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Abstract

The liver and the kidney are the most common targets of chemical toxicity, due to their

major metabolic and excretory functions. However, since the liver is directly involved in

biotransformation, compounds in many currently and normally used drugs could affect it

adversely. Most chemical compounds are already labeled according to FDA-approved

labels using DILI-concern scale. Drug Induced Liver Injury (DILI) scale refers to an adverse

drug reaction. Many compounds do not exhibit hepatotoxicity at early stages of develop-

ment, so it is important to detect anomalies at gene expression level that could predict

adverse reactions in later stages. In this study, a large collection of microarray data is used

to investigate gene expression changes associated with hepatotoxicity. Using TG-GATEs a

large-scale toxicogenomics database, we present a computational strategy to classify com-

pounds by toxicity levels in human and animal models through patterns of gene expression.

We combined machine learning algorithms with time series analysis to identify genes capa-

ble of classifying compounds by FDA-approved labeling as DILI-concern toxic. The goal is

to define gene expression profiles capable of distinguishing the different subtypes of hepato-

toxicity. The study illustrates that expression profiling can be used to classify compounds

according to different hepatotoxic levels; to label those that are currently labeled as underte-

mined; and to determine if at the molecular level, animal models are a good proxy to predict

hepatotoxicity in humans.

Introduction

Toxicogenomics is a field that integrates data from high-throughput technologies into research

on conventional toxicology. Major goals include elucidating the molecular mechanisms of tox-

icity, identifying potential biomarkers for exposure to toxic substances [1] and developing

methods to predict toxic effects of compounds used by the pharmaceutical industry [2]. From

the economics viewpoint toxicogenomics provides information useful to decide whether to

proceed further in the drug development. Nevertheless, the main goal is that of human health.
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The liver and the kidney are the most common targets of chemical toxicity, due to their major

metabolic and excretory functions [3]. However, since the liver is involved in biotransforma-

tion [4], many currently and normally used drugs could affect the liver adversely. Drug com-

pounds are absorbed from the gut and directly transported to the liver through the portal vein

receiving relatively high concentrations before elsewhere in the system.

Drug-induced liver injury (DILI) refers to an adverse drug reaction, which remains a major

problem in drug development and pharmacotherapy representing clinical and financial chal-

lenges. Compounds are labeled according to Federal Drug Administration (FDA) approved

labels [5] using DILI-concern scale. This scale can be divided in three levels: No DILI-concern

when the drug is clean in all three drug labelling sections, Less DILI-concern if it is mentioned

in the section of adverse reaction or in the Warnings and Precautions label section, but its

severity is low. Less DILI-concern shows elevated levels in classical clinical chemistry markers

like aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Most DILI-con-

cern for its potential to cause liver injury in human from cases previously reported. Most

DILI-concern drugs lead to severe liver damage, or even death.

Many drugs act by binding to protein targets altering their function, one foundational

assumption in toxicogenomics is that exposure to a toxicant leads to altered gene expression

either directly or indirectly ([6], [7], [8], [9], [10], [11]). Altered proteins in the liver can have

functional and behavioral effects on other protein coding genes that may result in liver dam-

age. Therefore, molecular biology techniques involving gene profiling have been developed to

establish correlations between gene expression and drug toxicity on both in vitro and animal

models. In the clinical setting, a number of genes or proteins have already been identified as

potential predictive markers of drug activity and their use could be progressively implemented

for drug safety. Important initiatives, such as The Japanese Toxicogenomics Project (TGP),

developed by the Japanese National Institute of Health Science, the National Institute Biomed-

ical Innovation and 15 pharmaceutical companies [12] have been launched. TGP is a five-year

project completed in 2007 that has established a large-scale toxicogenomics database known

as Genomics-Assisted Toxicity Evaluation System (TG-GATEs) [13], [14]. TG-GATEs is a

large-scale database of transcriptomics and pathology data potentially useful for predicting the

toxicity of current and new chemical compounds. Transcriptomics data was generated using

Affymetrix GeneChip arrays human HGU133plus2 and rat RAE230 2.0. Approximately 170

chemical compounds, primarily medicinal, were tested at multiple doses. Gene expression was

measured in three biological models: rat and human hepatocytes treated with the chemicals in

vitro and conventional in vivo toxicology studies for single dose and repeated dosing on rats.

The in vivo set of studies explored gene expression in liver and kidney although mainly in

liver. In vitro studies include duplicate samples collected at four doses Control, Low, Middle,

High across three time points 2hr, 8hr, 24hr of exposure. Single dose in vivo studies include

triplicate samples collected at the four doses across four time points 3hr, 6hr, 9hr, 24hr. The

repeat dose in vivo studies collected samples at 4d, 8d, 15d, and 29d following daily dosing

with the same four doses (d = days).

Analysis of such large and comprehensive toxicogenomics database has been a great chal-

lenge ever since it was released through the Critical Assessment of Massive Data Analysis

(CAMDA) [http://dokuwiki.bioinf.jku.at/doku.php] challenge in 2013 [15]. Even though it

includes a large collection of samples, any classical statistical analysis will be based on how

many observations of the same variable we have access to. In this case, only two for the in vitro

models and three for the in vivo rat model. As for the number of variables, this is given by

the total number of different sources of RNA samples which includes up to 170 chemicals at

4 doses across 3 or 4 time points depending on the model reaching thousands of variables.

Hence, performing a global analysis of this dataset remains an open problem. Previous work
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attempting to use the full data set includes the identification of the main biological processes

for each compound [16], but it is done on dose by dose comparison, it does not involve the full

set of variables simultaneously as we do with the time course approach. Another approach

identified four genes in Human in vitro samples that may predict early response to cytotoxicity

and were later validated in Rat in vitro and in vivo samples [17]. The diversity of the TG-

GATEs data structure is suitable for different approaches to a given problem whether is feature

selection, class discovery or prediction analysis. At the same time, a variety of specific prob-

lems could be targeted, for instance, identification of synergistic and antagonistic compounds

through gene profiling. In this case, hypothesis driven strategies would retrieve a specific sub-

set of samples for the analysis. On the other hand, a data driven strategy, would attempt to use

large collection of samples and search for patterns that will in turn, generate hypotheses for

further evaluation and validation. In this work we used both approaches combined in order to

classify compounds by their hepatotoxicity level, matching DILI-concern FDA labelling for

those available and attempting to label others for which no DILI-concern label has been

declared. We developed a new computational strategy that applies machine learning tech-

niques to summary statistics of ranked genes that allows to mine chemical compounds using

all information about doses and time simultaneously.

Materials and methods

Data

From the complete list of 170 compounds from TG-GATEs, only 48 were administered to in

vivo and in vitro samples in rat and human models. A subset of 4,578 microarrays interrogat-

ing those 48 compounds, mostly drugs were used to analyze hepatotoxicity patterns through

gene expression profiling. Only three models were included in the analysis: Rat in vivo (2,280

microarrays), Rat in vitro (1,146 microarrays) and Human in vitro using primary hepatocytes

(1,152 microarrays). For each individual compound there was a control and three adminis-

tered dose levels {Low, Middle, High} during a 24-hour period. Three time measurements

were sampled for in vitro models and four for the in vivo model on gene expression microar-

rays including two and three biological replicates respectively. Raw data in the form of.CEL

files, each of which corresponding to a microarray were stored for later access from R through

a SQL database. Human primary hepatocytes were processed using Affymetrix HGU133Plus2,

and animal samples on the GeneChip Rat Genome 230 2.0 which is known to be a powerful

tool for toxicology (Affymetrix, Santa Clara,CA, USA).

Data pre-processing. Data storage, access and manipulation was done using a relational

database. Raw-data analysis included quality metrics using R and bioconductor libraries affy

and oligo. Data were normalized using Robust Multiarray Average algorithm (RMA) [18] with

no background correction due to the bimodal effect after correction and Quantile normaliza-

tion [19], [20].

Strategy for analysis

We propose a strategy that combines data from the three models (Human in vitro, Rat in vitro

and Rat in vivo) with dose levels (Ctrl, Low, Mid, High) in a time series approach on each of

the 48 selected compounds. Two main goals motivate the analysis: To determine if at the

molecular level, animal models are a good proxy to predict hepatotoxicity in humans and to

classify compounds by toxicity levels in human and animal models through patterns of gene

expression. To achieve these goals, we combined machine learning algorithms with time series

analysis to classify genes whose absolute or relative expression varies over time, incorporating

at the same time the correlation structure across time points. The time series method proposed
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by Tai and Speed [21], which is specifically designed for microarray data where moderation

and replication are used was implemented using the timecourse package https://www.

bioconductor.org/packages/release/bioc/html/timecourse.html.

Statistical approach

Time series analysis. The dynamic nature of the data was explored using a time series

analysis on every compound with the timecourse package [22] available from Bioconductor.

For every selected subset, genes were classified according to a multivariate empirical Bayes

(MB) statistic [23] for replicated microarray time course data. Genes were ranked based on

large absolute or relative amounts of change over time as a function of the drug concentration

in relation to their replicate variances. The summary statistic for the ranking was the MB statis-

tic which is a one-sample multivariate empirical Bayes to select differentially expressed genes

from replicated microarray time course experiments.

Machine learning. Further analysis using machine learning methods allowed us to learn

interesting patterns on already ranked genes through unsupervised hierarchical clustering on

MB values after filtering them with Median Absolute Deviation (MAD) [24] to contrast rele-

vant from irrelevant compounds. Unsupervised hierarchical clustering was applied to MB val-

ues to identify clusters of genes with similar importance across compounds. Importance was

defined based on the ranking determined by the time course analysis. Pathway enrichment

analysis was conducted using Gene Set Enrichment Analysis (GSEA) [25], which ranks genes

based on the correlation between their expression and the class distinction or phenotype, the

“pre-ranked GSEA” works with any summary statistic as ranking metric, which in our case

was the MB statistic.

Results

Database implementation and data retrieval through R made all of the time course analyses

time-efficient. The list of the 48 chemical compounds used in this work is presented in

Table 1.

Genes were ranked based on variation over time as a function of the drug concentration in

relation to their replicate variances. In other words, time series analysis considered three

parameters to determine the gene ranking. The first parameter is about differential expression

across time, there should be substantial changes in expression values between two or more

consecutive time points. This is exemplified by the dynamic range of the y-axis on plots in Fig

1, in (a) gene is ranked #1, and (b) gene is ranked #73. The second parameter shows statistical

robustness considering the case of low replication. Here, replicates indicated by same color

should almost lie one on top of the other indicating a strong similarity as we observe in Fig 1

plots (a) and (c) ranked #1 and #8 respectively, but definitely not in plot (b) with much lower

ranking of 73. The third parameter is about differential expression between conditions, doses

in our case. We should expect a clear separation between two or more conditions as it is the

case for plot in Fig 1 (a) where we see that even though control and low doses are almost iden-

tical, a separation between them and middle and high doses is clear. The multivariate Bayes or

MB statistic summarizes information from these three parameters into a value which is also

translated into a rank.

Carbon Tetrachloride (CCL4) is a solvent for manufacturing organic compounds, its pri-

mary effects in humans are on the liver, kidneys, and central nervous system. Poisoning by

inhalation, ingestion or skin absorption is possible and may be fatal. Administration of this

compound in human hepatocytes showed cytochrome P450 family 1 subfamily A, at the top of

the list ranked #1. This gene is part of a pathway for xenobiotic metabolism. In Fig 1 a) we
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observe clear differential expression at time 8 suggesting that the higher the dose the larger the

impact of CCL4 on this gene. Aspirin (ASA) time course in contrast, does not show any of the

patterns observed in (a), replicates have an erratic behavior and differential expression repre-

sented by the values on the y-axis are almost negligible and unable to separate effects by doses,

therefore ranked #73. Phenytoin is an anticonvulsant used to treat a wide variety of seizures.

Reports about DNA damage have been published [26]. Plot c) shows how DNA damage induc-
ible transcript 3 is ranked #8 with MB = 24.6 when high dose is administered. It is the kind of

information we would look for in an attempt to identify hepatotoxic biomarkers either by time

of exposure and/or dose concentration.

Unsupervised hierarchical clustering analysis

Once ranked, a list of 160 most variable ranked genes according to MAD of the Human in

vitro samples were selected for hierarchical clustering analysis on the MB values (List available

in supplementary files S4 Table). Clusters of highly significant genes according to the MB sta-

tistic were identified, see Fig 2.

A similar analysis on the two Rat models was performed showing a rather different pattern

but interestingly enough, a very similar cluster of compounds to that in the Human in vitro

model. Fig 3, shows the resulting heat maps. Image on the left is for Rat in vitro model with

160 genes after MAD and Rat in vivo model is shown on the right with 160 genes after MAD.

Both generate different dynamic ranges for the MB-statistic values shown by the blue to red

intensity spectrum. The Rat in vitro model correlates better with compounds labeled as “Most

Table 1. List of 48 compounds found in common for Human in vitro, Rat in vitro and Rat in vivo. All previously reported as highly toxic.

Abbreviation Compound Name Abbreviation Compound Name

AA Allyl Alcohol GFZ Gemfibrozil

ADP Adapin HCB Hexachlorobenzene

AM Amiodarone HPL Haloperidol

ANIT Naphthyl Isothiocyanate IM Indomethacin

APAP Acetaminophen INAH Isoniazid

APL Allopurinol KC Ketoconazole

ASA Aspirin LBT Labetalol

AZP Azathioprine LS Lomustine

BBr Benzbromarone MP Methapyrilene

BBZ Bromobenzene MTS Methyltestosterone

CBZ Carbamazepine NFT Nitrofurantoin

CCL4 Carbon Tetrachloride OPZ Omeprazole

CFB Clofibrate PB Phenobarbital

CIM Cimetidine PH Perhexiline

CMA Coumarin PhB Phenylbutazone

CPA Cyclophosphamide PHE Phenytoin

CPZ Chlorpromazine PTU Propylthiouracil

DFNa Diclofenac RIF Rifampicin

DZP Diazepam SS Sulfasalazine

ET Ethionine TAA Thioacetamide

FP Fluphenazine TC Tetracycline

FT Flutamide TRZ Thioridazine

GBC Glibenclamide VPA Valproic Acid

GF Griseofulvin WY Wy-14643

https://doi.org/10.1371/journal.pone.0176284.t001
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Fig 1. Time course approach on different compounds. (a) Carbon Tetrachloride on Human in vitro samples (b) Aspirin on

Human in vitro samples and (c) Phenytoin on Rat in vitro samples. Colors are assigned by dose: Control(red), Low (green),
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DILI-concern” shown in red in top bar. There was however, six compounds that despite the

clear difference in the heat map patterns, appeared as highly significant in Human in vitro, Rat

in vitro and even Rat in vivo consistently: ANIT, APAP, DFNa, ET, INAH, PB, VPA.

Discussion

A paradigm shift in toxicology to explore the possibility of replacing the animal model with in

vitro assay supported with toxicogenomics research motivated the development of the TGP.

The TG-GATEs database contains both in vitro and animal data to be able to address this

Middle (blue), High (cyan). On the x-axis the time measurements 2hr, 8hr, 24hr; on the y-axis the gene expression values at each

time point.

https://doi.org/10.1371/journal.pone.0176284.g001

Fig 2. Hierarchical clustering of top ranked genes in Human in vitro model. In the x-axis the compounds are shown and in the y-axis the selected genes

by MB and MAD. In red, values with high MB statistic and in blue negative MB values. Colored bar on the top shows DILI concern, black means unassigned

or model compound, yellow indicates No DILI, orange Less DILI and red Most DILI. Gene set enrichment analysis (top-right) was done with pre-ranked

GSEA. Marked with a green vertical bar are genes that remain significant across the majority of compounds and the list on the far right shows the list of

compounds with the highest statistical significance.

https://doi.org/10.1371/journal.pone.0176284.g002
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question. Patterns of genes (rows) and compounds (columns) vary clearly according to signifi-

cance levels based on the MB values for each model. When we compare left and right plots in

Fig 3 the blue and red intensities are given by the dynamic range of MB values shown in

Table 2. Rat in vitro reached high significance levels, up to 78.37 whilst Rat in vivo could only

reach 28.84 possible indicator of better sensitivity or better experimental control for in vitro

studies or both. Aside of MB values, the lists of top ranked genes in both Rat models did not

show a good level of consistency or reproducibility. We could argue that in vitro assays may

not be a good replacement for animal model in rats. However, the doses and the times were

not exactly the same, they were adjusted for in vivo studies. This may suggest that more work

needs to be done adjusting doses and exposure time in animals since it was reported missing

data due to animals died before the completion of the time interval for sampling.

For our second goal, classifying compounds by toxicity levels in human and animal models

through patterns of gene expression shown in Fig 2 and Fig 3. Even though patterns of genes

are not as consistent as one would expect, when we look at the list of compounds classified by

those top ranked genes, a subset of 6 appear consistently in the three models shown in Table 3.

C
P

Z
T

R
Z

P
H

E
A

A
G

B
C

M
T

S
C

B
Z

G
F

P
H

G
F

Z
B

B
r

C
F

B
C

M
A

C
C

L4
M

P LS
C

PA A
M

A
P

L
F

T
T

C
H

C
B

B
B

Z
C

IM
TA

A R
IF

H
P

L
F

P
O

P
Z

P
hB S

S
W

Y
A

S
A

A
Z

P
P

T
U

A
D

P
K

C
IM

N
F

T
LB

T
V

PA D
Z

P
A

N
IT

IN
A

H E
T

D
F

N
a

A
PA

P P
B

Rat in vitro

−50 0 50
Value

Color  Key DILI Concern
NA/Model
No DILI
Less DILI
Most DILI

C
PA P
hB A
A

G
B

C
A

P
L

S
S

V
PA D
Z

P
C

C
L4

P
T

U
A

Z
P

H
C

B
C

IM A
M R
IF

P
H

G
F

Z
C

B
Z

E
T

P
H

E
P

B
IM

D
F

N
a

A
N

IT F
P

H
P

L
T

R
Z

T
C

LB
T

K
C LS G
F

M
T

S
F

T
N

F
T

IN
A

H
A

S
A

A
D

P
C

P
Z

C
F

B
B

B
r

W
Y

A
PA

P M
P

O
P

Z
C

M
A

TA
A

B
B

Z

Rat in vivo

−20 −10 0 10 20
Value

Color   Key

VPA       Valproic Acid
DZP      Diazepam
ANIT     Naphthyl Isothiocyanate
INAH    Isoniazid
ET         Ethionine
DFNa   Diclofenac
APAP   Acetaminophen
PB        Phenobarbital

GFZ          Gemfibrozil
CBZ          Carbamazepine
ET             Ethionine
PHE          Phenytoin
PB             Phenobarbital
IM             Indomethacin
DFNa       Diclofenac
ANIT        Naphthyl Isothiocyanate

INAH        Isoniazid
ASA          Aspirin
ADP          Adapin
CPZ          Chlorpromazine
CFB          Clofibrate
BBr           Benzbromarone
WY           Wy-14643
APAP       Acetaminophen
MP           Methapyrilene
OPZ         Omeprazole
CMA        Coumarin
TAA          Thioacetamide
BBZ          Bromobenzene

a) b)

Fig 3. Hierarchical clustering of top ranked genes in both of the Rat models in vivo, in vitro. In red values with high MB statistic and in blue negative

MB values. Rat in vitro (left) and Rat in vivo (right). Colored bar on the top shows DILI concern, black means unassigned or model compound, yellow

indicates No DILI, orange Less DILI and red Most DILI.

https://doi.org/10.1371/journal.pone.0176284.g003

Table 2. Dynamic range of MB statistics.

Human in vitro Rat in vitro Rat in vivo

min -25.65905 -25.20966 -26.76873

max 42.42583 78.36532 28.83527

No. genes 160 1000 160

https://doi.org/10.1371/journal.pone.0176284.t002
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The fact that 5 out of 6 are known to be highly toxic marked in red on the DILI-concern bar at

the top of the heat map and that they cluster together with other toxic model compounds

marked in black suggest that those labeled as Less DILI-concerned (marked in orange) should

be updated to Most DILI-concern according to FDA labelling [17] and administration of those

must be closely observed.

Conclusions

Despite the large number of microarray data available from the TG-GATEs, its complex struc-

ture with many groups and lack of replication makes it difficult for pattern recognition

approaches. Feature selection, clustering and other classification techniques did not perform

well directly on gene expression values. Combining information from dose, time, animal or

human models on each compound requires a more comprehensive method. The analysis by

time series developed by Tai and Speed provided a methodology to rank genes using all their

features such as dose, time of exposure and differential expression even with low replication.

Classification by ranking using the MB statistic, a one-sample multivariate empirical Bayes

that selects differentially expressed genes from replicated microarray time course experiments,

allowed us to summarize time changes, dose concentration, quality of replicates and significant

differential expression representing a fast and appropriate way to reduce complexity of the

highly diverse data structure. Unsupervised hierarchical clustering was later applied to MB sta-

tistical values showing rather different patterns for Human in vitro, Rat in vitro and Rat in

vivo models indicating that animal models can indeed correlate with human model for highly

toxic compounds but shows a diverse pattern in general.

Unsupervised machine learning techniques provided a set of genes capable of classifying

compounds as DILI-concern toxic according to the FDA-approved labelling. Compounds

already known to be highly toxic clustered with poisonous model compounds suggesting a

possible list of toxic biomarkers. The case of Phenobarbital (PB) might be of interest, it is

labeled as Less-DILI-concern but appeared clustered together with highly toxic compounds.

The analysis pipeline used for this work can be reproduced on other data sets involving a dif-

ferent list of compounds and all doses or just a particular selection of doses.

Supporting information

S1 Table. MB values for the Human in vitro model. This is the matrix that contains the MB

values for the Human in vitro model obtained from the Timecourse package.

(CSV)

S2 Table. MB values for the Rat in vitro model. This is the matrix that contains the MB val-

ues for the Human in vitro model obtained from the Timecourse package.

(CSV)

Table 3. All previously reported as highly toxic compounds found in common for Human in vitro, Rat in vitro and Rat in vivo models.

Abbreviation Compound Hu in vitro Rat in vitro Rat in vivo

VPA Valproic Acid
p p

–

INAH Isoniazid
p p p

ET Ethionine
p p p

APAP Acetaminophen
p p p

PB Phenobarbital
p p p

ANIT Naphthyl Isothiocyanate
p p p

DFNa Diclofenac
p p p

https://doi.org/10.1371/journal.pone.0176284.t003
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S3 Table. MB values for the Rat in vivo model. This is the matrix that contains the MB values

for the Human in vitro model obtained from the Timecourse package.

(CSV)

S4 Table. Top 160 genes for each experiment model. Table that includes the top 160 genes of

each experiment model ordered by MAD using the MB statistic as input. In the second tab is

the order of the compounds presented in each of the hierarchical clustering dendrograms.

(XLSX)
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