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Metabolic systems biology: a brief primer
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Abstract In the early to mid-20th century, reductionism as a concept in biology was challenged
by key thinkers, including Ludwig von Bertalanffy. He proposed that living organisms were
specific examples of complex systems and, as such, they should display characteristics including
hierarchical organisation and emergent behaviour. Yet the true study of complete biological
systems (for example, metabolism) was not possible until technological advances that occurred
60 years later. Technology now exists that permits the measurement of complete levels of
the biological hierarchy, for example the genome and transcriptome. The complexity and
scale of these data require computational models for their interpretation. The combination of
these – systems thinking, high-dimensional data and computation – defines systems biology,
typically accompanied by some notion of iterative model refinement. Only sequencing-based
technologies, however, offer full coverage. Other ‘omics’ platforms trade coverage for sensitivity,
although the densely connected nature of biological networks suggests that full coverage may not
be necessary. Systems biology models are often characterised as either ‘bottom-up’ (mechanistic)
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or ‘top-down’ (statistical). This distinction can mislead, as all models rely on data and all are,
to some degree, ‘middle-out’. Systems biology has matured as a discipline, and its methods are
commonplace in many laboratories. However, many challenges remain, especially those related
to large-scale data integration.
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Abstract figure legend Components of, and challenges in, systems biology.

What is systems biology?

Any treatment of systems biology starts with a history
of reductionism, the origins of which can be traced to
Descartes (1596–1650) (Trewavas, 2006). The essence of
the reductionist approach is that one can understand
any complex phenomenon by studying its constituent
parts and events. Reductionism has been remarkably
successful, especially in the physical sciences. In biology,
the treatment of living organisms as ‘machines’ – whose
behaviour is entirely predictable from an understanding of
their components – persisted until the mid-20th century
when it was robustly challenged by thinkers including
Williams (1956) and von Bertallanfy, (1968). The
latter’s seminal book General Systems Theory questioned
reductionist thinking and clearly articulated the then novel
concept that living organisms were specific examples of
complex systems; as such they should share characteristics
with other complex systems, such as hierarchical
organisation and emergent characteristics (Trewavas,
2006). The book, still in print today, contains diagrams of
biochemical pathways and networks that look surprisingly
contemporary. If one accepts von Bertalanffy’s reasoning,
as most now do, then the higher order characteristics and
behaviour of organisms cannot necessarily be inferred
from a lower order understanding. One must somehow
observe, measure and model complete systems in order
to capture emergent properties. However, it is worth
noting that reductionism and systems thinking are not
exclusive or opposed. One needs to understand both the
components of a system, and their integrated functioning.

Hence the consideration of living systems as clockwork,
uniform, utterly predictable machines, popular at the
turn of the 20th century, is no longer tenable. Gene
expression is known to be stochastic in nature (Elowitz
et al. 2002) and advances in single cell transcriptomics
have revealed heterogeneity in gene expression between
cells in phenotypically similar populations (Brennecke
et al. 2013). Modern biologists think of living organisms
as dynamic systems that are chaotic yet organised, and
profoundly, astonishingly complex.

The common approach to the history and origins of
systems biology outlined above has led to an unfortunate
side effect: the definition of systems biology by exclusion

(‘not reductionism’) rather than inclusion (defining what
it actually is). Unfortunately this ‘definition by exclusion’
captures all other ‘non-reductionist’ efforts in biology
including (for example) the distinct field of integrative
physiology, leading some integrative physiologists to
cry foul (Joyner & Saltin, 2008). Yet those who work in
systems biology see clear differences with other integrative
disciplines, despite their similar philosophy, and it should
be possible to provide a more satisfactory definition.
A survey of the actual methods of systems biology
is a useful point of departure. The core components
of the contemporary systems biology workflow are:
(1) high-dimensional data acquisition (genomics,
transcriptomics etc.), either experimentally or from
the existing literature; (2) sophisticated computational
methods for data integration and contextualisation; and
(3) the scope for iterative refinement of the computational
model via further experiments (termed the ‘model as
hypothesis’ (Palsson, 2008)). These components will be
discussed individually below. Pragmatic definitions of
systems biology (Ideker et al. 2001; Edwards & Thiele,
2013) supplement the non-reductionist philosophy
with the inclusion of the methods used ‘at the coal
face’, thus distinguishing systems biology both from
integrative physiology as well as (for example) purely
method-driven efforts like high-content screening.
Further, systems biology must now be viewed as a
component of a larger life sciences (and medical)
‘informatics ecosystem’ (Fig. 1) that encompasses data
science and visualisation, bioinformatics, computational
biology, medical/translational informatics, wearable
devices (and streaming data) and personalised medicine
(to name a few).

Metabolic systems biology

Metabolism occupies a special place in systems biology;
metabolic networks have been studied and modelled by
the community more than any other. There are several
possible reasons for this. First, metabolism is the most
comprehensively described of any biological network.
Since Otto Meyerhoff and others pieced together the
first recognized metabolic pathway (glycolysis; Kresge
et al. 2005), biochemists have had remarkable success
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in reconstructing the metabolic networks of cells and
tissues. The culmination of these efforts has been the
complete reconstruction of the human metabolic network,
now in its second revision (Thiele et al. 2013). Second,
unlike signalling networks, the substrates and enzymes
of metabolism are separated. This means that metabolism
can be modelled using analogies with flow. Indeed, it could
be argued that the separation of metabolites and enzymes,
by allowing straightforward monitoring of metabolite
levels as well as the use of tracers (e.g. heavy isotopes),
has made the job of elucidating metabolic pathways
considerably more straightforward. Signalling networks
carry signals (information), encoded in the state of the
component protein complexes, which act on each other.
This is a more difficult concept to capture (experimentally
and mathematically), although fine-grained modelling of
sections of signalling pathways are commonplace, using
ordinary differential equations. This separation of enzyme
and substrate sets the modelling of signalling networks
apart from not only metabolism, but also ion channels
(another area where systems biology has had considerable
impact). The separation of moieties and enzymes allows
modellers to validate their models using physico-chemical
laws such as mass and charge conservation, an option
that is otherwise unavailable. Therefore the sheer quantity
and completeness of the information regarding metabolic
networks is unrivalled elsewhere in biology, while the
nature of metabolism is tractable by many mathematical
and experimental methods.

Components of the systems biology workflow

High-dimensional data acquisition. To study an entire
system, it is desirable to be able to observe and measure

all the components of that system. At present only
sequencing-based technologies offer complete coverage of
their targets: DNA or RNA. Hence the genome, trans-
criptome, miRNome (microRNA-ome) and methylome
can be studied in their entirety (although bias may
be present; Risso et al. 2011). This completeness of
coverage challenges those who continue to accuse systems
biologists of hypothesis-free ‘fishing’ (Wanjek, 2011):
the analogy fails when one catches every fish. However,
complete coverage may not even be necessary. Biological
networks are densely connected, and few (if any) measures
are independent of others. Theoretically therefore,
quasi-complete coverage can be achieved by measuring
a carefully chosen subset of ‘sentinel’ molecules. Such an
approach is being taken in the L1000 project (The Broad
Institute; http://www.lincscloud.org/l1000/): to increase
throughput, a subset of 1000 genes have been chosen for
measurement, from which 80% of the transcriptome can
be reverse-engineered.

Other ‘omics’ methods show either limited scope
or sensitivity (or both). For example, metabolomics
using mass spectrometry can be either untargeted
or targeted. State-of-the-art targeted metabolomics
platforms aim for coverage in the same manner as the
L1000 platform (through targeting of a chosen subset
of molecules, for example: Metabolon Inc.; http://
www.metabolon.com/technology/about-metabolomics.
aspx). Untargeted metabolomics methods are on a
continuum: as there is no single optimized method
suitable for all classes of molecules, sensitivity
increases as scope is reduced. For example, a liquid
chromatography-mass spectrometry (LC-MS) workflow
that has its separation optimized for polar molecules
will tend to separate lipids poorly. Further, subsequent
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Figure 1. Systems biology – a component of a larger life sciences (and medical) ‘informatics ecosystem’
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identification of molecules is a major bottleneck
(Peironcely et al. 2013). Other ‘omics platforms (e.g.
proteomics) are subject to similar constraints.

Published (or existing but unpublished) data – the
‘bibliome’ – is a rich source for systems biologists.
Whether the data are unstructured (e.g. the academic
literature, patents etc.) or structured (i.e. in curated
databases), there are many reasons to recommend the
re-use of experimental data, despite the hurdles associated
with combining datasets from different sources (see
‘Challenges’ below). Many outstanding systems biology
efforts have required no additional experimental data (for
example, (Swainston et al. 2016)) and there are now huge
repositories of genomic and transcriptomic information,
curated databases of pathways, protein–protein inter-
actions, etc; even databases of computational models (Juty
et al. 2015).

Computational modelling. At the heart of any systems
biology workflow is a computational model. Indeed for
some this is the cardinal feature of systems biology (Ideker
et al. 2001). It is simply not credible for humans to
filter, integrate and gain insight effectively from the vast
amounts of information acquired from the sources listed
above. There are many mathematical frameworks that
are suitable for modelling biological systems and even a
cursory treatment is far beyond the scope of this review
(although many excellent books exist: Voit, 2012; Ingalls,
2013; Klipp et al. 2016). However, it is important to note
that there is no one ‘right way’ to model a biological system.
Every approach will yield different views into the under-
lying biology. Sometimes very simple models can yield
surprising insights (Mackey & Glass, 1977).

Systems biology models are often categorized as
being either ‘bottom-up’ or ‘top-down’. This distinction
separates models that have been built to simulate a
biological mechanism (bottom-up), such as models of
biochemical pathways, from simple, usually linear, models
(plus an error term) that have been fitted to the data
(e.g. the general linear model in statistics). Some examples
may help to clarify the difference between these concepts.
In 1960 Denis Noble used a computational model to
predict the interaction between multiple ion channels
in the heart and hence the spontaneous emergence of
the heartbeat (without resort to a specific ‘heartbeat
protein’) (Noble, 1960). This elegant and seminal work
was an example of ‘bottom-up’ modelling, predicting as
it did the behaviour of a complex biological system by
modelling its mechanism. By contrast, statistical tests of
significance fit a model of the distribution of a collection of
random events (often a Gaussian or normal distribution)
to some data and the practitioner makes inferences based
on the likelihood of certain observed events (given a
collection of assumptions). No attempt is made in this
latter (‘top-down’) case to extract biological mechanism;

the model is of the data, not the biology. Hence perhaps
a better distinction would be ‘predictive/mechanistic’ vs.
‘explanatory’.

But as appealing as these categorizations are,
they are misleading. All models are based on data
and all models are ‘middle-out’. Even so, predictive/
mechanistic models rarely include explicit error
terms, but should. Some recognition of this is seen
in databases where the level of evidence supporting
a biological event is given as a confidence score (e.g.
Schellenberger et al. 2010). Further, mixed bottom-up/
top-down models exist (indeed are common):
pharmacokinetic/pharmacodynamics (PK/PD) modellers
fit mechanistic models of biology to noisy data by
including an error term. Finally, a groundbreaking paper
has shown that top-down modelling of data, at least in
principle, can produce a bottom-up mechanistic model
(Schmidt & Lipson, 2009).

Perhaps one of the most often overlooked benefits
of building mechanistic/predictive computational or
mathematical models is the information gleaned while
systematically gathering the data required in a format
that can be queried. For example, in the paper describing
one of the first two published versions of the human
metabolic network reconstruction (the other being the
Edinburgh human metabolic network; Ma et al. 2007),
the authors were able to produce a heatmap (Fig. 1 in
Duarte et al. 2007) illustrating the contrasting levels
of human knowledge of each metabolic pathway. The
figure identifies important metabolic mechanisms (e.g.
the channelling of vitamin C catabolism byproducts
into glycolysis) that were poorly understood despite
their potential importance. Only by bringing these
data together systematically could such an analysis be
conducted. Other potential applications include using
models to guide which measurements should be made
to maximally reduce uncertainty (‘if we only measure
one thing, what should it be?’) or systematically inferring
‘missing’ reactions or metabolites (i.e. those that ‘should’
be there but have not yet been discovered; Rolfsson et al.
2011). The first of these hints at a truly integrated systems
biology workflow: where the design of experiments is
based on a mathematical (or computational) analysis
of the biological system under investigation, the data
available and the question to be answered. The second
provides an excellent example of biological enquiry that
would be impossible by other means

Iteration/the ‘model as hypothesis’. Many authors have
highlighted the importance of iteration in the systems
biology workflow (Kitano, 2002; Zak & Aderem, 2009;
Infrastructure for Systems Biology Europe: http://project.
isbe.eu/systems-biology/). This is rarely, if ever, a closed
loop and must therefore allow for the incorporation of
both external/existing and newly generated information
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and data. Two prototypical approaches have emerged,
characterised by the modelling approaches at their
respective cores. In the first, a predictive/mechanistic
model of the biology is constructed using already available
data from the scientific literature and/or curated databases.
This model is then used as a scaffold for new data. The
model is refined iteratively and, at least in theory, becomes
the centrepiece of all ongoing experimental work.

In the second approach, large scale data acquisition
is the first step (for example, transcriptomics). These
data are then analysed using relatively simple statistical
models before being integrated with existing knowledge
using pathway-mapping tools such as DAVID (database
for annotation, visualization and integrated discovery;
Huang da et al. 2009) or MetaCore (Thomson Reuters;
http://lsresearch.thomsonreuters.com/pages/solutions/1/
metacore). Iteration is required to confirm the robustness
and generalisability of the statistical model that was
fitted to the data. The drawback of this latter approach
is clear: due to the relative simplicity of the model
used, confirming its robustness yields little significant
additional information on the quantitative relationships
between species, beyond the magnitude of their change
with experimental perturbation. Indeed, this provides a
nice example of one of many problems with traditional
null hypothesis significance testing: as the precision of
the estimates in the statistical model increase (through
iteration), rather than challenging the underlying
hypothesis (as should be the case), the model merely
serves to reinforce it further. Analytical methods have
been developed that aim to ‘reverse-engineer’ the
underlying network ((Margolin et al. 2006; Langfelder &
Horvath, 2008). A recent DREAM (Dialogue for Reverse
Engineering Assessment and Methods) challenge showed
that combinations of these methods were especially
robust (Marbach et al. 2012).

Challenges

Of the many challenges currently facing systems biologists,
perhaps the greatest are in data integration. Although vast
amounts of data are readily available, they are of varying
quality and much is biased and confounded. Further,
data are rarely available on the same subjects at the same
time. Generally speaking, data integration takes two forms:
horizontal (the collation and integration of a large amount
of data of similar type across multiple conditions, species,
etc.) and vertical (the integration of data spanning many
layers of the biological hierarchy, for a single experimental
condition or disease). The first allows the investigator to
ask questions of fundamental biological significance (for
example, ‘do we see this pattern across multiple species/in
many conditions?’). Here, batch effects are especially
troublesome. Regarding the second, once again there are
bottom-up and top-down approaches. Of the bottom-up

approaches, perhaps the best-known is constraint-based
modelling using a metabolic network reconstruction
(Hyduke et al. 2013). Of statistical methods for data
integration, similarity network fusion is a promising
example (Wang et al. 2014) while network and set-based
methods are useful when batch effects are insurmountable
(Ma’ayan et al. 2014). Artificial intelligence (e.g. Deep
Learning; LeCun et al. 2015) may provide new and
powerful weapons, given sufficient data.

Beyond these tools for integrating the data
itself, integrating accompanying metadata is also a
significant and critical challenge. Even seemingly simple
measurements (for example, total lung volume) can be
acquired in a multitude of different ways and called many
different things. Although a few datasets can be aligned
by hand (with patience) this solution does not scale.
New technology that combines machine learning and
crowd-sourcing provides new hope (Held et al. 2015),
as do continuing efforts towards consistent ontologies.
However, the benefits of integrating multiple datasets
are easy to see: as with more traditional meta-analyses,
integrating multiple datasets brings the promise of new
insights, increased reliability and better signal-to-noise
ratio (Ideker et al. 2001).

Closing remarks

The purpose of this primer is to introduce the interested
reader to systems biology – its history, definition, practice,
opportunities and challenges – with particular emphasis
on systems biology’s favourite biosystem: metabolism.
Systems biology is no longer a young field (perhaps it
never was), and much of the early hype (as with so many
other innovations) is finally dying away. Meanwhile, its
methods have become routine in many laboratories, both
in industry and academia. However, although top-down
modelling of high-dimensional datasets is commonplace,
mechanistic models of biology are still regularly met
with suspicion, despite their huge potential to codify
our knowledge, contextualise disparate data sources and
generate new hypotheses for experimental investigation.
Systems biologists, and bioinformaticians alike, are
regularly encouraged to treat their findings as ‘hypotheses’.
Given recent data highlighting poor reproducibility in
the scientific literature in general (Begley & Ellis, 2012),
perhaps this should be the default setting for us all.

A final note: if one temporarily puts aside the
considerations of reductionism and holism and describes
systems biology as a cycle of model building, experimental
data acquisition, and iterative model refinement, then
one is not describing just systems biology, but science in
general. It is often useful to remember that all scientists use
models (a model being an abstract representation of reality
that is always wrong but often useful, to paraphrase George
Box), whether they be implicit or explicit. Hypothesis
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testing is simply a process of establishing experimentally
how wrong one’s model is.
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