
Learning More, with Less

P racticing chemists solve problems via “chemical
intuition”, a quality that lets them skip intermediate
details and get to the essential result, even if the

outcome is counterintuitive to the uninitiated. There is no
human shortcut to building this intuition; chemists hone
their skills through years of experience of learning and
memorizing patterns of molecular structure and reactivity.
It is in this spirit that Vijay Pande and co-workers propose in
“Low Data Drug Discovery with One-Shot Learning” in this
issue of ACS Central Science1 a computational approach
for chemical prediction by learning from a low number of
examples. The paper touches on many central themes
that are relevant to the intersection of the three main
components of computation in chemistry: molecular
representation, chemical space exploration, and machine
learning to accelerate computation.
For discovering new molecules, the enormity of chemical

space cannot be understated; the number of “small” to
“medium” sized molecules is estimated to be in the range
of 1060 to 10180,2 a number that is a hundred orders of
magnitude larger than the number of atoms in the visible
universe. With just a considerably small number of examples,
chemists are able to distinguish and assess the potential
function of a molecule for a given task. For example, we
recently created a “Molecular Tinder” application that
helped us in the design of molecules for organic displays.3

In analogy to the dating application, Molecular Tinder was a
voting system that allowed us to harvest information from
experimentalists who voted “Yes”, “No”, or “Maybe” on the
synthesizability of molecules. Voting results allowed us to
design algorithms that preferentially generated molecules
with practical synthesic routes that were eventually synthe-
sized and tested in real devices.3

Another very important aspect of human intuition is
“transferability”, which enables the generalization of knowledge

learned in a particular domain to untested domains. Every-
one who has passed an undergraduate organic chemistry test
had to show that their brain is able to generalize from one
domain to the other. This is a much more challenging task
for a computer.
We are sometimes able to predict with varying degrees of

success these properties using quantum chemistry calcu-
lations, but when these simulations are involved, supralinear
computational scaling laws hinder the application of most
common algorithms to complex molecules. Therefore, to
cover chemical space efficiently, we cannot go unaided
by intuition if we ever hope to explore it for successful
molecular design.
It is often thought in the artificial intelligence (AI)

community that any human decision that can be done in
a matter of a few seconds, can be in theory, learned and
automated by a computer. There have been many recent
examples where deep learning is solving increasingly
complex tasks and getting closer to the performance of
humans, even surpassing it in certain tasks such as the game
Go with AlphaGo.4 This progress has been propelled mainly
by two factors: broader availability of data and cheaper
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computation. In part because we now automatically collect
vast amounts of data on just about anything that can be
digitized: photos, text, sound, voice, health records, GPS
locations, and of course, molecules. With larger data sets
there is much more potential to develop automated
algorithms that turn this data into information and
eventually into insight.

But what can be done when data is sparse? The algorithm
of Pande and co-workers1 is the first application of “one-shot
learning” to chemistry. There are three key ingredients for
the success of one shot-learning. First, one-shot learning
overcomes the sparsity of the training data set by learning a
similarity metric between molecules. To make this similarity
transferrable, the second ingredient is making it a metric that
is also related to their performance over several tasks. Finally,
one-shot learning requires a flexible and meaningful data
representation. They demonstrate this principle in a very
challenging setting, using up to 10 positive and 10 negative
molecules, rated based on their performance in a particular
property of interest (activity/inactivity, etc.). Using data sets
Tox21, MUV, and SIDER which relate to drug side effects,
they show remarkably that the models are able to generalize.
Models that Pande and co-workers trained on similarly
related data sets are shown to be transferable to a certain
degree, outperforming common ensemble methods such as
random forests.
It will be interesting to see in the future how data sets as

small as tens of molecules to large data sets of up to millions
of data points are leveraged for prediction. The field of
transfer learning also may enable the eventual use pretrained
models on a variety of applications for which the original
training was not directly intended.
One-shot learning employs aspects of a general class of

machine learning algorithms called “attention mechanism”
algorithms. These algorithms allow the mapping between
chemical compounds into a continuous space. In this
space, a metric between molecules can be tuned to a
particular task. Recently, it was pointed out that one way
of interpreting attention mechanisms is to relate them
to the general concept of memory-augmented neural
networks. By attending or focusing on certain parts of
the data, the network is choosing what to observe from
memory.5

Looking into the future, memory-augmented neural
networks is one frontier of AI. By using the concept of
memory, neural networks are able to crack previously
unsolved complex and structured tasks.6 It is reasonable
to hypothesize that to solve hard chemical problems, we
inherently need to store important examples or features for
later recall. Hence memory-augmented neural networks,
differentiable neural computers, neural Turing machines,6

and other related algorithms will push the frontiers of
prediction in chemistry.
Pande and co-workers employ graph convolutional

networks (GCN)7,8 in matching networks for molecular
features which also opens the door to solving chemical
problems in new ways. Molecular representation is still an
active area of research. A good universal representation of
a molecule should contain many of the symmetries on
which its properties are invariant, typically permutation
and isometry invariance for energetic properties. A further
complication is the consideration of stereochemistry, several
conformers, and overall compactness of the representation.
To encourage these properties, most existing work has used
a combination of topological features that encode molecular
subgraph environments (fingerprint-type methods such as
Morgan fingerprints9) and geometrical features such as
bonds, angles, and physical interactions (Coulomb matrices,
bag of bonds,10 etc.). GCNs are able to encode information
in the edges and nodes of each graph, holding topological,
geometrical, and other chemically specific information,
which ultimately might lead to a flexible, compressed, and
optimized representation suited for each problem domain.
The future will keep both the chemistry and machine

learning communities busy. There is still work to be done on
the interpretability of GCNs. Together with our recent use
of autoencoders11 to optimize molecular properties in a
generalizable setting, the continuous-space representation of
molecules is an exciting direction for chemistry.
Another important frontier is the interaction and control

of experiments with ML tools. Recent work by Raccuglia
et al.12 with the dark reaction projects shows how AI might
be used in a chemist’s toolbox, improving how we execute
our science and collect our data. We look forward to the day
where AI is blended in most aspects of chemical research.

Therefore, to cover chemical
space efficiently, we cannot go
unaided by intuition if we ever
hope to explore it for successful

molecular design.

It will be interesting to see in the
future how data sets as small as

tens of molecules to large
data sets of up to millions of
data points are leveraged for

prediction.
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As a final note, kudos are due to Pande and co-workers for
releasing their code and training data sets as open source, as
well as posting their manuscripts in preprint servers.
The authors believe that all card-carrying modern theoretical
researchers in the field should do the same. To preempt
Twitter wars, we acknowledge that not all data sets,
e.g., pharmaceutical or materials-related, can be made public
due to IP considerations.
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