Further, primary deficits in 

NMDA receptor (NMDA-R) glutamate synaptic signaling, particularly in layer 3 pyramidal 

neurons in prefrontal cortex (19), are thought to underlie impaired executive cognitive 

functions including working memory deficits (20). These deficits are thought to undermine 

recurrent excitation and the maintenance of information in working memory (21).

Deficits in synaptic connectivity also may directly contribute to the development of 

delusions and hallucinations. Hoffman, for example, suggested that synaptic deficits 

associated with schizophrenia create a propensity for cortical networks to settle into aberrant 

representations of thought or sensory experience (22, 23). In the parlance of chaos theory 
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these aberrant states may constitute abnormal chaotic attractors or in topological theory, 

parasitic foci.

Impaired tuning of the magnitude of excitation, allostatic adaptations, and 

the “inverted-U”

There is also evidence of increased excitability or cortical disinhibition in schizophrenia, 

particularly early in the course of illness. For example, cortical levels of glutamate, 

glutamine and GABA as measured by 1H-magnetic resonance spectroscopy are elevated in 

healthy individuals at high genetic risk or in patients early in their course of illness, with 

declining levels with advancing age to a point below that of healthy subjects (24)(25–30). 

Also, studies of covarying regional brain activity assessed with fMRI at rest, i.e, resting 

cortical functional connectivity, reveal increases in high risk and unmedicated first episode 

patients, and reductions in this trait over time during long-term treatment (31, 32). Similarly, 

working memory-related fronto-parietal connectivity also appears to decline with illness 

progression (33). In addition, electrophysiological studies point to relative increases in 

excitability as reflected in functional connectivity and increased amplitude of the M100 and 

M170 evoked responses early in the course of schizophrenia that decline with illness 

progression (34, 35).

The downregulation of cortical connectivity with age or duration of illness in schizophrenia 

may be exacerbated by increased cortical excitation and functional connectivity. For 

example, individuals at high risk for developing schizophrenia show increased energy 

metabolism rates in the CA1 and subiculum regions of the hippocampus. When followed 

through their transition to psychosis, the areas that had earlier shown hyperactivity now 

showed atrophy, as measured by volume loss on MRI (36). In this study, ketamine, an 

NMDA-R antagonist that acutely disinhibits some cortical networks (37), was shown in 

mice to activate hippocampal subregions acutely, but to produce atrophy in these activated 

regions with chronic administration. Similarly, when followed over time, the degree of 

cortical functional hyperactivity in unmedicated schizophrenia patients in their first episode 

was correlated with the decline in functional connectivity over time (32). Together, these 

studies suggest that hyperactivation triggers functional and perhaps structural synaptic 

downregulation.

As outlined in figure 1, it is possible that the increased rate of decline in cortical structural 

and functional indices in schizophrenia compared to healthy comparison subjects is a 

consequence of homeostatic processes intended to adapt to increased cortical excitation (2). 

The mechanisms of synaptic homeostasis enable neurons to have stable functional 

characteristics despite growth-related alterations and changing strength of neural inputs (39). 

In the face of the persistence of increased excitation, both pre- and postsynaptic mechanisms 

are engaged in homeostatic downscaling of functional and structural connectivity (40–42). 

In this way homeostatic plasticity contrasts with Hebbian plasticity, which, in the face of 

increased excitation would be predicted to increase both functional and structural 

connectivity (42).
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How might disinhibition emerge? First, as suggested in figure 1, the preponderance of 

genetic information so far points toward primary deficits in glutamate synaptic connectivity. 

However, there may also be mutations associated with schizophrenia that might directly 

increase cortical excitability. For example, alterations in several genes implicated in 

schizophrenia risk, including reductions in transcription factor 4 (43), 15q13.3 microdeletion 

(44) or increases in hERG (45) or CACNA1c (46), might contribute to schizophrenia risk by 

increasing cortical excitability. Second, pyramidal neurons may compensate for deficits in 

glutamatergic input by upregulating their excitability. For example when the GluN1 subunit 

of NMDA-R is selectively eliminated from cortical pyramidal neurons in mice, perhaps 

mimicking deficits in NMDA-R signaling that might be associated with schizophrenia, 

pyramidal neurons adapt by increasing their excitability via reductions in G protein-

regulated inward-rectifier potassium channel 2 (47, 48).

However increased excitation also might emerge as a consequence of allostatic deficits in 

GABA signaling, i.e., a homeostatic reduction of basal E/I imbalance that compromises 

functions attributable to interneurons (2). Abnormalities have been described in several 

GABA neuronal populations in schizophrenia (49). The best characterized deficits are in the 

parvalbumin-containing (PV) GABA cells including chandelier cells, which synapse on to 

the initial axonal segment of pyramidal neurons and gate output (50), and the basket cells, 

which synapse on the soma and proximal dendrites and which shape the timing of neuronal 

activity at high frequencies (γ oscillations) (19). In addition deficits are reported in 

cholecystokinin-containing (CCK) basket cells, which express cannabinoid (CB1) receptors 

and temporally tune pyramidal neurons in a manner distinct from PV basket cells (including 

θ oscillations) (51), and somatostatin-containing (SST) interneurons, which gate the 

excitability of distal dendrites in an input-specific manner and which are vulnerable to stress 

(52). Recent data suggests that deficits in GABA neuronal function associated with 

schizophrenia arise as a consequence of deficient excitatory input (53) or responsivity to this 

input (54) and serve to reduce inhibition in cortical microcircuits in ways that compensate 

for reduced excitatory connectivity (55). The notion that reduced excitatory drive to 

interneurons would disinhibit cortical microcircuits would be consistent with evidence that 

NMDA-R antagonists reduce GABA neuronal activity (56), disinhibit activity in deep 

cortical layers in primates (20), increase extracellular glutamate in animals (57), raise voxel 

glutamate levels in humans (58), and increase high frequency activity in animals (59) and 

humans (60). Also, genetic ablation of the GluN1 subunit on parvalbumin neurons increases 

network excitability, increases resting gamma oscillations, and produces cognitive 

impairments in animals (48, 61).

Disinhibition in cortical networks may contribute to cortical network dysfunction and 

impairments in cognition and behavior. The impairment in neural function with increased 

activation is sometimes referred to as the “inverted-U” phenomenon because increasing 

input (arousal (62), working memory load (63), dopaminergic activation (64), thalamic 

activity (65), etc.) increases cortical output up to a particular level of output, beyond which, 

further increases in input produce declining benefit and if increased further, decreases in 

output. Grossberg (66, 67) hypothesized that in networks characterized by “gated opponent 

processes”, i.e., networks in which neurons mutually excite and indirectly (via interneurons) 

inhibit each other, maintenance of E/I balance supports network output up to the point of 
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optimal network activation. Beyond that level, elevated inhibitory tone recruited balance 

basal excitation at rest may reduce the ability of subsequent task-related input to activate the 

network; contributing to the downslope of the inverted-U curve. This hypothesis is 

consistent with evidence from schizophrenia (32, 34, 68) and ketamine effects in healthy 

subjects (69, 70) that resting hyperactivity and reduced task-related cortical activation are 

related. The integrity of the inverted-U in schizophrenia suggests that despite deficits, 

sufficient residual GABA tone remains to grossly balance E/I. This situation contrasts with 

autism, where some of the same genetic mechanisms are implicated, but where nearly a third 

of patients exhibit seizures (71). This observation suggests that autism may be associated 

with more profound disruptions of E/I balance than schizophrenia. However, it is evident 

that the inverted-U pattern is only one of several potential relationships between input and 

out in working memory networks. There appear to be specific properties (whether recurrent 

inhibition dominates recurrent excitation, whether excitation is dominated by AMPA-R or 

NMDA-R, etc.) that influence the relationship between basal and task-related activation 

within working memory networks (72).

Another inverted-U curve describes the relationship between dopamine signaling and 

working memory-related neural activity (see figure 2). Under optimal conditions, D1-R 

stimulation promotes persisting neural activity that supports working memory (73) and 

enables working memory networks to effectively sculpt through inhibition the pattern of 

neural activity to precisely represent spatial information in memory (74). However, if D1-R 

stimulation is too low as may be the case in schizophrenia (75), network activity becomes 

disinhibited and spatial information cannot be effectively encoded. In this context D1 

agonists might be prescribed to promote inhibitory tuning of cortical activity. In contrast, if 

D1-R stimulation is too great, then activity in these networks is suppressed and mnemonic 

function is impaired (76). The inverted-U relationships describing the relationships between 

glutamatergic and dopaminergic function appear inter-related suggesting that they interact at 

an intracellular or network level. For example, within individual human subjects, the same 

dose of amphetamine that impairs working memory reduces working memory deficits 

produced by ketamine (77).

There may be treatment implications of cortical disinhibition in schizophrenia. First, if 

cognitive deficits are a response to basal cortical activation, then reductions in cortical 

excitation might reduce symptoms and improve cognitive function. This approach is 

consistent with the symptomatic efficacy of drugs that reduce glutamate release, like 

lamotrigine (78, 79) and the metabotropic glutamate receptor-2 (mGluR2) agonist pro-drug, 

pomaglumetad methionil (80). It also may be consistent with the efficacy of low frequency 

repetitive transcranial magnetic stimulation for suppressing medication-resistant auditory 

hallucinations (81). However, neither lamotrigine (82) nor pomaglumetad (83–85) showed 

widespread efficacy for schizophrenia. This limited efficacy in heterogeneous patient 

populations may be because, as noted, hyperactivity appears to be a feature most prominent 

early in the course of schizophrenia (2). Consistent with this hypothesis, pomaglumetad was 

efficacious for schizophrenia patients early in their illness, but in patients with long-standing 

illness it either had no efficacy or made them worse (86). Thus, inhibitory treatments might 

be the first illness phase-specific treatments for this disorder.

Krystal et al. Page 5

Biol Psychiatry. Author manuscript; available in PMC 2018 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Deficits in spatial tuning of cortical activity and impairments in sparse 

coding

The representation of information by the cortex requires fine-grained tuning of the spatial 

dispersion of excitation within a localized area. Within the primate prefrontal cortex, the 

representation of particular spatial locations within spatial working memory depends on the 

selective activation of particular layer 3 neurons and their associated microcolumns as well 

as the interneuron-mediated inhibition of neighboring neurons and microcolumns 

representing competing locations (87, 88). The restriction of activity to a small minority of 

potential neurons is called sparse coding (89) and its integrity depends on inhibition (90). 

The interneurons mediating the spatial dispersion of pyramidal neuron activitation are 

specific to cell type and layer. Computational models suggest that several interneuron 

subtypes cooperate in spatial tuning including parvalbumin (PV), calretinin (predominately 

VIP-containing), and somatostatin-containing (SST) interneurons (91, 92). Among layer 5 

pyramidal neurons, the activation of subcortically projecting pyramidal neurons seems to be 

gated prominently by parvalbumin (PV) neurons, while callosally projecting pyramidal 

neurons are inhibited by somatostatin-containing (SST) neurons (93). In the hippocampus, 

SST neurons regulate the spatial extent of neural activation associated with mnemonic 

encoding (94).

In the case of working memory, sparse coding conveys several important functions: 1) the 

ability to simultaneously maintain multiple mnemonic cell assemblies, i.e., larger working 

memory buffer size, 2) better perceptual and mnemonic precision, and 3) protection of 

memories from distortion by distractors (89, 95–98). A bump attractor computational model, 

which implements working memory through self-sustained persistent neural activity, sheds 

light on how reduced lateral inhibition compromises memory (see figure 3). Reductions in 

lateral inhibition produce dispersion of the neural representation of spatial information 

within memory, contamination of spatial representations by nearby distractors, and increases 

in signal variance (noise) (95). Disruption of sparse coding also may contribute to the 

formation of memories that are distorted by distracting stimuli, contributing to the formation 

of false memories, as has been shown in flies (96). In humans, NMDA receptor antagonists 

produce many stigmata of impaired spatial tuning of memory networks including smaller 

working memory buffer size, decreased precision of mnemonic encoding, and the production 

of “false alarms” in working memory (95, 99). Extreme hyperconnectivity also has been 

predicted (22) to contribute to hallucinations, delusions, loose associations, and other forms 

of thought disorder. Further, impairments in top-down control of cortical representations 

may increase dependence upon bottom-up sensory processes that are also distorted; further 

undermining the environmental fidelity of cortical mnemonic representations (100, 101).

Schizophrenia patients show signs of reduced spatial tuning of cortical activation that may 

be related to features of the disorder. Resting state fMRI studies in patients show evidence of 

functional hyperconnectivity, as noted earlier (31, 102). Schizophrenia appears to be 

associated with an “inverted-U” working memory load-dependent pattern of prefrontal 

activation; with increased magnitude and spatial extent of activation under conditions of low 

demand and activation deficits with higher working memory load (8, 103–105). 
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Schizophrenia patients also show reduced working memory span (buffer size) and precision 

(104, 106, 107), but perhaps not universally (108). The reduction in working memory 

precision is, in itself, one form of distortion in the mnemonic representation of information. 

Further, the reduction in mnemonic precision would be predicted to render memories more 

vulnerable to distortion or contamination (104), i.e., the generation of false memories, 

distorted beliefs, or delusions (109–111). As a result, pharmacotherapies that reduce 

glutamate release, such as mGluR2 agonists, might improve working memory function (95, 

112) and treat psychosis (80). However, some hyperactivity might be recruited as 

compensation for connectivity deficiencies (105). In these cases, glutamate release inhibiting 

medications might worsen symptoms by exacerbating connectivity deficits rather than 

providing relief.

Deficits in temporal tuning of cortical activity: ensembles, oscillations, and 

codes

The neural representation of information is a property of the coordinated activity of 

assemblies (97, 113). Exactly how the brain accomplishes this task is somewhat of a 

mystery. A focus on individual cortical neurons has provided critical insights into working 

memory and other cognitive functions (114). However, it is likely that functional 

connectivity within ensembles is reflected in higher order properties of neural networks, 

such as oscillations in network activity, since the activity of individual ensemble elements 

are linked by feedforward and feedback excitation and inhibition, essentially, waves of 

activity (97). From studies of spatial memory, it appears that the timing of the activation of 

particular hippocampal cells and their contributions to neural oscillations have higher order 

functional properties, such as their organization into sequences that serve as a code for 

spatial information in the environment (97).

Schizophrenia is associated with disturbances in cortical oscillations. There has been 

particular interest in high frequency cortical oscillations, as they are generated by fast-

spiking PV neurons (115) that appear to be compromised in post-mortem studies (19). In 

schizophrenia, there is a small increase in resting γ oscillations (116) and reductions in γ 
oscillations induced by cognitive tasks or evoked by 40 Hz click trains (117, 118). 

Surprisingly, the increases in spontaneous γ oscillations in schizophrenia contrast with the 

impact of optogenetic inactivation of PV neurons, where spontaneous γ oscillations are 

reduced (115). However, they are similar to the effects of ketamine, which increases resting 

γ oscillations in animals and humans, despite inhibiting some subpopulations of GABA 

neurons (56, 60, 119).

Some confusion related to interneuron dysfunction might be explained by concurrent 

impairments in SST and PV neurons (91, 92) in the context of residual fast-spiking neuronal 

function (figure 4). SST neurons may be more sensitive than PV to deficits in NMDA-R 

signaling. Fast-spiking neurons have higher AMPA/NMDA ratios and reduced sensitivity to 

the effects of NMDA-R antagonists than pyramidal neurons (120) or regular-spiking or low 

threshold-spiking interneurons (121, 122), i.e., firing patterns characteristic of SST 

interneurons (123). In visual cortex, layer IV SST neurons inhibit PV neurons while PV 

Krystal et al. Page 7

Biol Psychiatry. Author manuscript; available in PMC 2018 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



neurons do not prominently inhibit other interneuron populations (124, 125). As a result, 

SST inhibition by NMDA-R antagonists would increase PV activity and thereby increase γ 
oscillations. SST neurons also target distal dendrites of pyramidal neurons (126, 127), so 

their inhibition would increase pyramidal neuron excitability. Lastly, SST neurons provide 

input-specific inhibitory filtering (126, 127), so reduced SST activity might produce 

hyperconnectivity, as seen with schizophrenia (31) and ketamine effects in healthy 

individuals (69). Thus, impairments in SST neurons might help to explain three 

consequences of NMDA-R signaling deficits for schizophrenia patients early in their course 

of illness (figure 4): 1) increased resting excitation, 2) increased functional connectivity, and 

3) increased resting γ oscillations.

Studies of cross-frequency coupling of oscillation amplitude may provide clues into codes 

used by the brain for aspects of the neural representation of information (97, 128). In cross-

frequency coupling, the phase of the lower frequency oscillation is related to the amplitude 

of the higher frequency oscillation. The synchrony of θ and γ oscillations is related to the 

efficacy of network functions, such as memory encoding (129, 130). In the hippocampus, the 

firing of particular place cells in the γ frequency range occurs at a particular phase of the θ 
cycle when the animal is at a particular location (97, 128). As an animal explores its 

environment, the phase of θ where that place cell fires advances or precesses (131). The 

orderly sequence of the firing of individual place cells activated as the animal explores its 

space, for example as it walks down a track, constitutes a neural code that represents the 

spatial properties of its environment. There is growing evidence that synaptic signaling 

mechanisms implicated in schizophrenia may profoundly alter the integrity of the neural 

codes so generated. For example, θ and γ power in the EEG signal in area CA1 are less 

sensitive to the effects of an NMDA-R antagonist than the precession of γ on θ (132). 

However, this type of drug disrupts the experience-dependent modifications in hippocampal 

CA1 place fields and so disrupts the capacity to flexibly encode the evolving environmental 

cues during exploration. Consistent with this observation, selective blockade of NMDA-R 

activity in the intrinsic circuitry of the rodent hippocampus (i.e., upstream area CA3) results 

in reduced feed-forward activation of interneurons along with a somewhat inflexible 

internally-driven neural representation of the external space in CA1 (133). While there are 

tantalizing early studies of cross-frequency coupling in schizophrenia (134–136), these 

studies have not yet produced clear implications for pathophysiology, symptoms and 

functional impairment, or treatment.

Ultimately, we want to understand the neural codes that the brain uses to generate complex 

behavior and how disturbances in these codes account for symptoms and functional 

impairment. This level of detail may be required to correct the pathology in neural signaling 

associated with schizophrenia. The integrity of the adaptability of the interplay between fast-

spiking and non-fast-spiking interneurons may be important for these neural codes. 

Cannabinoids stimulate CB1 receptors, which in the hippocampus, are most densely 

localized to the terminals of CCK interneurons (137), where they inhibit GABA release by 

these neurons. Thus cannabinoid effects in the hippocampus shed light on the role of CCK 

basket cells in shaping hippocampal spatial codes. For example, the effects of Δ-9 

tetrohydrocannabinol (THC) on the population firing rates of pyramidal neurons and 

interneurons in the hippocampus are subtle and the location-dependent firing of CA1 place 
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cells remains largely intact (138, 139). However, CB1 agonists reduce neural oscillations 

across several frequencies, decrease the theta phase precession of place cell activity, make 

neural representations unstable, and profoundly disrupt the temporal coordination of cell 

assemblies (138–140). In essence, compromised CCK cell function impairs memory by 

disrupting hippocampal neural codes even though firing is largely intact (see figure 5).

It would be interesting to know whether the disarray in these neural codes is related to the 

schizophrenia symptoms, such as delusions or formal thought disorder.

Tuning Deficits, Signals, and Noise

Tuning deficits associated with schizophrenia reduce the ability of neural assemblies to 

represent information, i.e., to generate signals. This review considered the impact of 

deficiencies in several forms of the tuning of neural activity among cortical network 

functions, i.e., activation level, spatial extent of activation, and the timing of activation. Each 

of these deficits contributed to reductions in signal integrity. Consistent with the inverted-U 

input-output relationship (figure 2), increases in resting activation would be predicted to 

reduce the task related signal by recruiting inhibition (66), consistent with findings with 

ketamine effects in healthy humans and studies of schizophrenia patients (31, 104, 105, 142, 

143). Further, the hyperactivity of networks may recruit homeostatic adaptations that 

downregulate synaptic functional connectivity (figure 1), further impairing the capacity of 

networks to generate signals. The impairment in the spatial tuning of neural activity may 

reduce the capacity to efficiently encode information, i.e., it would reduce signals in memory 

and decrease memory precision (figure 3). The impairment in spatial tuning also may 

contribute to hyperconnectivity and the homeostatic downregulation of functional 

connectivity. Lastly, the impairments in temporal tuning may give rise to deficits in the 

recruitment of neural ensembles when performing cognitive operations, aberrant cross 

frequency coupling, and disarray of higher order neural codes (figure 5), contributing to 

cognitive and behavioral impairments.

However, it is possible that tuning deficits also produce dysfunction through the failure to 

suppress noise. Noise could be understood as a type of neural activity that degrades signal, 

i.e., reduces the signal-to-noise ratio. It also could be a source of aberrant signal. This point 

is illustrated by reductions in the tuning of the spatial extent of cortical activity. The bump 

attractor model (see figure 3) predicts that reductions in spatial tuning could generate two 

types of noise. The first is the random “background” noise that would be expected to 

degrade signal through reduced storage capacity or reduced precision of representations. The 

second type of noise might itself constitute aberrant signals. The bump attractor model 

suggests that the presence of nearby distractors actually distorts the spatial representation of 

the “target” stimulus encoded initially, creating one form of false memory. Second, the loss 

of precision in the representation of the memory for the target location can lead to false 

attributions, i.e., the identification of the off-target probe as existing within the target 

location. Similarly, the disruption of cross-frequency coupling and disrupted neural codes 

could also generate aberrant signals.
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There is evidence of increased levels of both forms of noise in schizophrenia. With regards 

to background noise, fMRI studies have identified elevated cortical global functional 

connectivity (31, 102), the failure to suppress default mode activity during the activation of 

the executive control network (143), reductions in hierarchical organization of activity 

giving rise to increased connectivity at lower levels of organization (spoke-to-spoke rather 

than spoke-hub) (144, 145), and increased cortical signal variance (146) among other 

potential forms of noisy neural activity. With regards to the EEG signal, the increase in γ 
oscillations at rest (118) or during sustained auditory stimulation (147) may be forms of a 

more general increase in high frequency background EEG noise associated with 

schizophrenia (148). There are other ways that schizophrenia might be associated with the 

accumulation of aberrant signals through the failure to suppress noise. A form of long-range 

tuning, corollary discharge, appears to be deficient in schizophrenia (149). Deficits in this 

form of cortico-cortical inhibition has been implicated in the failure of psychotic individuals 

to recognize their own thoughts, speech, and perhaps other actions as internally generated. 

Sleep spindles are also reduced in schizophrenia (150, 151). Sleep spindles, may serve to 

enhance memory consolidation and to depotentiate synaptic connectivity in the service of 

eliminating “mnemonic background noise” (152, 153). From this perspective, deficient sleep 

spindles in schizophrenia may both impede learning (154) but also clutter mnemonic stores. 

Unfortunately, studies of cross-frequency coupling are limited and there are not yet 

intracranial recording studies that would inform questions of sequences in schizophrenia.

Implications

Disturbances in the signal representation and information processing properties of the 

cerebral cortex appear to be a proximal cause of symptoms and functional impairments 

associated with schizophrenia and perhaps other forms of psychopathology. This review 

highlighted ways that impairments in the tuning properties of cortical networks related to E/I 

imbalances could arise from signaling abnormalities within cortical microcircuits and then 

contribute to disturbances in the functional outputs of these circuits. This perspective may 

lead us to maintain a focus on the output properties of networks when attempting to fix 

disturbances in specific synapses within these networks when developing novel therapies. 

For example, it may be important for us to appreciate that inhibitory treatments that reduce 

disinhibition within cortical microcircuits may also exacerbate long-range functional 

connectivity deficits associated with schizophrenia. This broader perspective may help the 

field to move beyond the current problems in medication development for this disorder.
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Figure 1. 
Phases in the development of schizophrenia may be expressed, in part, through the 

accumulation of successive homeostatic neuroadaptations that serve to reduce E/I 

imbalances but come at a cost with regards to network integrity and function. In this way, the 

adaptations are viewed as allostatic rather than homeostatic. From (38)
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Figure 2. 
A schematic illustration of the D1-R inverted-U influence on the “memory fields” of 

dorsolateral PFC Delay cells. Under optimal arousal conditions, Delay cells generate 

persistent representations of visual space, displaying high rates of firing (orange-red) to the 

memory of one spatial location and low rates of firing (blue) to the memory of all other 

spatial locations. Low levels of D1-R stimulation appear to be excitatory, e.g., 

phosphorylating NMDAR to increase their trafficking into the synapse. This can produce 

noisy firing for all directions, as represented by the generalized green-orange coloring of the 

memory field. With optimal levels of D1-R stimulation, there are additional sculpting 

actions, gating out “noise.” This may involve opening of HCN channels on dendritic spines 

of layer III pyramidal neurons, enhancement of lateral inhibition by recruitment of 

interneurons, and selective reductions in glutamate release. At still higher levels of D1R 

stimulation as occurs during stress, neuronal firing is generally suppressed, and the neuron is 

unable to generate persistent representations of visual space (modified from (74)).
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Figure 3. 
Figure 3A. The bump attractor model provides for lateral inhibition of pyramidal neurons in 

a local circuit that maintains working memory through persisting neural firing, yielding the 

capacity to spatially focus activity. In this case, it allows for a center neuron to be activated 

(green arrow) but for surrounding neurons to be inhibited (red arrows) by local interneurons 

(red neuron). The properties of computational models elaborating on this simple circuit are 

presented in figure 3B. When recurrent inhibition is intact (top panel), the mnemonic 

representation of a stimulus is precise (small bidirectional red arrow) and there is no 

interference by neighboring stimuli (yellow arrow). However, when recurrent inhibition is 

reduced (bottom panel), the spatial extent of the memory becomes less precise (larger 

bidirectional arrow) and the same distracting stimulus now contaminates the mnemonic 

representation. Figure 3C. Reductions in recurrent inhibition in this model also increase 

signal variance (noise). From (95).
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Figure 4. 
Possible contributions of deficits in somotostatin (SST) interneurons to microcircuit 

dysfunction in schizophrenia. Figure 4A. SST neurons appear to have relatively greater 

dependence on NMDA-R (N) than parvalbumin (PV) neurons, which show relatively greater 

dependence on AMPA-R (A) stimulation (see text for citatinos). Reductions in SST 

inhibition of pyramidal neurons renders them hyperexcitable. Reductions in SST inhibition 

of PV neurons disinhibits them, increasing γ oscillations. Figure 4B enlarges the interplay of 

excitatory and SST inputs on to dendritic spines. Normally, SST neurons filter inputs 

yielding selective functional connectivity. Figure 4C highlights the potential for deficits in 

SST neuronal function to reduce input selectivity, giving rise to pathological (noisy) 

functional hyperconnectivity. References are presented in the text.
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Figure 5. 
Illustration of the relationship between sequences of hippocampal place cell neural firing 

and theta oscillation in the hippocampal encoding of spatial and temporal context (5A) and 

the disruption of this hippocampal coding by administration of a CB1 agonist (5B). Figure 

5A. Illustration of a hippocampal CA1 place cell sequence and simultaneous theta sequences 

of activity during exploration of a linear environment. Each spatial position on a track 

(shown as Gaussian-shaped CA1 place cells, P1-P7) is defined by the most active cell 

assembly firing at the trough of the theta cycle (i.e., place cell P4-blue assembly). The width 

of the bars indicates assembly firing rates, while the temporal offset in firing curves between 

assemblies reflects the difference in their spatial representation (i.e., distance). Because each 

assembly contributes to multiple spatial representations, multiple assemblies are activated in 

each theta cycle. As a result, any particular assembly will be activated within a temporal 

context of prior and subsequent representations. The CA3 and CA1 representations 

correspond to the predicted (blue solid arrow) and updated (blue dotted arrow) by the 

entorhinal cortex (EC, activity not shown), respectively. One position is indicated in the 

boxed area. The black dotted arrow indicates the hypothesized initiation of sequence recall. 

Note reduced theta modulation as well as earlier activation of CA3 cell assemblies compared 

to CA1. Figure 5B presents evidence that stimulation of CB1 receptors undermines the 

integrity of the functional organization of hippocampal cell assemblies, i.e., scrambles the 

mnemonic codes. It presents representative raster plots of 71 simultaneously recorded CA1 

cells in a control condition (Figure 5B, left figure) and after the administration of the CB1 

agonist CP55940 0.3 mg/kg (Figure 5B, right figure). The number of spikes is not altered by 

the CB1 agonists (271 versus 270 spikes). Framed areas show synchronous discharges that 

are very clear in the control condition (5B left figure), but disorganized after the CB1 agonist 

(5B, right figure). From (139, 141).
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