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Abstract

The aryl hydrocarbon receptor (AhR) is overexpressed in some patients with different tumor types, 

and the receptor can be a negative or positive prognostic factor. There is also evidence from both 

in vivo and in vitro cell culture models that the AhR can exhibit tumor-specific pro-oncogenic and 

tumor suppressor-like functions and therefore can be treated with AhR antagonists or agonists, 

respectively. Successful clinical applications of AhR ligands will require the synthesis and 

development of selective AhR modulators (SAhRMs) with tumor-specific AhR agonist or 

antagonist activity, and some currently available compounds such as indole-3-carbinol and 

diindolylmethane-(DIM) and synthetic AhR antagonists are potential drug candidates. There is 

also evidence that some AhR-active pharmaceuticals, including tranilast, flutamide, 

hydroxytamoxifen and omeprazole or their derivatives, may be effective AhR-dependent 

anticancer agents for single or combination cancer chemotherapies for treatment of breast and 

pancreatic cancers.
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INTRODUCTION

The aryl hydrocarbon receptor (AhR), members of the nuclear receptor superfamily, and 

some G-protein-coupled receptors, such as the cannabinoid receptor, exhibit some unique 

and common properties, namely they all bind small molecules. Moreover, most these 

receptors interact not only with low molecular weight endogenous ligands but also an array 

of synthetic ligands which may exhibit tissue-specific agonist or antagonist activities [1–3]. 

These ligand-activated receptors play important roles in normal physiology and 

pathophysiology. With the exception of the AhR, the pharmaceutical industry has 

extensively focused on developing drugs targeting receptors for treatment of multiple 
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diseases, including cancer [4]. For example, the estrogen receptor (ER) ligand tamoxifen has 

been successfully used by millions of women worldwide for treatment of early stage breast 

cancer and for chemoprevention in high risk women [5,6]. In contrast, clinical applications 

of drugs targeting AhR have been sadly lacking and this is primarily due to the fact that 

among all receptors, the AhR was initially identified as the receptor that bound and mediated 

the toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related halogenated 

aromatic (HA) environmental contaminants [7,8]. The stigma of being the receptor that 

mediated the toxicity of TCDD and HAs in the environment and in several human 

poisonings, including those in Italy (Seveso), Japan (Yusho) and Taiwan (Kyushu) [9–13], 

has significantly hindered the objective development of drugs targeting the AhR. This stigma 

has only been overcome by more recent discoveries of the critical role of the AhR in many 

disease processes, including cancer, and by the identification of structurally-diverse AhR 

ligands that include industrial compounds, health-promoting phytochemicals and microbial 

metabolites, and pharmaceuticals [1–3]. Nevertheless, only a few AhR-active drugs, 

including laquinimod and aminoflavone (NSC686288), have been in clinical trials for 

treating multiple sclerosis and breast cancer, respectively [14–16].

ROLE OF THE AhR IN CARCINOGENESIS

Effects of TCDD and dioxin-like compounds

Early studies on the role of the AhR in carcinogenesis primarily focused on AhR ligands, 

particularly TCDD and its effect in humans and animal models. Epidemiologic studies on 

exposures to TCDD and related compounds in the workplace do not consistently show an 

increased incidence of specific tumors in all exposure groups. However, the International 

Agency For Research on Cancer (IARC) has classified TCDD as a Group 1 carcinogen 

based on results from selected exposure industrial cohorts [17] and this conclusion has 

received support and criticism [18,19]. The carcinogenicity of other dioxin-like compounds 

in human studies is not well established; moreover, the role of the AhR alone and effects of 

endogenous ligands such as 6-formylindolo[3,2-b]carbazole (FICZ) in human cancers is also 

not known.

The carcinogenicity of TCDD has been well established in animal models; however, 

carcinogenic effects of this compound are species-, strain- and sex-dependent and also 

dependent on the timing of exposure. For example, the first long term cancer feeding study 

by Kociba and coworkers was carried out in male and female Sprague-Dawley rats and 

hepatocellular carcinomas were observed in female but not male rats [20]. Moreover, in 

female rats, there was a TCDD-dependent decrease in formation of uterine and mammary 

tumors which spontaneously form in aged Sprague-Dawley but not in other rat strains, and 

this indicated that the ligand-activated AhR inhibited estrogen-induced responses (i.e. 

uterine and mammary cancer). The inhibitory AhR-ER crosstalk in rodent models and breast 

cancer cells has been extensively investigated [21,22]. Interestingly, other studies in female 

Sprague-Dawley rats showed similarities but also some differences in the site-specific 

carcinogenesis of TCDD and other dioxin-like compounds [23].
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Endogenous role of the AhR in human cancer

Two recent papers have reviewed the role of the AhR and its ligands in carcinogenesis and 

showed that the AhR is a bona fide drug target [24,25]. This article will primarily focus on 

subsequent publications that complement these reviews. Differential AhR expression has 

been observed in tumor vs. normal tissues for multiple tumors, and the levels and prognostic 

significance of the AhR are tumor-specific [26–37]. For example, a recent survey of tumor 

array database showed that AhR mRNA expression in breast, lung, prostate and cervical 

cancers was similar to non-tumor tissue, whereas expression was higher in stomach, thyroid, 

colon and pancreatic tumors compared to non-tumor tissue [34]. Moreover, high expression 

of the AhR in pancreatic tumors was a prognostic factor for increased patient survival [34]. 

In contrast, high expression of the nuclear AhR was a negative prognostic factor for 

urothelial cancer patients [30]. It was also reported that AhR mRNA overexpression in oral 

squamous cell carcinomas was due to elevated levels of nuclear AhR, whereas in adjacent 

normal tissue, the receptor was primarily cytosolic [35]. A similar distribution of the 

receptor protein was also observed in kidney tumors (nuclear) vs. normal renal tissue 

(cytosolic) and the AhR was a negative prognostic factor but was only expressed in 14/102 

of the kidney tumors examined [36]. It is possible that increased nuclear localized of the 

receptor in some tumors may have some functional significance, thus the future application 

of selective AhR modulators (SAhRMs) that target specific tumors will require a 

personalized medicine approach and require prior knowledge of endogenous AhR 

expression in the tumor of interest and its intracellular location (nuclear vs cytosolic).

AhR function in rodent models and cancer cell line

The functions of the AhR in rodent models (primarily mice) and in cancer cell lines have 

been extensively investigated primarily in the AhR knockout (AhR−/−) mice or by 

knockdown of the AhR in cells. The APCmin+ mouse model has been used in studies on 

colon cancer, and mice expressing mutations in the adenomas polyposis coli (APC) gene 

spontaneously develop colonic and intestinal tumors and these are significantly enhanced in 

APCmin+/AhR+/− (crossed) mice [38]. Diethylnitrosamine-induced liver cancer is also 

enhanced in AhR−/− mice compared to wild-type mice, suggesting that endogenous 

expression of the AhR protects against colon and liver cancer [38,39]. The role of the AhR 

in other mouse models that develop cancer has not been determined and the contributions (if 

any) of endogenous AhR ligands are also unknown. There is evidence that the AhR plays a 

role in polycyclic aromatic hydrocarbon (PAH)-induced skin carcinogenesis; however, this is 

most likely due to AhR-dependent induction of CYP1A/CYP1B enzymes required for 

metabolic activation of PAHs [40,41].

The effect of AhR knockdown in cancer cell lines is tissue specific and exhibits pro-

oncogenic or tumor suppressor-like activity or no apparent function and these responses 

have previously been summarized [24,25]. Cancer cell lines can be highly variable with 

respect to cell passage number, the type of serum used, other growth conditions, and 

contamination with other cell lines, and the reliability of determining functional effects of 

the AhR knockdown may be questionable. For example, stable knockdown of AhR by RNAi 

in MDA-MB-231 cells decreased proliferation, anchorage-independent growth and 

migration and induced apoptosis, suggesting a pro-oncogenic function for the AhR in the 
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cell line [42]. In contrast, another report showed that knockdown of AhR (by RNAi) in 

MDA-MB-231 cells resulted in increased invasion [43], and results of comparable studies in 

both ER-positive and ER-negative breast cancer cells gave contrasting results [44–47].

AhR ligands and their activity as anticancer agents

Depending on the tumor type, overexpression of the AhR may be a positive or negative 

prognostic factor for cancer patient prognosis, and AhR may also play a functional 

“endogenous” role in some tumors. Despite the differing prognostic/functional role of the 

receptor, expression of the AhR can provide patients with a unique option, namely treatment 

with AhR-active compounds (Fig. 1) [24,25]. For example, in oral squamous cell carcinoma-

derived cell lines, prototypic AhR agonists exhibit pro-oncogenic activity and, in mouse 

xenograft experiments, a novel AhR antagonist CB7993113 [48] inhibited tumor growth and 

overall survival [5]. Similar results were observed for head and neck cancer where AhR 

antagonists were effective as anticancer agents [49]. The growth and invasion of breast and 

other cancers are inhibited by AhR agonists, and there has been development of relatively 

non-toxic SAhRMs which include aminoflavone and NKI150460, a novel selective 

anticancer agent and AhR agonist, for treatment of breast cancer [14,50]. Among the more 

classical AhR ligands, indole-3-carbinol (from cruciferous vegetables) and β-naphthoflavone 

and its dimer, diindolylmethane (DIM), exhibit promising anticancer activity and these 

compounds and synthetic analogs should be further investigated for their potential clinical 

applications.

REPOSITIONING AhR-ACTIVE PHARMACEUTICALS

A promising and productive approach for developing anticancer agents has been the 

repositioning of pharmaceuticals used for other purposes. The antidiabetic drug metformin is 

one of the best examples of drug repositioning; diabetics treated with metformin exhibit a 

lower incidence of several cancers, and metformin is now being used in clinical trials for 

cancer chemotherapy [51,52]. Several studies show that a wide range of pharmaceuticals 

exhibit AhR activity in one or more assays, and these compounds are now being investigated 

as anticancer agents [24,53]. Using induction of CYP1A1 as a marker of Ah-responsiveness, 

it was reported that several selective ER modulators (SERMs) were AhR agonists and this 

included 4-hydroxytamoxifen, the active metabolite of tamoxifen used extensively as an 

antiestrogen for treating early stage breast cancer in women [54]. 4-Hydroxytamoxifen 

induces expression of AhR-regulated genes in the absence of ER and there is evidence that 

some of the therapeutic efficacy of tamoxifen, particularly in the suppression of osteoclast 

differentiation, may be due, in part, to activation of the AhR [54]. Several other reports 

demonstrate the anticancer activities of leflunomide (an antiarthritic drug), raloxifene (an 

antiestrogen), tranilast (an anti-allergic drug), and the anti-androgenic drug flutamide (Fig. 

2) [55–58]. Flutamide, but not TCDD, induced TGFβ in liver cancer cells and this response 

was AhR-dependent [56]. Studies in this laboratory screened a panel of AhR-active 

pharmaceuticals, including 4-hydroxytamoxifen, flutamide, leflunomide, mexiletine, 

nimodiphine, omeprazole, sulindac and tranilast, in cell migration. The results and 

mechanism of action were ligand-, tumor type-, response- and cell context-dependent. For 

example, in BT474 and MDA-MD-231 breast cancer cell lines, these compounds 
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differentially induced CYP1A1 and CYP1B1 gene expression and, in ER-negative MDA-

MB-468 cells, all of the AhR-active compounds except mexiletine and also TCDD inhibited 

migration [43,56,57]. In ER-negative MDA-MD-231 cells, TCDD and omeprazole, but not 

4-hydroxytamoxifen, flutamide, leflunomide, mexiletine, nimodipine, sulindac and tranilast, 

inhibited migration and this was due, in part, to AhR-dependent downregulation of the pro-

migration gene CXCR4 [43]. We also carried out a similar migration inhibition study in 

pancreatic cancer cells and among the pharmaceuticals, only omeprazole and tranilast (but 

not TCDD) were active and mechanistic studies showed that this inhibitory response was 

CXCR4-independent and due to a non-genomic pathway [34]. The effects of omeprazole as 

an inhibitor of breast and pancreatic cancer cell invasion and metastasis in vivo and in vitro 
suggest that benzimidazole analogs of omeprazole may be useful scaffolds for developing 

AhR mediated anticancer agents, and these studies are currently in progress. The a priori 

effectiveness of an AhR-active pharmaceutical cannot be predicted and can only be 

identified using an appropriate screening assay. The advantages in identifying and 

repositioning AhR-active pharmaceuticals as anticancer agents are that these compounds and 

their analogs have been identified and clinically approved during their initial development.

SUMMARY

The AhR has emerged as an important new drug target for cancer chemotherapy. Moreover, 

depending on the tumor type and endogenous role of the receptor, clinical treatment with 

AhR agonists or antagonists alone or in combination with other drugs constitutes an 

approach for cancer chemotherapy. The repositioning of AhR-active pharmaceuticals is also 

feasible and their structure can serve as scaffolds for the synthesis and testing of structural 

analogs.
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HIGHLIGHTS

• The AhR plays an important tumor-specific role in enhancing or inhibiting 

carcinogenesis.

• AhR agonists and antagonists represent a novel class of anticancer agents.

• AhR-active pharmaceuticals are compounds that can be repositioned for 

cancer therapy.
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Figure 1. 
AhR signaling inhibits crosstalk with ERα in breast cancer cells and AhR agonists and 

antagonists are tumor-specific anticancer agents (24, 25). In pancreatic cancer, there is 

evident for a non-genomic pathway for inhibition of migration (34).
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Figure 2. 
TCDD and AhR active pharmaceuticals.
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